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Abstract
1. Power analysis is used to estimate the probability of correctly rejecting a null 

 hypothesis for a given statistical model and dataset. Conventional power analyses 
assume complete information, but the stochastic nature of behavioural sampling 
can mean that true and estimated networks are poorly correlated. Power analyses 
do not currently take the effect of sampling into account. This could lead to inac-

curate estimates of statistical power, potentially yielding misleading results.
2. Here we develop a method for computing network correlation: the correlation 

 between an estimated social network and its true network, using a Gamma– 
Poisson model of social event rates for networks constructed from count data. We 
use simulations to assess how the level of network correlation affects the power 
of nodal regression analyses. We also develop a generic method of power analysis 
applicable to any statistical test, based on the concept of diminishing returns.

3. We demonstrate that our network correlation estimator is both accurate and 
moderately robust to its assumptions being broken. We show that social differen-

tiation, mean social event rate and the harmonic mean of sampling times positively 
impacts the strength of network correlation. We also show that the required level 
of network correlation to achieve a given power level depends on many factors, 
but that 0.80 network correlation usually corresponds to around 80% power for 
nodal regression in ideal circumstances.

4. We provide guidelines for using our network correlation estimator to verify the 
accuracy of networks built from count data, and to conduct power analysis. This 
can be used prior to data collection, in post hoc analyses or even for subsetting 
networks in dynamic network analysis. The network correlation estimator and 
custom power analysis methods have been made available as an r package.
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1  | INTRODUC TION

Understanding the form and function of social systems is a core aim 
of behavioural ecology, and social network analysis has become a 
central tool for exploring these topics (Croft et al., 2008). However, 
social network analysis comes with challenges unique to the field, 
ranging from issues of missing or censored data, through to poten-

tial problems of non- independence in network measures (Farine & 
Whitehead, 2015; James et al., 2009). Significant advances have 
been made in many of these areas over the last two decades, but the 
problem of conducting power analysis has generally received little 
attention, with the exception of Whitehead (2008). Power analysis 
is used to determine the amount of data required to reject a null hy-

pothesis assuming a given effect size, and is used to determine how 
a study should be conducted prior to collecting data, or in post hoc 
analysis to determine if a study was sufficiently powered to reject 
a null hypothesis (Cohen, 1992, 2013). Animal social network stud-

ies rarely use power analysis prior to data collection because there 
are often many unknown variables, and sample sizes are often fixed. 
However, they often do employ post hoc power analysis to indicate 
the reliability of results (Martin et al., 1993; Stadtfeld et al., 2020). 
In this study, we build on previous work to develop a method for 
estimating the accuracy of social networks, and show how this can 
be used to conduct power analysis on social networks constructed 
from count data.

Networks are typically built from weighted edges between 
nodes that encode the strengths of relationships between indi-
viduals (Krause et al., 2015). Edge weight can be quantified in a 
number of different ways depending on the nature of the social 
system and the data available. The most common method for cal-
culating network edges is to compute the simple ratio index, which 
normalises a measure of sociality against sampling time. Sociality is 
usually quantified by recording social events such as spatial associ-
ations or social interactions. There are three ways social events are 
often recorded, which we will refer to as binary, count and dura-

tion. Binary data record the presence or absence of a social event 
in each of a series of fixed sampling intervals. Social events can 
only be marked as present or absent in each interval. Count data 
record the number of social events observed over the amount of 
time spent sampling. Finally, duration data record the amount of 
time spent engaged in a social event over the amount of time spent 
sampling (Croft et al., 2008). In networks built from binary data, 
the simple ratio index is equivalent to the probability of observing 
a social event in a given sampling period. Whereas in networks built 
from count data, the simple ratio index is the rate of social events 
per unit of time.

Whitehead (2008) introduced a method for estimating the accu-

racy of animal social networks constructed from binary data by es-

timating the correlation of the observed event probabilities with the 
underlying probabilities. This method has often been used as a post 
hoc measure to verify the robustness of animal social networks be-

fore further analyses (Ellis et al., 2017; Findlay et al., 2016). However, 
this method is designed specifically for binary data and not count or 

duration data. In this work we develop a variation of this method for 
social networks constructed from count data.

The correlation between true and estimated networks, which we 
will refer to as network correlation, is a useful intuitive measure of 
the accuracy of a network, but even more importantly it is directly 
related to the power of statistical analyses. Whitehead (2008) made 
a series of recommendations based on the social preference test de-

veloped by Bejder et al. (1998), suggesting that a good general guide 
for maximal power is when the product of the squared social differen-

tiation and mean number of observations per individual is >5 (in their 
notation: S2 × H > 5). In this context, social differentiation is defined 
as the coefficient of variation of edge weights. This recommenda-

tion is based only on the social preference test, and it is not known 
how well this generalises to other statistical tests commonly used 
in social network analysis (Bejder et al., 1998). In particular, one of 
the most common methods for testing hypotheses in social network 
analysis is nodal regression (Croft et al., 2011). Nodal regression uses 
a node- level social network metric such as node strength, eigenvec-

tor centrality or closeness to quantify an individual's position in their 
social structure, and relates this social position to quantifiable traits 
such as age or sex (Farine & Whitehead, 2015). The relationship be-

tween network metric and trait is usually analysed using regression 
(Weiss, Franks, Brent, et al., 2021). The statistical power of a conven-

tional regression depends on sample size, effect size and significance 
level. In a nodal regression, sample size is the number of individuals, 
the true effect size is fixed and unknown, and the significance level 
is set by convention, usually to 0.05 (Cohen, 1994). However, the 
true effect size is the effect size if the nodal regression was run on 
the true, unknown network. The estimated network will not per-
fectly match the true network, meaning that in turn the estimated 
effect size will deviate from the true effect size. Applying conven-

tional power analysis to nodal regression could therefore lead to 
under-  or over- estimates of power, potentially yielding misleading 
results. In general, greater noise in predictor variables reduces the 
magnitude of coefficient estimates, increasing the chance of signif-
icant effects being missed when they are in fact present (Frost & 
Thompson, 2000).

In this study we extend the method developed by Whitehead 
(2008) for estimating network correlation from networks con-

structed from association data to networks constructed from count 
data. Count data are usually collected by recording instances of pairs 
of individuals engaged in a social event over many sampling periods 
using either scan or focal sampling (Martin et al., 1993). The result is 
an integer count of social events Xij between each pair of individuals 
i and j, and a positive real- valued sampling time for each pair dij. The 

sampling time is the amount of time where at least one of the pair 
was visible to the observer, and therefore a social event between i 
and j could have taken place. The rate of social events is then com-

puted by dividing the social event count by the sampling time, giving 
the social event rate:

(1)�̂ij =
Xij

dij
.



     |  3Methods in Ecology and Evolu
onHArT eT Al.

As with any empirical measure, sampling has the potential 
to influence the estimated social event rate significantly (Franks 
et al., 2010). Consider the case when Xij is 10 events and dij is 5 min, if 
event counts are Poisson distributed, the estimate will be two social 
events per minute, but the 95% confidence interval will be (0.9, 3.7), 
with a range of 2.6. Compare this to the case where Xij and dij are 

100 events and 50 min respectively; the point estimate is the same, 
but the 95% confidence interval is (1.6, 2.4), with a range of 0.8, less 
than one third of the range of the previous case, but for around 10 
times the sampling time. In this example we used minutes as the unit 
of time, but in general the units of time do not matter as long as 
they are consistent. This shows that we should have less confidence 
in the estimate of the first case compared to the second case, and 
demonstrates how the estimated network could deviate significantly 
from the true network because of low sampling time. The magnitude 
of this deviation will impact the reliability of an analysis, and ide-

ally should be taken into account when conducting social network 
analyses. This problem has been recognised in several previous stud-

ies (Davis et al., 2018; Farine & Strandburg- Peshkin, 2015; Lusseau 
et al., 2008; Whitehead, 2008). In particular, Whitehead (2008) de-

veloped a method based on the binomial distribution for estimating 
network correlation for networks constructed from binary data.

We demonstrate that our method for count data provides accu-

rate estimates of network correlation in realistic scenarios, and we use 
simulations to suggest guidelines for the minimum level of sampling 
required for nodal regression depending on the desired level of statis-

tical power. We also develop a generic alternative approach for guiding 
data collection based on the principle of diminishing returns that can 
be used for any type of statistical analysis, including but not limited to 
nodal regression. We contrast our guidelines to those from Whitehead 
(2008) to show that the amount of sampling required depends on 
the type of data, and that data- specific guidelines may be highly use-

ful when designing and conducting social network analysis. We have 
made the methods available as an r package: pwrCGP, which is avail-
able at https://doi.org/10.5281/zenodo.5552680 (Hart et al., 2021b).

2  | MATERIAL S AND METHODS

By modelling event counts as being distributed according to a Gamma– 
Poisson process, we are able to analytically derive an equation for 
network correlation. We verify our network correlation equation 
using simulations which either follow the assumptions of the model, or 
break them to varying degrees, to test the robustness of the method. 
Following this, we use simulations to determine the level of network 
correlation required to obtain a desired level of power when perform-

ing nodal regression on networks built from count data.

2.1 | Gamma– Poisson model of social event rates

As sampling time increases, we expect that the estimated social 
event rate �̂ij will get closer to the true social event rate λij. However, 

for lower sampling times there may be a considerable error between 
the estimated and true event rate. This error can be modelled by 
treating the event counts Xij as draws from a Poisson distribution. 
Since the underlying true event rates λij are unknown, we assume 
the true event rates of the dyads are drawn from a gamma distribu-

tion: λij ~ Gamma(α, β). A Poisson- distributed random variable with 
rates drawn from the gamma distribution is equivalent to a random 
variable following the negative binomial distribution, therefore the 
number of observed events Xij is given by

Using this, we can estimate the variance of both the true and 
estimated event rates, which allows us to estimate the Pearson's cor-
relation coefficient, ρ, between them:

where S = 1∕
√

a is the social differentiation, µ = α/β is the dyadic mean 
social event rate, H(d) is the harmonic mean of the sampling times dij 

and I = µH(d) reflects the sampling effort (see Supporting Information 
for full derivation). The harmonic mean H(d) of the m dyads is defined 
as H(d) = m∕Σi,jd

−1
ij

, and is equal to the arithmetic mean only in the case 
where all dij are equal. Note that when sampling time dij is even across 

all dyads, sampling effort I is the number of social events observed per 
dyad. When sampling time dij is uneven, sampling effort I will be lower, 
and more sampling time will be required to reach the same sampling 
effort as the equivalent network with evenly sampled dyads. The net-
work correlation is computed only over dyads that have non- zero sam-

pling times.
The parameters α, β of the underlying gamma distribution can be 

estimated numerically using maximum likelihood. We use point esti-
mates from maximum likelihood in this study to reduce computation 
time, and to avoid model fitting problems. We have also included a 
version in the code that uses quadratic approximation to estimate 
confidence intervals of network correlation.

2.2 | Simulations 1: Verification of the 
Gamma–  Poisson model

To confirm that Equation 3 is appropriate for event rate data, and to 
determine how robust it is to the Gamma– Poisson assumptions being 
broken, we ran simulations under three different scenarios: (a) following 
the assumptions of the model, (b) introducing community structure to 
the network and (c) having zero- inflated edge weights (see Supporting 
Information for more details). The parameter space of these scenar-
ios was explored using a random search for S ∈ (0, 2] and µ ∈ (0, 10]. 
For scenario 2, an additional constraint was applied such that event 
rates are stronger between members of the same group than between 
members of different groups. The simulations proceeded as follows: 

(2)Xij ∼ NegBinomial

(

�,
�

� + dij

)

.

(3)�
�

�, �̂
�

=
S

√

�H(d)
√

1 + �S2H(d)
=

S

√

I
√

1 + S2I

,
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1. Data were generated according to one of the scenarios.
2. The true correlation between � and �̂ was computed.
3. The parameters µ and S were estimated using maximum likelihood 

and used to compute the estimated correlation ρ(λ, �̂) between λ 

and �̂.

4. The network correlation was estimated using Equation 3, and the 
process was repeated 200 times.

The relationship between the true and estimated network cor-
relations was quantified by computing the Pearson correlation 
coefficient between the estimated network correlations and true 
network correlations, the mean absolute error, and the standard de-

viation of the error.

2.3 | Simulations 2: Statistical 
power of nodal regression

We ran simulations to test how statistical power relates to sampling 
effort in the case where the true effect size is the minimum required 
to achieve 100% power. This made it possible to see the effect of 
sampling effort without the effect being hidden behind under-  or 
over- powered tests. To simulate data collection we followed the 
core assumptions of the model: that dyad- level event rates are drawn 
from a gamma distribution, and observations are made such that 
event counts follow a Poisson distribution. Sampling time for each 
dyad was modelled as the number of sampling periods, which was 
drawn from a Poisson distribution with mean D ∈ [10, 10,000]. The 
dyad- level event rates were converted to an edge list from which the 
true network was built. Node strength si was used as the node- level 
network metric for these simulations. A linear relationship between 
network metric and individual trait was created by assigning traits 
ti to each individual i according to a linear equation ti = a + bsi + εi, 
where a is the equivalent of an intercept term, b encodes the rela-

tionship between metric and trait, and εi is a normally distributed 
noise term: εi ~ N(0, 1). The value of the effect b was set depending 
on the number of nodes n. This was determined using a preliminary 
simulation in such a way that the value of b for a given number of 
individuals was equal to the lowest value for which a power ≥99.9% 
can be achieved.

Networks were estimated using Equation 1 and node strength 
was estimated from the corresponding estimated networks. To es-

timate the relationship b, a simple linear regression was fitted to the 
simulated data, and by convention, node- label permutations were 
used to calculate the p- values (Croft et al., 2011; R Core Team, 2013). 
The power of the nodal regression was computed for each set of 
parameters by repeatedly assigning traits ti according to the true 
network, fitting a linear model to an estimated network, and com-

puting the p- value of the estimated relationship. The proportion of 
p- values < 0.05 gave the power of the test for the current set of pa-

rameters. We searched the parameter space using a random search 
to assess the relationship between network correlation, statistical 
power and the number of individuals.

Finally, to provide guidelines on the level of network correlation 
required in a nodal regression, LOESS curves approximating the rela-

tionship between correlation and power for different numbers of in-

dividuals were fitted to the simulated data (Cleveland, 1979; R Core 
Team, 2013). The resulting curves were used to predict the level of 
network correlation required to achieve 80% power, assuming the 
underlying relationship has power ≈ 100%.

2.4 | Simulations 3: Optimal network correlation 
estimator for generic tests

The relationship between network correlation (Equation 3) and 
statistical power is affected by several factors, many of which will 
depend on the type of analysis being conducted. The relationship 
between power and network correlation was explored in detail for 
nodal regression in the previous section, but simulation- based stud-

ies like this are limited to the analyses they focus on, and cannot 
generalise to other methods. However we can expect that as net-
work correlation increases, the power of any statistical tests should 
also improve (or at least stay the same). Assuming that increases in 
network correlation positively affect statistical power, and that in-

creases in sampling effort come at a cost to researchers, the prob-

lem of finding the optimal sampling effort can be seen as finding 
the point at which increases in sampling effort lead to diminishing 
returns.

Diminishing returns describes how the rate of increase in one 
variable decreases as another variable increases (Shephard & 
Färe, 1974). In our case the aim is to find the point at which increases 
in sampling effort lead to diminishing increases in network correla-

tion. This is the same problem as finding the ‘elbow point’ of the re-

lationship between network correlation and sampling effort. There 
is no guarantee of the power of the analysis at the elbow point, but 
we do know that additional sampling would provide increasingly 
small gains in network correlation. Since collecting behavioural data 
is generally time- consuming, financially expensive, and may even 
have ethical implications, assuming a cost to increases in sampling 
effort allows us to use the elbow point as an estimate for the optimal 
level of network correlation and corresponding amount of sampling 
(Martin et al., 1993). Although this will not guarantee the power of 
an analysis, if social differentiation and sampling effort can be esti-
mated well, it will indicate the point at which additional sampling will 
yield increasingly small increases in network correlation.

The elbow of the curve can be computed numerically (further 
details are included in Supporting Information), but because ρ is as-

ymptotic to 1.0, no true elbow exists. We can get around this problem 
by introducing a free parameter ρMAX to describe the effective max-

imum network correlation to be used for computing the elbow. The 
choice of ρMAX encodes the minimum acceptable trade- off between 
increases in network correlation and increases in sampling effort, 
and therefore will affect the estimated elbow point. However, using 
a value of ρMAX sufficiently high that we would consider a sampled 
network to be negligibly different to the true network (for biological 
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purposes) represents a meaningful choice since increases in network 
correlation beyond ρMAX would add no further value for our purposes. 
We use a value of ρMAX = 0.99 for our analysis, but a brief exploration 
of the impact of this choice is included in Supporting Information.

To assess the levels of power obtained by using the optimal net-
work correlations, we simulated nodal regression analyses for differ-
ent levels of social differentiation S ∈ (0.0, 0.5] and sampling effort 
I ∈ (0, 500] using a similar setup as the previous section. The power 
of the analysis for each simulated ‘true’ network was computed, 
and the proportion of networks with lower than the optimal level of 
network correlation with power >80% was calculated. This was re-

peated for the proportion of networks with the same or higher than 
the optimal level of network correlation. This provides a descriptive 
measure of the performance of the method for estimating the sam-

pling required to achieve 80% power. This level of power was chosen 
from convention, but there is no reason that the optimal network 
correlation estimator should obey this convention as it is based on a 
different concept to conventional power analysis. We also estimated 
the level of power that most closely matched the estimator for nodal 
regression analysis using a grid search.

2.5 | Case study: Southern resident killer 
whale contacts

To demonstrate our method, we applied it to a publicly available 
dataset of near- surface physical contact interactions between 22 
southern resident killer whales Orcinus orca. Interactions were ob-

served using an unoccupied aerial vehicle over a total of 11 hr dur-
ing the summer of 2019 (Weiss, Franks, Giles, et al., 2021). The 
mean number of observed interactions per dyad was 3.43, with the 

average sampling time per dyad being 210 min. We used numeri-
cal MLE to estimate the confidence intervals of social differentiation 
S and network correlation ρ. This is implemented in the pwrCGP r 

package in the function net_cor. Additionally, we conducted a nodal 
regression power analysis on the data for different levels of true ef-
fect size (r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) using our function pwr_nodereg. 
We also applied the diminishing returns sampling effort estimator 
using the function pwr_elbow to estimate the optimal level of net-
work correlation and its corresponding sampling effort.

3  | RESULTS

3.1 | Gamma– Poisson model of social event rates

The analytical equation for estimated network correlation given by 
Equation 3 was used to produce the plots in Figure 1 of network 
correlation against social differentiation and sampling effort. This 
shows that, as expected, network correlation increases towards an 
asymptote at 1.0 with both social differentiation S and sampling ef-
fort I. Lower numbers of social events (I = 1) did not reach a net-
work correlation of 1.0 even for high levels of social differentiation 
(S = 1.0). Higher sampling efforts of I = 100 reached close to a net-
work correlation of 1.0 even at low levels of social differentiation, 
S < 0.25. This shows that social differentiation is an important factor 
in estimating the network correlation of a sampled network, which 
is in line with the findings of (Whitehead, 2008). The results show 
that relatively low values of S ≈ 0.25 are required to make achieving 
a high level of network correlation feasible, but that lower values of 
social differentiation (S = 0.05) require sampling effort I > 100 to 
achieve even 50% network correlation.

F I G U R E  1   Plots of network correlation against social differentiation S and sampling effort I = µH(d) for different levels of sampling 
and social differentiation respectively using Equation 3. This shows that for relatively low levels of social differentiation around S = 0.25, 
a high level of sampling effort around I = 100 is required to achieve a network correlation of ρ = 0.90. It also shows that for low social 
differentiation of S = 0.05, even high levels of sampling effort of I = 100 will not yield a network correlation of ρ = 0.90. (a) Social 
differentiation. (b) Total events

(a) Social differentiation (b) Total events
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3.2 | Simulations 1: Verification of the 
Gamma–  Poisson model

The results of our simulations (see Figure 2) show that true and 
estimated network correlation match closely across the param-

eter space. Over the full parameter space, the mean absolute error 
between the true and estimated network correlations was 5.5%, 
0.047% and 3.5% for scenarios 1, 2 and 3 respectively. The stand-

ard deviations of the errors for the three scenarios were 0.0084, 
0.0038 and 0.047 respectively, and the correlations between the 
true and estimated network correlations were 0.99, 0.99 and 0.96 
respectively. The relationship between true and estimated network 
correlation is shown in Figure 2 over a limited part of the parameter 

space, where the social differentiation was adjusted manually to 
visualise the full width of the distribution of network correlations. 
Social differentiation was used to adjust the mean level of network 
correlation purely for visualisation purposes, and was not used when 
computing the quantitative statistics.

3.3 | Simulations 2: Statistical 
power of nodal regression

The results of the nodal regression simulation are shown in Figure 3 
for four different network sizes (10, 20, 50 and 100). The relationship 
between network correlation and power is approximately logistic, 

F I G U R E  2   Comparisons of the true network correlations and the network correlations estimated using Equation 3. The black line is 
diagonal and shows the ideal relationship between the true and estimated network correlations. In these visualisations the three models 
were run with different maximum social differentiation parameters to ensure the full distribution of network correlations was visible, these 
were 0.20, 0.01 and 1.00 for models 1, 2 and 3 respectively. In each of these models the true and estimated network correlations are closely 
related, with few major deviations. The yellow lines show the general relationship using LOESS curves fitted to the points. (a) Scenario 1: 
Gamma event rates. (b) Scenario 2: Community structure. (c) Scenario 3: Zero inflated event rates

(a) Scenario1: Gamma event rates (b) Scenario 2: Community structure (c) Scenario 3: Zero inflated event rates

F I G U R E  3   The relationship between 
estimated network correlation and 
statistical power for various numbers of 
nodes over 1,000 simulations, where the 
minimal effect size was chosen such that 
power was ≥99.9%. Power and network 
correlation are monotonically related in 
a relationship that resembles a logistic 
curve. Larger numbers of nodes achieved 
a higher power for a lower network 
correlation than smaller numbers of 
nodes, as is expected in a nodal regression 
where sample size is equal to the number 
of nodes. A statistical power of 80% is 
common by convention, and was generally 
achieved for all simulated networks with 
at least 10 nodes for network correlations 
greater than 0.80
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with a higher power for networks with larger numbers of nodes 
across the range of network correlations. Large gains in power could 
be seen for networks with 20 nodes against those with 10 nodes 
(37% vs. 27% respectively, at a network correlation of 50%), whereas 
networks with 100 nodes against 50 nodes had a much smaller gain 
in power (55% vs. 51% respectively, again at a network correlation of 
50%). To attain a statistical power of the conventional 80%, network 
correlations of 0.81, 0.78, 0.69 and 0.65 were required for network 
sizes 10, 20, 50 and 100 respectively. The maximum required level 
of network correlation to achieve 80% statistical power was 0.81 
(for n = 10).

Table 1 shows the sampling effort I required to achieve 80% 
power, depending on the social differentiation S and size of a net-
work n. For systems with low levels of social differentiation and low 
network sizes, high sampling effort (I = 530 for n = 10, S = 0.05) is 
required. However, as social differentiation increases, much lower 
sampling effort is required (I = 5.3 for n = 10, S = 0.5). This reflects 
the findings shown in Figure 1. Larger network sizes also have an 
effect on the required amount of sampling, with n = 100 requiring 
less than half the sampling effort as n = 10.

3.4 | Simulations 3: Optimal network correlation 
estimator for generic tests

The powers of the nodal regression analyses for this simulation were 
split into five equally sized groups between 0% and 100%, with the 
top group of 80%– 100% being the desired power, by convention. 
The results of the simulations are shown in Figure 4 with the op-

timal sampling effort overlaid. The optimal sampling effort for low 
levels of social differentiation (S < 0.1) was in excess of a sampling 
effort of I > 500. For slightly larger values of social differentiation 
(0.1 ≤ S ≤ 0.2), the required sampling effort drops quickly from ap-

proximately I = 500 to I = 100. The sampling effort for larger values 
of social differentiation quickly asymptotes towards zero.

The optimal sampling effort generally fell around the boundary 
between power levels of 60%– 80% and 80%– 100% for the nodal 
regression analyses. Considering the curve as a classifier of under-  
and over- powered analyses, using a power of 80% as the bound-

ary between the two, 50.3% of the analyses below the curve were 
under- powered, and 99.9% of the analyses above the curve were 
adequately-  or over- powered. In the context of our simulated nodal 
regressions, the curve was relatively conservative, with the power 
level that most closely corresponded to the power of the optimal 
network correlations being 90%.

3.5 | Case study: Southern resident killer 
whale contacts

The southern resident killer whale contact network had an esti-
mated network correlation of 0.977, with a 95% confidence interval 
of [0.966, 0.985]. Social differentiation was estimated to be 2.54, 
with a confidence interval of [2.23, 2.89]. According to our power 
analysis, these levels of social differentiation and network cor-
relation would yield power levels of at least 6.6%, 26.5%, 66.2%, 
98.2% and 100.0% for true effect sizes 0.1, 0.3, 0.5, 0.7 and 0.9 

TA B L E  1   Required sampling effort I = µH(d) to achieve a 
statistical power of 80% for networks with social differentiation 
S and number of nodes n. Relatively low numbers of event 
observations are required to achieve 80% power for levels of social 
differentiation of 0.5 and higher

S

N

10 20 50 100

0.05 530 410 230 200

0.2 33 26 14 12

0.5 5.3 4.1 2.3 2

0.8 2.1 1.6 0.89 0.77

2.0 0.33 0.26 0.14 0.12

10 0.013 0.01 0.0057 0.005

F I G U R E  4   Power of nodal regression 
analyses for networks with varying 
levels of social differentiation S and 

sampling effort I. The black line shows 
the optimal sampling effort estimated 
using the diminishing returns method, 
corresponding to the optimal network 
correlation as social differentiation 
increases. This can be viewed as a 

classifier where analyses below the line 
are under- powered, and analyses above 
the line are adequately or over- powered
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respectively. The diminishing returns estimator suggested that the 
optimal amount of network correlation to sampling effort is approxi-
mately 0.90, corresponding to sampling efforts between 0.51 and 
0.86. The true sampling effort was 3.30, several times larger than 
the maximum recommended sampling effort of 0.86.

4  | DISCUSSION

In this study we showed that sampling effort can have a major 
impact on the accuracy of social networks constructed from count 
data. We showed that this can severely affect the power of statis-

tical analyses, and demonstrated how to carry out power analysis 
by accounting for sampling effort in both linear regression and ge-

neric statistical analysis. We derived an equation to describe how 
well a sampled network correlates with the true underlying net-
work using a Gamma– Poisson model of event counts. We showed 
that the equation is a good estimator of the true network correla-

tion, and is robust to the assumptions of the model being moder-
ately broken. We used simulations of nodal regression analyses 
to find the relationship between network correlation and statisti-
cal power. Additionally we developed an estimate for the optimal 
level of network correlation required for generic analyses by using 
the concept of diminishing returns, where increases in network 
correlation come at the cost of increasing levels of sampling effort. 
We showed that this can be used as an alternative to conventional 
power analysis by verifying the results against the nodal regres-

sion simulations.
The nodal regression simulations suggested that a reason-

able level of network correlation to achieve at least 80% power is 
around 0.80. This value of network correlation has precedent in the 
behavioural sciences, and would be categorised as ‘very strong’ by 
Evans (1996). However, we arrived at this value through the use of 
simulations, and would advise careful application of this guideline 
for different nodal regression- based analyses, and discourage its use 
on other types of analysis. We believe it is particularly important 
to note that in our simulations we used the smallest possible effect 
sizes required to achieve approximately 100% power with infinite 
sampling. Effect sizes that satisfy this property are highly unlikely in 
the real world, with the true effect size either being lower, in which 
case no amount of sampling will be able to obtain full power, or the 
effect size being higher, in which case lower sampling efforts will 
be able to obtain full power. For this reason, we suggest using the 
code we have made available to run a custom power analysis for any 
specific study.

An alternative method for calculating the required level of net-
work correlation is to use the diminishing returns- based optimal 
network correlation estimator. In the nodal regression simulations it 
proved to be a conservative classifier of analysis power, often sug-

gesting that more samples were required than would have been nec-

essary to obtain a power of 80%, and was more in line with a desired 
power level of 90% in this specific simulation. Since the estimator 
is based on diminishing returns, it implicitly models the trade- off 

between lower sampling variance and the cost of sampling, which 
is a fundamental part of behavioural data collection. For this reason, 
we believe this generic estimator to be a useful tool for generating 
estimates of the amount of sampling required, and in making few 
assumptions, it is flexible, allowing it to be used for any type of social 
network analysis. Another strength of the method is that knowledge 
of the desired statistical power is not required. Power can often 
be difficult to define, and is therefore usually treated as a nuisance 
parameter when conducting power analyses, with researchers re-

verting to conventions such as 80%. The free parameter ρMAX could 

be considered a similar theoretical limitation to this method, but we 
view it as the maximum value of network correlation a researcher 
is interested in. We chose ρMAX = 0.99 because the final increase 
in network correlation by 0.01 from 0.99 to 1.00 is unlikely to be of 
biological or practical interest, although other values could be used 
depending on the specific context. We suggest that for nodal regres-

sion, the simulations we have provided will be a more precise tool, 
but for other types of analyses, or where the desired power level is 
difficult to define, the generic estimator will give a good guide to the 
amount of sampling needed. The two methods can also be used in 
conjunction with each other to gain additional understanding about 
the power of an analysis.

The inspiration for this work, Whitehead (2008), suggested a 
guideline sampling effort for the social association test of S2 × H > 5, 
where H is the mean number of observed events per individual 
(Bejder et al., 1998). This is a classifier analogous to the classifier 
shown in Figure 4 for determining the required level of sampling ef-
fort for a given value of social differentiation to achieve a sufficiently 
powered analysis. We found that when it came to sampling effort, I— 

the number of events observed per dyad— was the important factor 
for the classifier, whereas Whitehead (2008)'s guidance suggested 
that H— the number of events per individual— was the important fac-

tor. This is a key point because unless a strict sampling regime is 
used, sampling is unlikely to be even across dyads and nodes, and 
a subset of well- sampled individuals that share connections might 
be over- sampled, while other dyads remain severely undersam-

pled. This is taken into account by the definition of sampling effort, 
I = µH(d), since the harmonic mean is lower than the arithmetic mean 
for unevenly sampled dyads. The previous study showed that this 
was unimportant in the case of association data on a specific test, 
but our equation suggests that it should be taken into account for 
event count data.

We suggest that in addition to conducting power analyses when 
developing studies or assessing the feasibility of a study, our meth-

ods could also be used in post hoc or dynamic social network anal-
yses where subsetting is required. It is common for long- term event 
data to be split up into multiple networks, often for the purposes of 
studying changes in social behaviour over time (Hobson et al., 2013). 
Our methods could be used as a data- driven means to determine the 
amount of data required for each network, and therefore how many 
networks should be constructed. In this case a network correlation 
of 0.99 could be considered to be a representative network by the 
arguments above, but again this may depend on the context.
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Our method uses a Gamma– Poisson model of estimated event 
rates. This introduces several assumptions that may not be met 
by empirical data, namely (a) social events occur due to a Poisson 
point process, (b) true underlying event rates do not change over the 
course of data collection and (c) true underlying event rates follow 
a gamma distribution. Assumptions are necessary for any statisti-
cal analysis, and assumptions 1 and 2 are usually assumed implic-

itly when constructing social networks from count data. Modelling 
count data as a Poisson point process means that the method will 
not work with duration data. These assumptions could be broken 
by sampling biases such as increased observation of gregarious in-

dividuals or sampling based on number of social events observed. 
Assumption 3 is necessary for the method, but may not be met in 
systems where event rates follow a multimodal distribution. The va-

lidity of the assumptions can be tested using the diagnostic tools 
included in the r package we have provided.

Correlation is a familiar statistical concept, so using network cor-
relation to quantify the impact of sampling on the accuracy of social 
networks is an attractive method. However, network correlation 
on its own can only offer limited information about how useful a 
sampled network will be in further analyses. We used simulations in 
this study to estimate how network correlation relates to statistical 
power in nodal regression, but these simulations are limited to spe-

cific circumstances, under a number of assumptions. This will always 
be a limitation of simulation studies, and makes the generality of the 
results somewhat restricted. We have shown that the required level 
of network correlation is context dependent. This contrasts with 
some studies that have used Whitehead (2008)'s method to calcu-

late network correlation, and suggest a minimum acceptable level of 
network correlation at 0.40 (Chabanne et al., 2017; Frau et al., 2021; 
Hawkins et al., 2020). Our results suggest a threshold value of 0.40 
is not generally optimal when conducting nodal regression on social 
networks built from count data, and that the true optimal will de-

pend on the level of social differentiation and sampling effort.
We have made the code from this study publicly available, and 

our method of power analysis can be used for any prospective stud-

ies where event count data will be collected, in post hoc analysis 
when reporting results, to indicate whether a null result may be due 
to insufficient sampling, and even when subsetting data to ensure 
sufficient data are used in each network. The diminishing returns 
method presented here for computing optimal network correla-

tion naturally encodes the cost of collecting behavioural data and 
provides a simple method for estimating required sampling effort 
without specifying additional parameters such as desired power. We 
believe its flexibility could prove it to be useful for a wide variety of 
social network analyses.

ACKNOWLEDG EMENTS
We thank members of the CRAB Social Network Club and Alexander 
Mielke for useful discussions on this topic. J.D.A.H. acknowledges 
funding from the Engineering and Physical Sciences Research 
Council (grant number EP/R513210/1). L.J.N.B. acknowledges 
funding from a European Research Council Consolidator Grant 

(FriendOrigins— 864461). D.W.F. and M.N.W. acknowledge funding 
from the Natural Environment Research Council (grant number NE/
S010327/1). The authors declare no conflict of interest.

CONFLIC T OF INTERE ST
The authors declare no conflict of interest.

AUTHORS'  CONTRIBUTIONS
M.N.W. conceived of the negative binomial network correlation 
method and J.D.A.H. conceived of the power analysis methods; 
J.D.A.H. derived the equations and implemented the simulations 
with input from M.N.W., D.W.F. and L.J.N.B.; the manuscript was 
written by J.D.A.H. with input from M.N.W., D.W.F. and L.J.N.B.

PEER RE VIE W
The peer review history for this article is available at https://publo 
ns.com/publo n/10.1111/2041- 210X.13739.

DATA AVAIL ABILIT Y STATEMENT
The R code required to repeat the simulations is available at https://
doi.org/10.5281/zenodo.5541951 (Hart et al., 2021a). The r pack-

age pwrCGP is available at https://doi.org/10.5281/zenodo.5552680 
(Hart et al., 2021b).

ORCID
Jordan D. A. Hart  https://orcid.org/0000-0002-4636-0760 

Daniel W. Franks  https://orcid.org/0000-0002-4832-7470 

Lauren J. N. Brent  https://orcid.org/0000-0002-1202-1939 

Michael N. Weiss  https://orcid.org/0000-0002-7422-0538 

R E FE R E N C E S
Bejder, L., Fletcher, D., & Bräger, S. (1998). A method for testing associ-

ation patterns of social animals. Animal Behaviour, 56(3), 719– 725.
Chabanne, D. B. H., Finn, H., & Bejder, L. (2017). Identifying the relevant 

local population for environmental impact assessments of mobile 
marine fauna. Frontiers in Marine Science, 4, 148.

Cleveland, W. S. (1979). Robust locally weighted regression and smooth-

ing scatter plots. Journal of the American Statistical Association, 
74(368), 829– 836.

Cohen, J. (1992). Statistical power analysis. Current Directions in 

Psychological Science, 1(3), 98– 101.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 

49(12), 997– 1003.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. 

Academic Press.
Croft, D. P., James, R., & Krause, J. (2008). Exploring animal social net-

works. Princeton University Press.
Croft, D. P., Madden, J. R., Franks, D. W., & James, R. (2011). Hypothesis 

testing in animal social networks. Trends in Ecology & Evolution, 
26(10), 502– 507.

Davis, G. H., Crofoot, M. C., & Farine, D. R. (2018). Estimating the ro-

bustness and uncertainty of animal social networks using different 
observational methods. Animal Behaviour, 141, 29– 44.

Ellis, S., Franks, D. W., Nattrass, S., Cant, M. A., Weiss, M. N., Giles, D., 
Balcomb, K. C., & Croft, D. P. (2017). Mortality risk and social net-
work position in resident killer whales: sex differences and the im-

portance of resource abundance. Proceedings of the Royal Society B: 

Biological Sciences, 284(1865), 20171313.



10  |    Methods in Ecology and Evolu
on HArT eT Al.

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. 

Straightforward statistics for the behavioral sciences. Thomson 

Brooks/Cole Publishing Co.
Farine, D. R., & Strandburg- Peshkin, A. (2015). Estimating uncertainty 

and reliability of social network data using Bayesian inference. 
Royal Society Open Science, 2(9), 150367.

Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and in-

terpreting animal social network analysis. Journal of Animal Ecology, 
84(5), 1144– 1163.

Findlay, R., Gennari, E., Cantor, M., & Tittensor, D. P. (2016). How soli-
tary are white sharks: Social interactions or just spatial proximity? 
Behavioral Ecology and Sociobiology, 70(10), 1735– 1744. https://doi.
org/10.1007/s0026 5- 016- 2179- y

Franks, D. W., Ruxton, G. D., & James, R. (2010). Sampling animal associ-
ation networks with the gambit of the group. Behavioral Ecology and 

Sociobiology, 64(3), 493– 503.
Frau, S., Ronchetti, F., Perretti, F., Addis, A., Ceccherelli, G., & Manna, 

G. L. (2021). The influence of fish farm activity on the social struc-

ture of the common bottlenose dolphin in Sardinia (Italy). PeerJ, 9, 
e10960.

Frost, C., & Thompson, S. G. (2000). Correcting for regression dilution 
bias: Comparison of methods for a single predictor variable. Journal 

of the Royal Statistical Society: Series A (Statistics in Society), 163(2), 
173– 189. https://doi.org/10.1111/1467- 985X.00164

Hart, J. D. A., Franks, D. W., Brent, L. J. N., & Weiss, M. W. (2021a). 
Code to replicate tests in ‘Accuracy and power analysis of social 
networks built from count data’. Zenodo, https://doi.org/10.5281/
zenodo.5541952

Hart, J. D. A., Franks, D. W., Brent, L. J. N., & Weiss, M. W. (2021b). 
pwrCGP. Zenodo, https://doi.org/10.5281/zenodo.5552680

Hawkins, E. R., Pogson- Manning, L., Jaehnichen, C., & Meager, J. J. 
(2020). Social dynamics and sexual segregation of Australian hump-

back dolphins (Sousa sahulen sis) in Moreton Bay, Queensland. 
Marine Mammal Science, 36(2), 500– 521. https://doi.org/10.1111/
mms.12657

Hobson, E. A., Avery, M. L., & Wright, T. F. (2013). An analytical frame-

work for quantifying and testing patterns of temporal dynamics in 
social networks. Animal Behaviour, 85(1), 83– 96.

James, R., Croft, D. P., & Krause, J. (2009). Potential banana skins in an-

imal social network analysis. Behavioral Ecology and Sociobiology, 
63(7), 989– 997.

Krause, J., James, R., Franks, D. W., & Croft, D. P. (2015). Animal social 

networks. Oxford University Press.
Lusseau, D., Whitehead, H., & Gero, S. (2008). Incorporating uncertainty 

into the study of animal social networks. Animal Behaviour, 75(5), 
1809– 1815.

Martin, P., Bateson, P. P. G., & Bateson, P. (1993). Measuring behaviour: An 

introductory guide. Cambridge University Press.
R Core Team. (2013). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing.
Shephard, R. W., & Färe, R. (1974). The law of diminishing returns. 

Zeitschrift für Nationalökonomie/Journal of Economics, H. 1/2, 69– 90.
Stadtfeld, C., Snijders, T. A. B., Steglich, C., & van Duijn, M. (2020). 

Statistical power in longitudinal network studies. Sociological 

Methods & Research, 49(4), 1103– 1132.
Weiss, M. N., Franks, D. W., Brent, L. J. N., Ellis, S., Silk, M. J., & Croft, 

D. P. (2021). Common datastream permutations of animal social 
network data are not appropriate for hypothesis testing using re-

gression models. Methods in Ecology and Evolution, 12(2), 255– 265. 
https://doi.org/10.1111/2041- 210X.13508

Weiss, M. N., Franks, D. W., Giles, D. A., Youngstrom, S., Wasser, S. K., 
Balcomb, K. C., Ellifrit, D. K., Domenici, P., Cant, M. A., Ellis, S., 
Nielsen, M. L. K., Grimes, C., & Croft, D. P. (2021). Proceedings of the 

Royal Society B: Biological Sciences, 288(1953), 20210617. https://
doi.org/10.1098/rspb.2021.0617

Whitehead, H. (2008). Precision and power in the analysis of social struc-

ture using associations. Animal Behaviour, 75(3), 1093– 1099.

SUPPORTING INFORMATION
Additional supporting information may be found in the online ver-
sion of the article at the publisher’s website.

How to cite this article: Hart, J. D. A., Franks, D. W., 
Brent, L. J. N., & Weiss, M. N. (2021). Accuracy and power 
analysis of social networks built from count data. Methods in 

Ecology and Evolution, 00, 1– 10. https://doi.
org/10.1111/2041- 210X.13739


