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Abstract: Classic and intelligent techniques aim to locate and track the maximum power point of

photovoltaic (PV) systems, such as perturb and observe (P&O), fuzzy logic (FL), artificial neural

networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFISs). This paper proposes and

compares three intelligent algorithms for maximum power point tracking (MPPT) control, specifically

fuzzy, ANN, and ANFIS. The modeling of a single-diode equivalent circuit-based 3 kWp PV plant

was developed and validated to achieve this purpose. Then, the MPPT techniques were designed and

applied to control the buck–boost converter’s switching device of the PV plant. All three methods use

the ambient conditions as input variables: solar irradiance and ambient temperature. The proposed

methodology comprises the study of the dynamic response for tracking the maximum power point

and the power generated of the PV systems, and it was compared to the classic P&O technique under

varying ambient conditions. We observed that the intelligent techniques outperformed the classic

P&O method in tracking speed, tracking accuracy, and reducing oscillation around the maximum

power point (MPP). The ANN technique was the better control algorithm in energy gain, managing

to recover up to 9.9% power.

Keywords: photovoltaic systems; MPPT; ANN; fuzzy; ANFIS; power recovery

1. Introduction

The insertion of photovoltaic (PV) systems into the world electrical matrix has grown
exponentially. However, the nonlinear nature of PV arrays regarding ambient conditions
and unstable climatic factors hinders the extraction of the maximum power provided by
the PV modules. As a result, the PV modules can extract a false MPP and convert less solar
energy into electrical energy. Consequently, there is a reduction in the efficiency of the PV
system [1].

The reduction in the efficiency of PV systems becomes substantial when it comes
to photovoltaic plants with a high installed capacity. Therefore, maximum power point
tracking (MPPT) techniques that are minimally more efficient than others can increase the
generated power significantly. As a result, researchers have studied and developed MPPT
techniques extensively.

MPPT is a technique that allows PV arrays to operate at the maximum power produc-
tion based on a control system. They diverge in aspects such as the number of required
sensors, complexity, cost, speed convergence, and accurate tracking under irradiance
and/or temperature variations [2].

MPPT techniques are helpful to add speed in the search process for the new MPP
when the ambient conditions change and, consequently, the MPP of the module is mod-
ified. For example, an inefficient MPPT technique can follow the MPP under normal
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ambient conditions with little or no damage to the power supplied to the system. However,
on the other hand, this same technique may not keep up with the MPP when there are
many passing clouds in short time intervals or a false MPP is detected. Unfortunately,
this can damage the power generation of the PV system. Therefore, choosing the ideal
MPPT technique according to ambient conditions is important to extract the maximum
power generation.

Artificial intelligence (AI) techniques are successful in nonlinear systems, such as
photovoltaics. Therefore, the PV system in this paper will use AI techniques as MPPT
control algorithms. Among the existing AI techniques, artificial neural networks (ANNs)
and fuzzy logic (FL) are the most studied MPPT techniques in the literature.

Compared to classic techniques, AI techniques show better extraction of the maximum
power from PV modules. After all, they work with nonlinear systems in a fast, flexible,
and reliable way. Such characteristics are fundamental for situations of rapid change in
ambient conditions [3,4].

Moreover, the choice of the DC–DC converter is important because it needs to track the
MPP regardless of the ambient conditions. In other words, it cannot have a non-operational
region on its I–V characteristic curve to ensure maximum energy is transferred to the load
regardless of the environmental conditions used during the test [5].

These characteristics can be found in buck–boost converters [6], and they are essential
in regions with a dry and sunny tropical climate as in the present paper. Therefore, we chose
to use a buck–boost converter in this work, although this converter type is infrequent in
the literature.

For instance, Aldobhani and John [7,8] developed a new MPPT technique based on an
adaptive neuro-fuzzy inference system (ANFIS) and applied a buck–boost converter. The
short-circuit current (ISC) and open-circuit voltage (VOC) of the PV array were the input
variables. For training, the dataset had 39 samples. As a result, the authors estimated the
maximum power point voltage (VMPP) with errors under 2%. Additionally, they observed
high efficiency and low fluctuation in the output.

Otiene, Nyakoe, and Wekesa [9] also designed a PV system with MPPT based on
an ANFIS and applied a buck–boost converter. The researchers used irradiance (G) and
ambient temperature (TAMB) as input variables. They used seven Gaussian membership
functions (MFs) for G and three for TAMB. The estimate of the VMPP was the output variable,
and it helped control the switch duty cycle of the DC–DC converter. In addition, the authors
performed a qualitative analysis.

Posteriorly, Panda, Pathak, and Srivastava [10] compared MPPT based on P&O with
MPPT based on a fuzzy controller. Both MPPT techniques were used in a PV system
with a buck–boost converter [11]. The researchers analyzed the response time of two
MPPT controllers. They observed that the P&O controller took 167.6 ms to track the MPP,
whereas the fuzzy MPPT controller took 12.2 ms, i.e., the fuzzy MPPT controller reduced
the maximum power tracking time by 88.18%.

Ahmed and Salam [12] created a simulated PV system with a buck–boost converter
and P&O as an MPPT technique. The PV system was connected to a load. The simulated
results showed a P&O algorithm with 45 ms of settling time and oscillations around the
MPP in steady state under normal ambient conditions [13].

Ahmed and Salam [14] developed a new simulated study with the same PV system
used in [7,8] the following year. They analyzed the PV system under uniform, step, and
abrupt (dynamic) changing ambient conditions. The researchers observed that the P&O
algorithm exhibited an initial start-up speed between 120 and 300 ms and a re-tracking
speed after step atmospheric change between 40 and 60 ms.

Shiau et al. [15] studied different buck–boost converter topologies applied to a PV
system using fuzzy as an MPPT control algorithm. All topologies were analyzed in
Matlab/Simulink® under ambient conditions. The authors did not examine the parameters
of the dynamic response. They just ensured that all buck–boost converter topologies almost
perfectly reached the MPP.
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Arora and Gaur [16] compared an ANFIS and an ANN as MPPT control algorithms
applied to a grid-connected PV system with a buck–boost converter. For training, the
dataset had 300,001 samples collected from the incremental conductance algorithm. The
input variables were the error and its associated change in error with nine MFs for each.
This error expressed the derivative of the output power of the PV array concerning the
output voltage and current. The output variable was the duty cycle which tunes the MPPT
controller to locate the MPP.

Arora and Gaur [16] used fifteen neurons and a tangent sigmoid activation function
in the hidden layer in a modeled ANN algorithm. The output layer had a linear activa-
tion function. The results showed 100% efficiency in tracking the MPP with the ANFIS
algorithm, with a settling time of 0.105 s and oscillations of 0.115 s. In contrast, the ANN
algorithm achieved 99.83% efficiency in tracking the MPP, with a settling time of 0.125 s
and fluctuations of 0.130 s.

Simultaneously, Martin and Vazquez [17] conducted a comparative analysis of control
methods to extract the maximum power from the PV system under changeable ambient
conditions. The PV system had a buck–boost converter connected to a load. The authors
conducted simulated and experimental analyses and achieved an efficiency of 96% for the
P&O algorithm and 98.2% for the fuzzy and ANFIS control algorithms.

Belhachat and Larbes [18] created an intelligent MPPT controller based on an ANFIS
that predicted and extracted the global maximum power point from the PV array under
partial shading conditions. The authors used different PV array configurations and linked
them to the buck–boost converter and a charge. The output variable of the projected ANFIS
was the output power of each PV configuration, and the two input variables were the
voltage and current. The method was trained with three Gaussian MFs in the input and
nine fuzzy rules.

The authors observed fast tracking of the real MPP and negligible oscillations. There-
fore, the simulation results demonstrated that the proposed technique efficiently tracks
99.92% under partial shading conditions. In addition, the developed ANFIS proved robust-
ness against sudden irradiance level changes during partial shading.

At the same time, Karagöz and Demirel [19] proposed a hybrid MPPT technique with
a modified bat algorithm and the P&O algorithm. The authors used the standard bat
algorithm and standard P&O algorithm to compare the results. All MPPT algorithms were
simulated under standard test conditions and partially shaded conditions. Furthermore,
the MPPT algorithms were applied in a PV system with a buck–boost controller [20].
Karagöz and Demirel [19] observed an oscillation around the MPP between 4 and 20 W
when the P&O algorithm was used. In addition, they calculated the MPPT P&O efficiency
between 80.26% and 99.03%.

A simulation of a stand-alone PV system was developed by Khanam and Foo [21].
They conducted a comparison between MPPT with the P&O algorithm and an ANN
algorithm. The P&O results showed a settling time between 62.78 and 72.13 ms. The ANN
algorithm results were compared with those of the P&O algorithm qualitatively by the
authors. They affirmed that the ANN provided more accurate and faster results than P&O
when used as an MPPT algorithm [22].

Ahmed and Salam [23] developed and analyzed another MPPT algorithm of a PV
system with a buck–boost converter. This time, they created a modified P&O algorithm,
and Riaz et al. [24] affirmed it to be an effective solution for detecting uniform and partial
shading conditions. The results showed a settling time of 250 ms and an overall efficiency
of around 99% under any atmospheric variations.

A comparative study among buck, boost, and buck–boost converters applied to a
PV system connected to a load was executed by Kumar, Rathor, and Bahrani [25]. The
researchers also compared fuzzy and P&O as MPPT control techniques. They concluded
that the buck–boost converter offered a better performance. The P&O and fuzzy algorithms
achieved 86% and 97% efficiency.
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Andrew-Cotter, Uddin, and Amin [26] designed an ANFIS algorithm to control the
buck–boost converter switching of a grid-connected PV system. The input variables of the
ANFIS architecture were the voltage and current of the PV array, both with two Gaussian
MFs. The analyses showed that the ANFIS algorithm had a faster response and fewer
oscillations than the classic perturb and observe (P&O) technique. In addition, the authors
calculated a conversion efficiency of 97% for the ANFIS under all irradiance levels.

Rajavel and Rathina [27] separately compared buck, boost, and buck–boost converters
connected to a PV system with MPPT based on FL. The error and its associated change
of error (with five MFs for each) were the input variables, and the duty cycle switching
signal was the output variable. The authors analyzed the resulting graphics qualitatively
and concluded that the buck–boost converter proved to have better efficiency and a good
performance compared with the boost and buck converters.

Considering the brief discussion above, the present research proposes developing
MPPT algorithms based on the ANN, FL, and ANFIS intelligent techniques to track the
MPP of a 3 kWp photovoltaic system under varying irradiance conditions and ambient tem-
perature. The PV system is composed of a PV array, a buck–boost converter, and a charge.
The MPPT intelligent algorithms separately connected to the PV system can minimize the
adverse effects that climate change causes to the PV system during power generation.

The ANN, FL, and ANFIS intelligence techniques are attractive because they have
strong generalization skills, good explanations through diffuse rules, and/or easy incorpo-
ration of language and numerical knowledge to solve problems. Additionally, some can
provide a systematic calculation to deal with incomplete sensory information [18].

The irradiance (G) and ambient temperature (TAMB) were the ambient parameters
chosen as the input variables. This choice is justified considering that both parameters are
ambient conditions that severely influence the power delivered by the PV modules.

This paper is briefly structured as follows. Section 2 describes the PV modeling
developed in Matlab/Simulink®. Then, Section 3 explains the designed MPPT algorithms.
Section 4 presents the results of the simulations. Finally, the main conclusions are discussed
in Section 5.

2. Photovoltaic System

The block diagram of the photovoltaic system adopted for this research is shown in
Figure 1. It comprises 14 series-connected PV modules, a buck–boost DC–DC converter,
an MPPT algorithm, and a load. A capacitor between the PV array and DC–DC converter
reduces noises [28].

–

–

–

–

–

– –
–

Figure 1. PV system.

Figure 2 shows the installation of the PV array used in this research. The PV system is
installed at the Federal Rural University of the Semi-Arid (UFERSA), located in the city of
Mossoró (5◦11′17′′ S, 37◦20′39′′ W). Mossoró belongs to the Fortaleza time zone (Greenwich
Mean Time (GMT)—3 h). The system is a 3 kWp PV plant.
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Figure 2. PV array.

The PV module modeling and buck–boost converter components are discussed in
Sections 2.1 and 2.2, respectively. The MPPT algorithm developed will be explained in a
separate section.

2.1. PV Module Modeling

The current extracted from each PV module is based on the single-diode model. The
model was exhaustively discussed in [29]. The diode ideality constant (n) used in the
model was empirically chosen as 1 to improve the model fit.

Some authors have investigated how to estimate the ideality factor n [30,31]. In the
context of this work, this constant was considered as 1 ≤ n ≤ 1.5 [29]. Villalva, Gazoli, and
Ruppert Filho [29] clarified that designers should choose n to improve the model fit so that
it is close to the data provided by the manufacturer.

Another essential variable of PV module modeling is defining the PV cell temperature
because the diode reverse saturation current (Io) of the single-diode model depends on
the cell temperature (TCELL). There is no temperature sensor at the PV cell p–n junction,
and placing this sensor is complex. The PV cell temperature varies with the ambient
temperature and irradiance [32]. Thus, as a solution, it is possible to employ Equation (1)
to find the PV cell temperature.

TCELL = TAMB +
G

800
(NOCT − 20) + 273, (1)

where TAMB is the ambient temperature in (◦C), and NOCT is the nominal operating cell
temperature (◦C).

The nominal operating cell temperature (NOCT) is a parameter offered by the manufac-
ture and represents the PV cell temperature measured when TAMB is 20 ◦C, G is 800 W/m2,
and the wind speed is 1 m/s [32]. This parameter links the PV cell temperature and weather
conditions (TAMB and G).

The studied PV system operates with the YL245P-29b PV module model. Table 1
describes the parameters extracted from the manufacture’s datasheet [33].

Table 1. Parameters of the PV module.

Parameter Value Parameter Value Parameter Value Parameter Value

VOC 37.5 V kV −0.1248 V/K NP 1 VMPP 29.6 V
ISC 8.83 A NOCT 46 ◦C PMPP 245 W RSH 404.1 Ω

ki 0.004415 A/K NS 60 IMPP 8.26 A RS 0.411 Ω

The manufacture’s datasheet does not provide the RSH and RS values. Therefore, the
RSH and RS model parameters were calculated (see Table 1 and Appendix A).

The methods to extract the model parameters have been extensively explored in
the literature [34–36]. Nevertheless, most of them demand sensing and equipment, or
even data that are not always available. Therefore, the method chosen was developed by
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Villalva, Gazoli, and Ruppert Filho [29]. It is an efficient and consolidated method and
requires just the data available on the manufacturer’s datasheet. The method is explained in
Appendix A.

Figure 3 shows the developed model using MATLAB/Simulink® software. The green
blocks are input variables, the yellow blocks are output variables, the orange blocks are PV
module parameters, and the blue blocks are masks containing equations developed and
discussed previously. Furthermore, a first-order filter was employed as a feedback transfer
function to avoid a loop error [37]. TC is the filter time constant, and the TC value is equal
to the sample time.

’

–

’

 

– –

–
–

– –

–
–

Figure 3. Modeling of the PV cell.

After defining the PV module modeling, fourteen PV modules were series connected
using MATLAB/Simulink® to form the 3 kWp PV array, similar to the real PV system.
Section 2.2 describes the components of the buck–boost DC–DC converter.

2.2. Buck–Boost Converter

A buck–boost converter is essentially composed of a switching device, a capacitor (C),
and an inductor (L) [18]. The MOSFET (metal–oxide–semiconductor field-effect transistor)
was chosen as a switching device since it operates at a high frequency, avoiding audible
noise. Additionally, a PWM (pulse width modulation) signal is responsible for turning
these switches on and off. Therefore, the MPPT algorithm is responsible for controlling the
PWM duty cycle (D).

Figure 4 shows the scheme of the buck–boost converter modeled in MATLAB/
Simulink®. The buck–boost converter and the mask representing the PV array (in blue) are
connected. Moreover, an input capacitor (C1) is inserted to reduce oscillations.
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•

•

Figure 4. Buck–boost converter with PV array and input capacitor.

The components (in orange) have a recommended minimum value obtained by calcu-
lation. Table 2 shows the final values chosen. Furthermore, the output variable of the PV
system is in yellow, and the PWM duty cycle is in pink.

Table 2. Parameters of the buck–boost converter by scenario.

Parameter Value Parameter Value Parameter Value

PV module 14 VOUT = VR 480 V C1 = C2 20 µF
PMPP 3430 W R 67.15 Ω f 50 kHz

VIN = VMPP 414.4 V L 5.6 mH ∆IMAX = ∆VMAX (Ripple) 10%

After modeling the buck–boost converter and defining the load, Section 3 discusses
the MPPT algorithms developed and used to control the converter.

3. Methodology

To develop the proposed research, it was necessary to divide the work into six stages.
Figure 5 illustrates the methodological structure of the study.

–

–

20 μF
67.15Ω

∆I = ∆V

–

Modeling of the PV system 
in Matlab/ Simulink® Modeling validation Dataset compilation

Training of intelligent 
MPPT algorithms

•ANN •Fuzzy •ANFIS

Testing under real 
conditions

Analysis of the results

•Dynamic response

•Estimated power generation

Figure 5. Stages of the methodology.

The modeling of the PV system in Matlab/Simulink® under ambient conditions is
shown in Section 2. Therefore, to validate this modeling, the output power was compared
in the real PV system with the PMPP of the modeling in MATLAB/Simulink® software.
The systems with different MPPT techniques were submitted to the same ambient condi-
tions. Afterwards, the simulation dataset was expanded to conduct the third step of the
methodology (Figure 5).

The G parameter varies between 100 and 1100 W/m2, with a step of 100 W/m2.
Likewise, the TAMB parameter considers temperature values between 15 and 45 ◦C, with
an increment of 5 ◦C. In contrast, the D parameter was calculated.

For each G and TAMB value, PMPP was extracted. Therefore, knowing the fixed load
value, the maximum power point voltage (VMPP) was calculated using Equation (2). VMPP

is the output voltage of the PV system.
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VMPP =
√

R · PMPP (2)

where R is the load in (Ω) (Table 2), VMPP is the maximum power point voltage in (V), and
PMPP is the maximum power point power in (W).

After, the duty cycle (D) was calculated for each pair of ambient conditions G and
TAMB using Equation (3).

D =
|VOUT |

VIN+|VOUT |
, (3)

where VOUT is VMPP or the buck–boost output voltage in (V), and VIN is the buck–boost
input voltage in (V). VIN was extracted from the MATLAB/Simulink® simulation.

With 77 combinations of G and TAMB, 77 duty cycle values were obtained. D ranged
from 0.2582 to 0.6193. Therefore, the dataset of this paper is a compilation of parameters
G, TAMB, and D. At the end of the compilation, a dataset with 77 samples was obtained to
train AI techniques used as an MPPT algorithm in this research.

The fourth step is the modeling and training of the MPPT algorithms. Artificial
intelligence techniques are used as MPPT algorithms since they can deal with the nonlin-
earity, complexity, and uncertainties of these systems, often through robust and low-cost
solutions [2]. In this study, the ANN, fuzzy logic, and ANFIS MPPT algorithms were used
in the PV system (Figure 1).

The MPPT algorithm models use the G and TAMB as input variables. The output vari-
able is the duty cycle D. Figure 6 illustrates the scheme developed in MATLAB/Simulink®

for all proposed MPPT algorithms in this study.

𝑉𝑀𝑃𝑃 = √𝑅. 𝑃𝑀𝑃𝑃
(Ω) 

𝐷 = |𝑉𝑂𝑈𝑇|𝑉𝐼𝑁 + |𝑉𝑂𝑈𝑇|, 
– –

μs. The “ ”

Figure 6. Scheme of MPPT with the AI algorithms.

Empirically, the switching frequency chosen for the PWM generator (Figure 6) was
50 kHz. The sampling time rate had its value established as the inverse frequency, i.e.,
20 µs. The “Unit Delay” blocks (Figure 6) represent the signal discretization.

Finally, it is necessary to train the intelligent algorithms using a dataset with 77 samples.
The training of the ANN, FL, and ANFIS algorithms is described in Section 3.1, Section 3.2,
and Section 3.3, respectively.

3.1. MPPT Algorithms Based on ANN

Artificial neural networks (ANNs) are computational models inspired by the human
brain. They are composed of a set of processing units known as artificial neurons. The
synaptic weight vectors interconnect these artificial neurons [38].

In MPPT applications, the most common ANN used is the multilayer perceptron with
a feed-forward architecture, usually with three layers: an input layer, a hidden layer, and
an output layer. Moreover, the performance function of the network is the mean square
error (MSE) [38].

The ANN was trained using the MATLAB/Simulink® software. All considered
scenarios used 70% of the data points for training, 15% of the data points for validation,
and 15% of the data points for testing. Table 3 shows some parameters used for training
the ANN.
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Table 3. Main parameters of the ANN.

Parameter Data Parameter Data

Network type Multilayer Perceptron Number of neurons (5,1)
Training algorithm Levenberg–Marquardt Activation function (tansigmoid, pureline)

Inputs [G TAMB] Number of samples in dataset 77
Outputs [D] Epochs 9

Number of layers 2
MSE 2.4677 × 10−8

R2 1

3.2. MPPT Algorithms Based on Fuzzy Logic

The most critical aspect of fuzzy logic (FL) is converting inaccurate and qualitative
information into numerical values. When applied to PV systems as an MPPT control
algorithm, FL stands out for not needing an accurate mathematical model and dealing with
the nonlinearity of the PV system [39].

The MPPT training based on FL used 11 triangular membership functions (MFs) for
the G input variable, 7 triangular MFs for the TAMB input variable, and 5 triangular MFs
for the D output variable.

After establishing the MFs, IF/THEN statements were used to define the FL system
rules. Table 4 shows the input MF settings and the fuzzy rules applied.

Table 4. Rule base matrix of a fuzzy controller.

Input 1

Input 2 15
[15 15 20]

20
[15 20 25]

25
[20 25 30]

30
[25 30 35]

35
[30 35 40]

40
[35 40 45]

45
[40 45 45]

100
[100 100 200]

LO LO LO LO LO LO LO

200
[100 200 300]

LO ML ML ML ML ML ML

300
[200 300 400]

ML ML ML ML M M M

400
[300 400 500]

M M M M M M M

500
[400 500 600]

M M M M MH MH MH

600
[500 600 700]

MH MH MH MH MH MH MH

700
[600 700 800]

MH MH MH MH MH MH MH

800
[700 800 900]

MH MH MH H H H H

900
[800 900 1000]

H H H H H H H

1000
[900 1000 1100]

H H H H H H H

110
[1000 1100 1100]

H H H H H H H

Overall, the Mamdani fuzzy controller employed 77 fuzzy rules. Table 5 summarizes
the main characteristics that set up the modeled fuzzy controller.

3.3. MPPT Algorithms Based on ANFIS

Adaptive neuro-fuzzy inference systems (ANFISs) are hybrid intelligence techniques
that combine ANN and FL techniques. In an ANFIS, a particular ANN architecture
incorporates a fuzzy inference system (FIS). Therefore, the fuzzy controller receives a
learning algorithm [40].
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Table 5. Parameters of the fuzzy controller with the input variables G and TAMB.

Parameter Data Parameter Data Parameter Data

Type Mamdani Number of rules 77

Output range

[0.2582 0.6193]
LO = [0.2583 0.3 0.34]

ML = [0.331 0.3897 0.41]
M = [0.4028 0.44 0.475]

MH = [0.47 0.5085 0.547]
H = [0.54 0.58 0.6195]

Inputs [G TAMB] Type of input MF trimf
Output [D] Type of output MF trimf

Number of input MFs [11 7] Input range 1 [100 1100]
Number of output MFs 5 Input range 2 [15 45]

However, when comparing it to other conventional MPPT techniques, ANFIS as an
MPPT control algorithm applied to PV systems is still recent. Thus, this study modeled the
ANFIS MPPT using the MATLAB/Simulink® software.

The ANFIS was trained using all 77 samples of the dataset. In the ANFIS architecture,
each input has 5 triangular MFs, totaling 25 fuzzy rules. The output is a constant MF.
Figure 7 illustrates the architecture scheme.

Figure 7. ANFIS architecture.

Finally, Table 6 briefly presents the main parameters of the ANFIS technique used as
an MPPT control algorithm for the PV system.

Table 6. The main parameters of the ANFIS algorithm with the G and TAMB input variables.

Parameters Data Parameters Data

Type Sugeno Type of output MF constant
Inputs [G TAMB] Input range 1 [100 1100]
Output [D] Input range 2 [15 45]

Number of input MFs [5 5] Output range [0.2582 0.6193]
Number of output MFs 25 Training hybrid

Number of rules 25
Iterations 3

Type of input MF trimf

After modeling the MPPT algorithms, the PV systems were simulated considering
different ambient conditions. Section 4 describes the ambient conditions used in the
simulation, and it discusses the testing results.

4. Results and Discussion

Firstly, the PV system modeling is validated in Section 4.1. Then, ambient conditions
are defined empirically (Section 4.2) to later analyze the dynamic response of the output
power of the systems in Sections 4.3 and 4.4. Finally, the power generated by each PV
system is calculated in Section 4.5, and a critical analysis is carried out.
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4.1. Validation of the Modeled PV System

Primarily, the simulation results were compared with the values measured experimen-
tally to validate the PV system modeling of Section 2. In this analysis, six real and random
ambient conditions were chosen. The comparison was between the model simulation and
the real PV system PMPP output powers. Table 7 shows the comparative results.

Table 7. Output power in the real PV system and the MPP of the modeled PV system.

Conditions
Ambient Conditions Real System Simulated System

G (W/m2) TAMB (◦C) Pmeasured (W) PMPP,simulation (W) e%

1 294 23.86 919.25 935.2 1.73
2 303 31.74 906.83 893.9 1.43
3 548 24.65 1664.60 1629.0 2.14
4 868 31.46 2099.38 2105.0 0.27
5 957 31.41 2198.76 2223.0 1.10
6 1134 30.17 2397.52 2438.0 1.69

Observing Table 7, the modeled PV system presented results close to the values
measured experimentally for all ambient conditions. Furthermore, the relative errors of the
powers were between 0.27% and 2.14%. Therefore, the modeling developed in Section 2
estimated correct parameters because the simulation returned results consistent with
reality. Thus, it was appropriate to use the model for the elaboration of the dataset and
subsequent simulation.

For the simulations, the ambient conditions needed to be defined, as shown
in Section 4.2.

4.2. Definition of Ambient Conditions

The control algorithms from the PV system were connected separately considering
the same ambient conditions to analyze the dynamic response of the output power. Table 8
details the randomly chosen ambient conditions.

Table 8. Ambient conditions and respective expected PMPP.

Condition G (W/m2) TAMB (◦C) PMPP (W)

Condition 1 303 24 961.5
Condition 2 631 32 1684.0
Condition 3 957 32 2205.0
Condition 4 548 24 1640.0

Table 8 also shows the expected PMPP in the output of the PV system. It is worth
highlighting that the change in ambient conditions considers the cloud edge effect.

After estimating the expected power, the convergence speed, tracking accuracy, and os-
cillation around the MPP parameters were verified and are discussed in Sections 4.3 and 4.4.
These parameters make up the dynamic response of the output signal. A comparison be-
tween the intelligent and classic P&O algorithms was also performed.

Afterwards, the PV systems were subjected to three ambient conditions of the city
used in this paper. The city is located near the Equator (5◦11′17′′ S, 37◦20′39′′ W), GMT-3.
This city has a dry and sunny tropical climate. The extracted conditions were irradiance
and ambient temperature, and the ambient conditions are explained in Section 4.2.1,
Section 4.2.2, Section 4.2.3.
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4.2.1. Normal Condition

A day in normal conditions has a full sun and a clear sky. Therefore, the irradiance
increases until close to 12:00 h (GTM-3) and exceeds 1000 W/m2 in the region of this
research. After midday, the irradiance declines until sunset. Conversely, the ambient
temperature only increases on this type of sunny day. Figure 8 illustrates the ambient
condition of the normal condition scenario.
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Figure 8. Normal condition.

4.2.2. Shading Condition

In the shading condition, it is possible to observe a behavior of the ambient tempera-
ture similar to that of the normal condition (Section 4.2.1). However, the irradiance has an
actual and rapid drop near 11:00 h (GTM-3), as shown in Figure 9. This sudden change in
irradiance levels is a consequence of passing clouds.
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Figure 9. Shading condition.

4.2.3. Forecasting Condition

The forecasting condition is defined as the situation in which solar irradiance changes
over time. The ambient temperature maintains the performance of only increasing through-
out the day. Figure 10 shows the G and TAMB conditions.
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In Section 4.5, the power generated by each PV system is calculated and, finally,
compared with a PV system with MPPT based on P&O.

4.3. Dynamic Response Analysis

Each intelligent MPPT technique modeled and connected to the PV was submit-
ted to the ambient conditions of Table 8. Therefore, the dynamic response of the out-
put power was analyzed. In Figure 11, the blue curve is the expected PMPP value for
each ambient condition.

 

∆P ∆P

∆P
°

Figure 11. Comparison among output powers according to the MPPT algorithm.

Analyzing Figure 11, the ANFIS and ANN algorithms were faster in achieving the
steady state. On the other hand, the P&O algorithm was the slowest technique. Addition-
ally, the P&O algorithm presented more significant oscillations around the MPP in the
steady state when compared to the intelligent algorithm used as an MPPT control technique.

The convergence speed is the time that the PV system takes to achieve the steady
state. Therefore, the settling time (ts) was the chosen parameter. The oscillation around
the MPP (∆P) is the peak-to-peak value of the signal in the steady state. Finally, ∆P is the
ratio between the peak value and the average value of the output power measured in the
steady state.

Table 9 describes the settling time (ts) and the oscillation around the MPP (∆P)
parameters.

Table 9. The settling time and the oscillation around the MPP parameters.

Condition
ts (ms) ∆P (%)

P&O ANN FUZZY ANFIS P&O ANN FUZZY ANFIS

1 29.16 23.44 22.24 23.54 0.57325 0.00020 0.00012 0.00016
2 19.90 15.60 15.70 15.8 0.33984 0.00031 0.00012 0.00028
3 15.70 14.10 14.10 14.3 0.00872 0.00023 0.00012 0.00026
4 22.50 13.40 13.20 13.0 0.22308 0.00011 0.00013 0.00013

The settling time of the P&O algorithm (Table 9) was longer than that of all simulated
intelligent techniques, as observed in Figure 11. Overall, the ANFIS, ANN, and fuzzy algo-
rithms showed similar settling times. Intelligent algorithms were at least 1 ms faster than
the classic P&O algorithm. The lowest difference among settling times of the algorithms
occurred in Condition 3.

The oscillation around the MPP (∆P) of the intelligent techniques (ANN, fuzzy, and
ANFIS) is almost undetectable because they correspond to a variation of less than 0.001%.
In contrast, the P&O shows oscillations around the MPP between 0.008% and 0.57%.
Therefore, expanding on the graph of Figure 11, fluctuations of the P&O algorithm are
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observed, while the intelligent algorithms’ signals do not seem to exhibit oscillation in the
steady state.

Moreover, the parameter used to verify the tracking accuracy is the relative percentage
error. This error compares the average power value of the PV system in the steady state
with the expected PMPP established in Table 8.

Table 10 and Figure 12 show the results obtained with MPPT based on each AI
technique. The results were also compared to the classic P&O technique.

Table 10. The average power of the PV system in the steady state, and the respective relative percentage error.

Condition PMPP (W)
P&O ANN FUZZY ANFIS

PP&O (W) e% PANN (W) e% PFUZZY (W) e% PANFIS (W) e%

1 961.5 951.6 1.03 956.5 0.52 924.9 3.81 956.6 0.51
2 1684.0 1664.0 1.19 1674.0 0.59 1674.0 0.59 1674.0 0.59
3 2205.0 2184.0 0.95 2190.0 0.68 2187.0 0.82 2190.0 0.68
4 1640.0 1618.0 1.34 1631.0 0.55 1628.0 0.73 1631.0 0.55
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Figure 12. The average power of the PV system in the steady state and their respective error bars for (a) Condition 1,

(b) Condition 2, (c) Condition 3, and (d) Condition 4.

Table 10 and Figure 12 show that MPPT based on intelligent algorithms showed a
better tracking accuracy than that with the classic P&O algorithm. Furthermore, the ANFIS
and ANN algorithms showed better precision or a reduced relative percentage error.

Additionally, under low irradiance (Condition 1—Figure 12a), the relative percentage
error of the FL algorithm (3.81%) was higher than that of the P&O algorithm (1.03%).
Therefore, the FL algorithm needs a fine adjustment and, consequently, more knowledge of
the expert operators.

This research observed that the ANN and ANFIS algorithms perform better than the
P&O and FL algorithms when the dynamic response is analyzed. Additionally, it was
observed that the ANN and ANFIS algorithms did not need to carry out several tests to
find the optimal structure during the training phase.

In contrast, while MATLAB/Simulink® software defines the ANFIS MFs, the expert
operator must establish the fuzzy MFs. Therefore, reducing the number and changing the
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type of ANFIS MFs was faster and easier than those for the fuzzy MFs. Consequently, the
ANFIS algorithm needs less computational effort to control the MPPT of the PV system.

Analyzing the simplicity of implementation, the ANN and fuzzy algorithms have a
medium complexity. On the other hand, the ANFIS algorithm has a high complexity and
requires features such as high-performance controllers. Therefore, while the ANFIS and
ANN algorithms have a similar dynamic response, the ANN algorithm is better as it is
more robust.

4.4. Comparative Study

Few studies using buck–boost as an MPPT converter were found in the literature.
Anyway, Table 11 evaluates and performs a reasonable comparison of the proposed research
results with previously published studies.

Table 11. Comparison with other published studies.

Reference Algorithm
Settling Time

(ms)
Accuracy (%)

Experimentally
Tested

Dataset

Proposed research
ANN 13.40–23.44 99.32–99.48

No 77Fuzzy 13.20–22.24 96.19–99.41
ANFIS 13.00–23.54 99.32–99.49

Aldobhani and John [7,8] ANFIS - 98–99 No 39

Panda, Pathak, and Srivastava [10] Fuzzy 12.20 - No -

Arora and Gaur [16]
ANN 125.00 99.83

No 300,001
ANFIS 105.00 100

Martin and Vazquez [17]
Fuzzy - 98.2

Yes -
ANFIS - 98.2

Belhachat and Larbes [18] ANFIS - 99.92 No -

Andrew-Cotter, Uddin, and Amin [26] ANFIS - 97 No -

Table 11 describes the type of algorithm, the settling time, and the method’s accuracy.
All missing data in papers are hyphenated in Table 11.

Among the research that used buck–boost as an MPPT converter, only two works
measured the settling time. The Panda, Pathak, and Srivastava [10] study achieved a
settling time close to the method proposed in the present paper. The time value is even
shorter due to the smaller variations in the ambient conditions that the Panda, Pathak, and
Srivastava [10] PV system was subjected to.

In contrast, the settling time of the Arora and Gaur [16] system was considerably
longer than that of the proposed research. The difference can be explained because the
Arora and Gaur [16] system had been connected to the grid and subjected to a slow, graded
range of changing solar irradiation levels.

With respect to the accuracy, the results show that the intelligent algorithms have the
best accuracy in following the MPP of the PV module compared to the P&O algorithm. As
discussed in Sections 1 and 3, this result was expected because AI techniques work better
with nonlinear systems than classic techniques [3,4].

In the proposed fuzzy research, the lowest accuracy was detected among intelli-
gent algorithms. This means the MFs and fuzzy rules directed to low irradiances need
to be adjusted.

The results also show that the performance of the MPPT algorithm depends more on
the quality than the quantity of the training data [41]. Specifically, assessing the Arora and
Gaur [16] results, they calculated the accuracy based on the maximum power output of
the PV module. The other papers of Table 11 were evaluated based on the MPP of the P–V
characteristic curve.
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The present paper proposes evaluating the replacement of the classic P&O algorithm
with an intelligent algorithm. Therefore, after analyzing the dynamic response advantages
of intelligent algorithms, it is known that the dynamic response influences the generated
PV system power. Therefore, estimating the power generation of the PV system is as crucial
as analyzing the dynamic response.

In the literature, no research was found that performed a comparative analysis of the
generated power. Thus, Section 4.5 evaluates the power generation of the PV system with
intelligent and classic MPPT techniques.

4.5. Estimated Power Generation

The estimated power generation used three ambient conditions for the PV sys-
tem, called the normal condition (Figure 8), shading condition (Figure 9), and forecast-
ing condition (Figure 10). In addition, ten hours of full sun on both days, i.e., from
6:00 a.m. to 4:00 p.m., was considered. Figure 13 shows the result of estimating the power
generation of the PV system considering the different control algorithms.

–

–

Normal condition Shading condition Forecasting condition

P&O 18.11 17.25 15.11

ANN 18.19 17.46 16.61

FUZZY 17.97 17.22 15.10

ANFIS 18.18 17.43 16.55
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Figure 13. Power generation of the PV system for control algorithms.

The power generation of the PV system with the P&O algorithm (Figure 13) was
considered as the reference of the energy produced, i.e., it corresponds to 100% of the
power generation in the experimental PV system. Therefore, replacing the P&O algorithm
with the ANN algorithm allows recovery of 0.46% of the power generation in the normal
condition. If replaced by the ANFIS algorithm, the energy recovery is 0.40%. However, if
the control algorithm of MPPT is fuzzy, there is an energy loss of 0.75%.

In the shading condition, there is a rapidly changing irradiance near noon. Conse-
quently, the good dynamic response of the intelligent algorithm helps to improve the
recovery of the power generated.

Observing Figure 13, the exchange of the P&O algorithm for the ANN algorithm
recovers the power generated by the PV system. To be precise, the power generation of the
PV system with ANN is 1.21% greater than with P&O. The energy recovery is 1.02% when
the P&O algorithm is replaced with the ANFIS algorithm.

Otherwise, when the P&O algorithm is substituted for the fuzzy algorithm, there is
a loss of power generation by 0.19%. In other words, the PV system with MPPT based
on FL generated less power than that based on P&O. Specifically, the fall in the power
generation was from 17.25 to 17.22 kWh. A similar performance of the fuzzy algorithm
was observed in the forecasting condition. MPPT based on FL showed a reduction from
15.11 to 15.10 kWh, i.e., it fell 0.04%.

Additionally, in the forecasting condition, the power generation recovery was more
expressive. When the P&O algorithm was changed for the ANN algorithm, the performance
was better because the power generation increased from 15.11 to 16.61 kWh, i.e., 9.9%.
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The ANFIS algorithm’s performance was as good as the ANN algorithm’s perfor-
mance. The power generation rose 9.53%, which means that the power generation grew
from 15.11 (with P&O) to 16.55 kWh.

Thus, these analyses allow concluding that intelligent MPPT techniques could track
the MPP with an excellent dynamic response. Furthermore, the PV system with MPPT
based on the ANN algorithm was remarkably useful in tracking the maximum power point
in the PV system. MPPT based on ANN can recover lost energy generated with MPPT
based on P&O.

Finally, Section 5 discusses the overall conclusion of this research.

5. Conclusions

Using buck–boost converters as an MPPT component of PV systems is uncommon,
but they are important for regions with a dry and sunny tropical climate. In this research,
intelligent algorithms were applied to control MPPT, and ambient conditions (G and TAMB)
were considered as input variables. No similar discussion in the scientific literature has
been found.

The simulations demonstrated the potential effectiveness of the PV system with MPPT
based on intelligent techniques, and the following conclusions can be drawn:

• The proposed ANN and ANFIS MPPT techniques are considered an improvement
of the classic P&O technique. If considering large-scale PV plants, they cause a
subsequent increase in power generation.

• For all considered environmental conditions, the PV system with MPPT based on
intelligent techniques achieved values close to the expected PMPP. Therefore, these
techniques were able to track the MPP with great accuracy.

• A high tracking speed was also observed because the intelligent algorithm localized
the true PMPP quickly in every irradiance change.

• Intelligent techniques showed negligible oscillations around the average power value
in the steady state, when compared to the classic P&O technique. The amplitude of
the oscillation is reflected in the system stability.

• The fuzzy intelligent technique showed less satisfactory results than the ANN and
ANFIS techniques. However, more knowledge of the expert operators and a fine
adjustment in the fuzzy controller parameters can improve the output power of the
PV system with MPPT based on FL.

• Submitting the modeled PV system to ambient conditions of regions close to the
Equator line, a more significant power generation was observed when using the ANN
and ANFIS intelligent algorithms in the MPPT of the PV system. The power recovery
was between 0.40% and 9.9%.

• The power recovery of the PV system with MPPT based on the ANN or ANFIS
algorithm exceeded 1% when the ambient condition had a rapidly falling irradiance
near noon in the shading condition. Furthermore, the power recovery achieved 9.9%
in the forecasting condition (when the solar irradiance changes over time). The better
dynamic response of these intelligent algorithms than that of the fuzzy and P&O
algorithms justifies this recovery of power generation.

• Among the intelligent techniques simulated in the present paper, the ANN and ANFIS
algorithms had a similar response. However, the ANN technique proposed a higher
power generation. Moreover, the ANN algorithm has a less complex implementation,
and it is more robust to noise.

• Using environmental parameters G and TAMB as input variables has the advantage of
being able to track the MPP regardless of the geographic location of the PV system.
Moreover, the global maximum power point is followed with high reliability. However,
its cost of implementation and applicability remain a challenge due to the increased
cost of implanting the sensors.
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Appendix A

The PV module modeling was developed based on the one-diode model considering
its simplicity. Therefore, Equation (A1) represents a PV module based on the one-diode
model with several series- and parallel-connected PV cells [42,43].

IPV = NP IPH − NP I0

[

exp

(

q(VPV + RS IPV)

NSnkTCELL

)

− 1

]

−
VPV + RS IPV

RSH
, (A1)

where IPV represents the output current in (A); VPV expresses the output voltage in (V);
NP and NS are the number of parallel-connected and series-connected cells, respectively;
IPH comprises the light-generated current in (A); I0 represents a diode saturation current
in (A); and RSH and RS are the equivalent resistance in (Ω). The electron charge is q, and
its value is a constant of 1.6 × 10−19 C. Similarly, the Boltzmann constant (k) is a constant
value of 1.38 × 10−23 J/K. Additionally, the diode ideality constant is represented for n.

The light-generated current (IPH) of a PV cell depends on the irradiance and the cell
operating temperature expressed by Equation (A2).

IPH =

[(

RSH + RS

RSH
ISC

)

+ ki(TCELL − TSTC)

]

G

GSTC
, (A2)

where ISC represents the short-circuit current in (A); ki is the temperature coefficient for ISC

in (A/K); G is the irradiance; GSTC corresponds to the irradiance for STC (i.e., 1000 W/m2);
and TSTC relates to the cell temperature for STC (i.e., 298 K).

The diode saturation current (I0) is related to the cell operating temperature and is
expressed by Equation (A3).

I0 =
ISC + ki(TCELL − TSTC)

exp
{

q[Voc+kv(TCELL−TSTC)]
nkTSTC

}

− 1

(

TSTC

TCELL

)3

exp

[

qEg0

nk

(

1

TSTC
−

1

TCELL

)]

, (A3)

where VOC is the open-circuit voltage in (V); kV is the temperature coefficient for VOC in
(V/K); and Eg0 is the bandgap energy for semiconductors and is 1.2 eV for polycrystalline
silicon at 25 ◦C [29].

From Equation (A1), Equation (A4) was deduced. Then, the model resistance RSH and
RS values were calculated using the Newton–Raphson iterative method and Equation (A4)
for a PV module with no parallel-connected cells.

RSH =
VMPP(VMPP + IMPPRS)

VMPP IPH − VMPP I0 e
[

q(VMPP+IMPP Rs)
NsnkTCELL

]
+ VMPP I0 − PMPP

, (A4)

where VMPP, IMPP, and PMPP correspond, respectively, to the voltage, current, and power
of the maximum power point.
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Therefore, observing Equations (A1), (A2), and (A4), it is possible to assume that the
shunt resistance RSH varies with the irradiance and ambient temperature, also depending
on the series resistance RS.

However, the model resistance RSH and RS values are unknown. Therefore, Villalva,
Gazoli, and Ruppert Filho [29] recommend that RS must be zero when starting the iterative
method, and the initial value of RSH is given by Equation (A5).

RSH,min =
VMPP

ISC − IMPP
−

VOC − VMPP

IMPP
, (A5)

where VOC is the open-circuit voltage in (V). The shunt resistance minimum value (RSH,min)
represents the slope of the line segment between the short-circuit current (ISC) and the MPP
operating point (VMPP, IMPP) [2].

Villalva, Gazoli, and Ruppert Filho [29] also explained that the first model resistance
RSH and RS values are initial estimates. Therefore, the true value should be found using
the iterative algorithm illustrated in Figure A1.

𝐼0 = 𝐼𝑆𝐶 + 𝑘𝑖(𝑇𝐶𝐸𝐿𝐿 − 𝑇𝑆𝑇𝐶)𝑒𝑥𝑝 {𝑞[𝑉𝑜𝑐 + 𝑘𝑣(𝑇𝐶𝐸𝐿𝐿 − 𝑇𝑆𝑇𝐶)]𝑛𝑘𝑇𝑆𝑇𝐶 } − 1 ( 𝑇𝑆𝑇𝐶𝑇𝐶𝐸𝐿𝐿)3 𝑒𝑥𝑝 [𝑞𝐸𝑔0𝑛𝑘 ( 1𝑇𝑆𝑇𝐶 − 1𝑇𝐶𝐸𝐿𝐿)],

–

𝑅𝑆𝐻 = 𝑉𝑀𝑃𝑃(𝑉𝑀𝑃𝑃 + 𝐼𝑀𝑃𝑃𝑅𝑆)𝑉𝑀𝑃𝑃𝐼𝑃𝐻 − 𝑉𝑀𝑃𝑃𝐼0 𝑒[𝑞(𝑉𝑀𝑃𝑃+𝐼𝑀𝑃𝑃𝑅𝑠)𝑁𝑠𝑛𝑘𝑇𝐶𝐸𝐿𝐿 ] +𝑉𝑀𝑃𝑃𝐼0 − 𝑃𝑀𝑃𝑃,

𝑅𝑆𝐻,𝑚𝑖𝑛 = 𝑉𝑀𝑃𝑃𝐼𝑆𝐶 − 𝐼𝑀𝑃𝑃 − 𝑉𝑂𝐶 − 𝑉𝑀𝑃𝑃𝐼𝑀𝑃𝑃 ,

Figure A1. Flowchart with the algorithm to find RS and RSH.

In Figure A1, the algorithm stops the iteration when the difference between the
maximum calculated power (PMAX) and the maximum power from the manufacturer’s
data sheet (PMPP) is zero or less than the tolerance.
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