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Abstract
Establishing the conditions under which orbital, spin and lattice-pseudospin degrees of freedom
are mutually coupled in realistic nonequilibrium conditions is a major goal in the emergent field of
graphene spintronics. Here, we use linear-response theory to obtain a unified microscopic
description of spin dynamics and coupled spin–charge transport in graphene with an
interface-induced Bychkov–Rashba effect. Our method makes use of an SO(5) extension of the
familiar inverse-diffuson approach to obtain a quantum kinetic equation for the single-particle
density matrix that treats spin and pseudospin on equal footing and is valid for arbitrary external
perturbations. As an application of the formalism, we derive a complete set of drift–diffusion
equations for proximitized graphene with scalar impurities in the presence of electric and
spin-injection fields which vary slowly in space and time. Our approach is amenable to a wide
variety of generalizations, including the study of coupled spin–charge dynamics in layered materials
with strong spin–valley coupling and spin–orbit torques in van der Waals heterostructures.

1. Introduction

There is a current fundamental and technological interest in the harnessing of spin–orbit-coupling (SOC)
effects in nonmagnetic media, particularly for the interconversion of charge and spin currents and the
generation of nonequilibrium spin polarization [1, 2]. A recent trend is the use of two-dimensional (2D)
materials to engender electrical control over SOC effects benefiting from their reduced dimensionality and
unique opto-electronic properties afforded by atomically thin crystals and their heterostructures [3, 4]. With
graphene well established as a high-fidelity spin channel material supporting room-temperature spin
transport over lengths up to tens of micrometers [5–10], an important challenge concerns the manipulation
of nonequilibrium spins by pure electrical means for future spin-logic applications. While at first glance this
might seem hopeless given the absence of bulk ferromagnetism in graphene [11], not to mention its
ultra-low intrinsic SOC [12], several strategies have been proposed to overcome this bottle neck, including
adatom engineering [13, 14] and proximity effects achieved via van der Waals coupling to high-SOC 2D
materials [15–19]. The latter approach has shown great promise because the proximity-induced SOC can be
well resolved in energy (i.e. on the order of the quasiparticle broadening), which facilitates the experimental
demonstration of SOC effects with reproducibility, e.g. by means of low-field magnetotransport
measurements [20–24]. Furthermore, the strong interplay of spin and lattice-pseudospin degrees of freedom
in honeycomb layered materials gives rise to fingerprints of unique hallmarks of SOC in spin transport
experiments. Most notably, the emergence of spin–helical 2D Dirac fermions in van der Waals
heterostructures due to the Bychkov–Rashba (BR) effect [25] has been predicted [26] and demonstrated
experimentally [27–30] to enable efficient spin–charge interconversion at room temperature. Owing to a
unique spin–pseudospin entanglement of electronic wavefunctions, the sign and magnitude of the
nonequilibrium spin polarization in BR-coupled graphene can be tuned with a back-gate voltage [26], in
contrast to spin-galvanic effects generated by topological insulators [31]. Another interesting manifestation
of proximity-induced SOC is observed in Hanle-type spin precession experiments [32, 33], where a rather
unconventional spin dynamics results in spins polarized in the plane of graphene relaxing about ten times
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faster than out-of-plane spins. This effect, originally predicted by Cummings and co-workers [34], is
explained by the combined action of interface-induced spin–valley coupling and intervalley scattering
triggered by point defects, which opens an additional Dyakonov–Perel-like relaxation channel for in-plane
spins.

Due to the fast experimental progress in the field, the theory is generally lagging but there are notable
exceptions. A microscopic theory of spin dynamics for graphene-based van der Waals heterostructures with
C3v point-group symmetry was put forward in [35]. Moreover, a controlled diagrammatic approach to
calculating linear response functions in the presence of disorder and generic proximity effects was developed
in a recent series of works [26, 36–39]. An electrical detection scheme that enables full disentanglement of
competing SOC transport effects in diffusive lateral spin-valve devices was also proposed recently in [40].
These early works highlighted the key role played by symmetry, quantum geometry and impurity scattering
in the spin dynamics and spin–orbit-coupled transport phenomena, such as the spin Hall effect (SHE) [41],
in honeycomb layers. The diagrammatic approach has proven ideal for the study of the weak-disorder limit
relevant for clean samples with large mean free paths, where numerical simulations have traditionally
struggled [42, 43]. Interestingly, the emergence of noncoplanar k-space spin textures in broken inversion
symmetry conditions was shown to allow for a robust skew-scattering-induced SHE that dominates over the
intrinsic (spin-Berry-curvature) contribution in the clean limit, while not requiring spin-dependent disorder
potentials [36]. On the other hand, tight-binding methods have provided useful insights into the highly
disordered limit (e.g. via simulations of extrinsic SHE efficiency in samples with a high coverage of adatoms
[44]). However, a unified semiclassical description of spin–orbit-coupled transport effects in the presence of
generic time- and space-dependent perturbations is still lacking, even for the simplest case of C6v-symmetric
graphene heterostructures. The aim of this paper is to fill this gap by developing a theoretical framework that
encompasses all the known phenomenology and has the potential to provide new predictions for the
numerous opto-spintronic phenomena supported by van der Waals materials [40, 42, 45–48]. To that end,
we devise a Green’s function inverse diffuson approach that respects the SO(5) algebraic structure of
spin–orbit-coupled 2D Dirac fermions (rather than projecting out the sublattice degree of freedom to obtain
a simplified description in terms of Bloch-type equations [49]), which can be used to derive quantum kinetic
equations in a simple and mathematically transparent fashion. This extension of the powerful diffuson
approach originally developed for 2D electron gases [50, 51] will allow us not only to keep track of the
entangled dynamics of pseudospin and spin observables, but also to obtain useful analytical expressions for
linear response functions to generalized fields of experimental relevance, such as Zeeman-type spin-injection
fields.

This paper is organized as follows. In section 1.1, we introduce the 2D Dirac–Rashba model capturing the
low-energy dynamics of C6v-symmetric graphene heterostructures. Section 1.2 describes the diagrammatic
framework and the semiclassical approximation used in treating scattering effects. In section 2 we derive the
semiclassical drift–diffusion transport equations for the experimentally accessible macroscopic observables
and discuss various features and applications of the formalism. Section 3 presents our conclusions.

1.1. The 2DDirac–Rashbamodel
For our theoretical study of spin–charge-coupled transport in spin–orbit-coupled graphene, we use a model
of noninteracting electrons subject to a random impurity potential. Because we are interested in emergent
phenomena stemming from interfacial breaking of inversion symmetry, we assume that the BR interaction is
the dominant SOC effect (see figures 1(a) and (b)) [25, 52]. The effective Hamiltonian at the K valley can be
written in terms of tensor products of Pauli matrices σa ⊗ sb (a,b= x,y,z) acting on the pseudospin–spin
space as [53]

H=

ˆ

d2xΨ†(x) [vσµ (p
µ +A

µ)+V(x) ]Ψ(x) , (1)

where v≃ 106 m s−1 is the bare Fermi velocity of the massless Dirac fermions, pµ = (−ε/v,−ıℏ∇) is the
energy–momentum 3-vector,Aµ =

∑

a=x,y,zA
µ
a sa (µ= 0,x,y,z) is the non-Abelian SU(2) gauge field

capturing all spin-dependent effects and V(x) is the impurity potential. Here, summation over repeated
indices is implied with σ0 denoting the identity matrix. The BR effect with coupling strength λ is encoded in
the gauge field componentsAx

y =−A
y
x = λ/v, which generate the corresponding spin–orbit interaction via

minimal coupling [HBR = λ(σ× s)z]. Equation (1) has been dubbed the 2D Dirac–Rashba model in recent
literature [26, 36]. We are not concerned with purely extrinsic transport phenomena induced by
spin–orbit-active impurities (i.e. random SOC), which have been the object of detailed microscopic analysis
in early work [13, 54–58]. Rather, our focus here is on the transport properties of spin–helical 2D Dirac
fermions realized in graphene-based heterostructures with a dilute concentration of spin-transparent
impurities and a well-established (i.e. spatially uniform) BR effect.
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Figure 1. (a) Graphene placed on a substrate. The breaking of mirror reflection symmetry z→−z is responsible for the
emergence of a BR effect. (b) Energy dispersion near a K point. The BR coupling lifts the spin degeneracy and opens a spin gap.
Blue (red) curves correspond to spin majority (minority) bands. (c) Tangential winding of the spin texture outside the spin gap
(|ε|> 2|λ|). (d) Dyakonov–Perel spin-relaxation mechanism is operative in samples with a weak BR effect (|λ| ≪ η, with η the
quasiparticle broadening). Crosses indicate scattering centers and colored arrows the spin vector.

The dispersion relation of the minimal Dirac–Rashba model,H0k = ℏvσ · k+HBR, reads as

εµν(k) = µλ+ ν
√

λ2 + ℏ2v2k2 , (2)

where µ(ν) =±1 labels, respectively, the spin-helicity and polarity of charge carriers (figure 1(b)). The BR
effect lifts the spin degeneracy and locks the spin polarization and wavevector at right angles, leading to a
spin-helical configuration in k-space (figure 1(c)). The Dirac nature of the carriers enables a low electronic
density regime characterized by a simply-connected Fermi surface with well defined spin-helicity
(i.e. µ=−1), akin to the surface states of topological insulators, with interesting consequences for
spin-charge conversion effects [35].

The equilibrium spin polarization associated with the Bloch eigenstates ofH0k is easily computed as

⟨S⟩µνk =
ℏ

2
⟨s⟩µνk =−

ℏ

2
µ⟨σ⟩µνk× ẑ , (3)

where ⟨σ⟩µνk = (1/ℏv)∇kϵµν(k) is the expectation value of the pseudospin polarization vector. The spin
winding of the Fermi surface is shared with other surfaces possessing broken inversion symmetry, but unlike
conventional spin-helical states, its energy dependence reflects a spin-angular momentum transfer between
spin and pseudospin channels. Such a spin-pseudospin coupling is responsible for the conspicuous
wavevector dependence of the equilibrium spin texture (equation (3)). Indeed, the spin-polarization
magnitude is vanishing at the corners of the first Brillouin zone, where the band velocity is vanishing
(⟨σ⟩µνk→0 = 0). Away from the zone corners K and K

′

, the spin texture magnitude increases monotonically
with the Fermi wavevector until it saturates away from the spin gap (i.e. for |ε|≳ 2|λ|). As noted by Rashba
[25], the strong momentum-dependence of the spin texture at low energies is a unique fingerprint of
BR-coupled 2D Dirac fermions.

The random potential in equation (1), which in this work is assumed to be scalar, affects the spin
dynamics of charge carriers by inducing scattering between electronic states with different effective Larmor
fieldsΩµνk = λ⟨s⟩µνk ≈−µνλ k̂× ẑ for |ε| ≫ |λ|. Due to the random change of precession axis, an initial
nonequilibrium spin polarization will decay exponentially with time. In the standard weak-SOC regime
(realized in systems with a small spin splitting compared to the disorder-induced broadening [59–61]), the
spin-relaxation rate is τ−1

s ∝ λ2τ , where τ is the elastic scattering time (figure 1(d)). Interestingly, the
spin-relaxation rate of out-of-plane spins (i.e. polarized along the ẑ-axis) is twice that of in-plane spins
(τs,⊥/τs,∥ = 1/2), which could provide an experimentally detectable signature of BR effect using Hanle-type
spin precession measurements [62, 63]. Impurity scattering also plays a key role in coupled spin–charge
transport phenomena, profoundly affecting the efficiency of spin Hall and spin-charge conversion
(spin-galvanic) effects, even in the clean limit with |ε|τ ≫ 1, as we shall see below.

1.2. Theoretical framework
To derive a rigorous microscopic picture of coupled spin-charge transport, we evaluate the density matrix
response function employing many-body perturbation theory methods [64–66]. Our aim is to generalize the
familiar diffuson approach for 2D electron gases [50, 51] to accommodate the enlarged SO(5) Clifford
algebra of 2D Dirac fermions. Because we are interested in the diffusive regime realized in weakly disordered
samples with |ε|τ ≫ 1, we neglect quantum corrections arising from weak localization and higher-order
spin-orbit scattering effects, such as quantum side jumps and diffractive skew scattering [57, 58, 67]. In the
diagrammatic language, such semiclassical approximation amounts to discarding crossing diagrams
encoding coherent multiple impurity scattering events, as well as higher-order noncrossing diagrams with a

3
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Figure 2. (a)–(d) Diagrammatic scheme for the evaluation of the linear response density matrix. Green (black) solid line with an
arrow denotes the free (disorder-averaged) Green’s function. Dashed lines depict scattering potential insertions (u0) and the cross
represents the impurity density (ni).

perturbation parameter 1/(|ε|τ)≪ 1 [57]. Unless stated otherwise, we work in natural units with ℏ≡ 1≡ e.
Additionaly, for ease of notation, we assume throughout that ε,λ > 0.

The central object in our approach is the real-time retarded(R)/advanced(A) single-particle Green’s
function (a= A,R≡−,+) defined as

Ga(x,x ′; t− t ′) =∓ı
〈

0|T
[

Ψ(x, t),Ψ†(x ′, t ′)
]

|0
〉

θ(±t∓ t ′), (4)

whereΨ†(x, t) [Ψ(x, t)] are 4-component field operators creating (annihilating) a 2D Dirac fermion at
position x and time t, T is the time-ordering symbol and θ(.) is the Heaviside step function. After disorder
averaging (indicated below by an overline), the Green’s function in momentum-frequency space acquires the
familiar form

Ga
k(ε) =

1

[Ga
0k(ε)]

−1 −Σa
k(ε)

, (5)

where Ga
0k(ε) = [ε− vσ · k−λ (σ× s) · ẑ+ ıa0+]−1 is the Fourier transform of the clean Green’s function

and

Σa
k(ε) =

ˆ

d(x− x ′)e−ık(x−x ′)⟨x ′|V
1

1−Ga
0(ε)V

|x⟩ (6)

is the quasiparticle self energy in the noncrossing approximation. For uncorrelated short-range impurity
potentials, the self energy is k-independent, and so we set Σa

k(ε)≡ Σa(ε) from here onwards.
In order to keep our discussion as simple as possible, we compute the self energy under the assumption of

weak Gaussian disorder. This will simplify our analytical treatment significantly while capturing the essential
physics [68]. Diagrammatically, the weak disorder approximation amounts to retaining only the
contribution from the ‘rainbow’ diagram with two impurity potential lines; see figures 2(a) and (b).
Replacing the explicit form of the two-point correlator V(x)V(x ′) = niu20 δ(x− x

′) in the Dyson expansion
of the self energy, where ni is the impurity areal density and u0 is the potential strength, one arrives at

Σ±(ε) =∓ (ı/2τ)

[

θ(ε− 2λ)+ θ(2λ− ε)
(

1+σzsz −
ε

λ
γr

) λ

ε

]

, (7)

where 1/2τ ≡ η = ni u20ε/4v
2 is the quasiparticle broadening and γr ≡ (σxsy −σysx)/2. The existence of two

distinct transport regimes at low energies (i.e. ε > 2λ and ε < 2λ) is a unique feature of the 2D
Dirac–Rashba model, which is responsible for the existence of a maximum in current-induced spin
polarization efficiency when the (gate-tunable) Fermi energy lies precisely at the spin-gap edge [26].

In this paper, we are primarily interested in the diffusive coupled spin–charge dynamics which occur in
graphene flakes with weak proximity-induced SOC at moderate–high charge carrier densities
(ετ ≫ 1≫ λτ ) [37]. The condition ε≫ λ implies that the BR-slit bands with opposite spin helicities are
occupied at the Fermi level. To study the behavior of the system away from equilibrium, it is convenient to
introduce the generalized one-particle density operator

ρ̂αβ(x; t) = Ψ†(x, t)γαβΨ(x, t) , (8)

where γαβ = σα ⊗ sβ (with α,β = 0,x,y,z) span the vector space of Hermitian 4× 4 matrices. The density
matrix characterizing a given nonequilibrium state can be expanded as a linear combination of the Clifford
algebra basis elements, such that

ρ(x, t) =
1

d

∑

α,β=0,x,y,z

γαβ ⟨ρ̂αβ(x, t)⟩, (9)

4
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where ⟨. . .⟩ denotes quantum and disorder averages and d= dimH≡ 4 is a normalization factor. The
expectation value of a generic local observable,O =

∑

αβOαβγαβ , is obtained according to

⟨O(x, t)⟩ := tr [Oρ(x, t)] =
∑

α,β

Oαβ ραβ(x, t) , (10)

where tr indicates the trace over internal degrees of freedom and ραβ(x, t)≡ ⟨ρ̂αβ(x, t)⟩.
In this work we are concerned with the semiclassical dynamics of typical spin transport observables, such

as the spin-polarization density and the spin current density. Thus, it is more convenient to work directly
with the deviation from equilibrium of the expectation values, i.e. ⟨δO(x, t)⟩ := tr [O δρ(x, t)] with
δραβ(x, t) := ραβ(x, t)− ρ0αβ . Here, ρ

0
αβ denotes the equilibrium part of the (disorder-averaged) density

matrix. The macroscopic observables of interest to us are the charge density, N, spin polarization density,
Sa (a= x,y,z), charge current density, J i (i= x,y), and spin current density, J a

i . The corresponding
expectation values away from equilibrium are defined as

{δN, δSa, δJi, δJ
a
i }= {−eδρ00,

ℏ

2
δρ0a,−evδρi0,

ℏv

2
δρia} , (11)

where we have temporarily reinstated ℏ and e to distinguish between charge and spin currents.
The interaction Hamiltonian is V(t) =

´

d2xΨ†(x) [Hint(x, t)]Ψ(x) with

Hint(x, t) = v
∑

α,β

γαβA
ext
αβ(x, t) , (12)

whereAext
αβ(x, t) (α,β = 0,x,y,z) spans the Clifford algebra and thus describes any type of charge–spin

perturbation applied to the system. In section 2.1, we shall show that the linear response density matrix
δρ(x, t), when properly coarse-grained over typical length and time scales (i.e. |x| ≫ l≡ vτ and t≫ τ ), is
governed by an enlarged 16× 16 diffuson Hamiltonian that is the SO(5) analogue of the familiar inverse
density fluctuation propagator of 2D electron gases [50, 51, 69] and topological insulators [70, 71]. In
section 2.2, the linear response machinery will be applied to derive the full set of drift–diffusion transport
equations for the variables δN, δSa, δJi and δJ a

i , and thus establish a rigorous microscopic picture for the
coarse-grained dynamics of the problem. In the following, we define N≡ δN, Sa ≡ δSa, Ji ≡ δJi and
J a
i ≡ δJ a

i for ease of notation.

2. Results

2.1. Diffuson Dirac Hamiltonian
We start by setting up the formalism needed to derive a quantum kinetic equation for BR-coupled 2D Dirac
fermions. From standard linear response theory, the zero temperature density matrix is given by

δραβ(x, t) =
∑

ᾱ,β̄=0,x,y,z

ˆ

dx ′
ˆ

dt ′ Rαβ,ᾱβ̄(x− x
′, t− t ′)vAext

ᾱβ̄
(x ′, t ′) , (13)

where

Rαβ,ᾱβ̄(x− x
′, t− t ′) =−ıθ(t− t ′)⟨[ρ̂αβ(x, t), ρ̂ᾱβ̄(x ′, t ′)]⟩ (14)

is the retarded response function. Equation (14) is best evaluated in momentum–frequency space using the
Green’s-function method [66]. A summation of noncrossing two-particle diagrams, as depicted in
figures 2(c) and (d), leads to

Rαβ,γδ(q,ω)≃
ω

2πi

∑

k

tr
{

γαβ G
R
k+q(ε+ω) γ̃γδ(q,ω)G

A
k (ε)

}

, (15)

where the renormalized vertex operator γ̃αβ(q,ω) satisfies the Bethe–Salpeter equation

γ̃αβ(q,ω) = γαβ + niu
2
0

∑

k

GR
k+q(ε+ω) γ̃αβ(q,ω)G

A
k (ε) . (16)

Next, we project both sides of equation (16) onto the Dirac matrices and define

γ̃αβ(q,ω) = (γ̃αβ00(q,ω), ..., γ̃αβzz(q,ω))
T , (17)

5
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Table 1. Classification of Dirac matrices and corresponding observables under C2-rotation, mirror-reflection Rx and time-reversal
operation. Sublattice-staggered densities are indicated with subscript ‘s’.

γ00 γ01 γ02 γ03 γ10 γ11 γ12 γ13 γ20 γ21 γ22 γ23 γ30 γ31 γ32 γ33

O N Sx Sy Sz Jx J
x
x J

y
x J

z
x Jy J

x
y J

y
y J

z
y N s Sxs Sys Szs

C2 +1 −1 −1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 −1 −1 +1
Rx +1 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1 −1 +1 −1 +1
T +1 −1 −1 −1 −1 +1 +1 +1 −1 +1 +1 +1 −1 +1 +1 +1

with γ̃αβϱς(q,ω) = (1/d) tr[γϱς γ̃αβ(q,ω)], to obtain the renormalized vertex in a suitable closed form

γ̃αβ(q,ω) = (I− [M(q,ω)]T)−1
γαβ , (18)

where γαβ = (0, . . .,1, . . .,0)T is an auxiliary vector with nonzero component (γαβ)αβ = 1, I is the identity
matrix, T denotes the transpose operation andM is a square matrix of ‘bubbles’ with elements

Mµν,ϱς(q,ω) =
niu20
d

∑

k

tr
[

GR
k+q(ε+ω)γµνG

A
k (ε)γϱς

]

. (19)

We may now recast the Fourier space response function into a more compact formRαβ,ᾱβ̄(q,ω) =
−ıων0Dαβ,ᾱβ̄(q,ω), where ν0 = ε/πv2 is the density of states per spin and

Dαβ,ᾱβ̄(q,ω) = τ
(

γ̃ᾱβ̄αβ(q,ω)− δαᾱδββ̄
)

(20)

is the so-called diffuson (here, δαβ is the Kronecker delta symbol). Its inverse, the diffuson Hamiltonian
HD ≡D−1,

HD(q,ω) =
1

τ

(

(

I− [M(q,ω)]T
)−1

− I
)−1

, (21)

provides the kernel of the linear response quantum kinetic equation

HD(q,ω) · δρ⃗(q,ω) =−ıvων0A⃗ext(q,ω) , (22)

where δρ⃗(q,ω)≡ (δρ00(q,ω), . . ., , δρzz(q,ω))T and A⃗ext(q,ω)≡ (Aext
00 (q,ω), . . .,A

ext
zz (q,ω))

T are the
Fourier-space components of the one-particle density matrix and generalized external vector potential,
respectively.

Let us briefly discuss the general structure ofHD(q,ω) in the long wavelength limit of interest to us. Zero
entries in the 16× 16 bubble matrixM(0,ω) can be readily identified by applying the following C6v

point-group operations [72]: (i) C2 rotation exchanging sublattices and (ii) mirror-reflection Rx leaving
sublattices invariant. For example, the bubblesM00,0a(0,ω), encoding charge-density–spin-density-type
responses (a= x,y,z), vanish identically because the associated vertices (‘00’ and ‘0a’) transform differently
under at least one unitary symmetry. Overall, there are 64 non-zero bubbles in the long-wavelength q→ 0
limit. The symmetry classification is summarized in table 1.

We now turn to the spin–charge eigenmodes sustained by the system. The first step is to compute the
gradient expansion of equation (21). Working in the diffusive regime (ϵτ ≫ 1≫ λτ ) greatly simplifies
matters due to many bubbles being parametrically small. To leading order in v|q| and ωτ , we find

HD(q,ω)≃ ıωQ− ıP · q+ L , (23)

where Q, Pi and L are 16× 16 matrices given by Q=−ı(∇ωHD(0,ω))ω=0, P= ı(∂qHD(q,0))q=0 and
L=HD(0,0). The calculation of these matrices is rather cumbersome, yielding unwieldy expressions for the
matrices Q= Q(ε,λ,τ), Pi = Pi(ε,λ,τ) and L= L(ε,λ,τ). We therefore provide the explicit form of the
equation (23) in the appendix, from which Q, Pi and L can be inferred.

The diffuson Hamiltonian in equation (23) is linear in the wavevector q due to the Dirac nature of the
low-lying excitations in graphene heterostructures. The diffuson spectrum at low energies is shown in
figure 3. The quadratic dispersion of the gapless mode follows from the diffusive pole structure of the
density–density response, i.e. [R00,00(q,0)]−1 ∼ (vτ |q|)2. For q ̸= 0, this mode is an admixture of charge N,
spin current J a

i and spin polarization Sx,y fluctuations. The gapped states, on the other hand, describe
eigenmodes of the nonequilibrium spin polarization Sa [73]. Note that two of these states (Sx,y) are
degenerate at q= 0 due to the rotational (Cv∞) symmetry of the single-particle Hamiltonian (equation (1)).
Their gaps at q= 0 are given by∆s ≡∆∥ ≃ (λ/η)2 for the Sx,y- and∆⊥ ≃ 2∆∥ for the S

z-mode. The twice
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Figure 3. Spectrum of the diffuson Hamiltonian in units of spin gap∆s. Only low-lying states are shown. Parameters: ε= 0.3 eV,
λ= 0.1 meV and η = 1/2τ = 2 meV. The curves are obtained numerically from ϵD(q) = Reλ(q,0) with q= |q|, where λ(q,ω)
are the complex eigenvalues of the diffusonHamiltonian matrix (equation (21)).

as fast dephasing of out-of-plane spin fluctuations is a fingerprint of BR SOC, a feature which is known to
survive even in the strong (unitary) scattering regime [37].

The low-lying modes shown in figure 3 are remarkably similar to those of a BR-coupled 2D electron gas
[51]. We verified that the diffuson spectra of the two Rashba models can be exactly mapped onto each other,
despite their distinctly different diffuson Hamiltonians (i.e. 4× 4 Schrödinger-like for 2D electron gases and
16× 16 Dirac-like for graphene). Defining ξ = 2v|q|τ , the eigenvalues ofHD(q,0) in the limit v|q| ≪ 1 are

given by ϵ0D = ξ2, ϵ1D = ξ2 +∆s and ϵ±D = ξ2 +∆s

(

3
2 ±

1
2

√

1+ 16ξ2/∆s

)

. The Rashba diffuson eigenvalues

derived by Wenk et al [51] are recovered by letting λ/v→ 2meα2, whereme is the effective electron mass and
α2 the Rashba parameter. The existence of such a mapping reflects the same basic spin-relaxation
(Dyakonov–Perel) mechanism at work. Indeed, our findings put on a firm ground previous heuristic
arguments [36, 37] for the equivalence of two models in the weak SOC regime. The remaining 16− 4= 12
modes in the Dirac–Rashba model are characterized by very large gaps (∆+

s ≳ 1/2≫∆s), and as such play
no role in the diffusive regime.

A comment is in order regarding the validity of our assumptions in the light of recent findings. In the
example of figure 3, we considered a small BR coupling of only 0.1 meV, which is in line with density
functional theory calculations for clean graphene/group VI dichalcogenide heterostructures [16, 18]. On the
other hand, the semi-empirical Slater-Koster parametrization of [74], as well as early magnetotransport
measurements [20–24], have found much higher proximity-induced SOC (up to≈ 10 meV). Furthermore, a
recent joint theory-experiment study suggests that the interfacial Rashba coupling can be made as large as
100 meV, by placing a graphene flake on top of a metallic substrate with a suitable work function mismatch
[29]. We note that in any case, the theory developed in this work is expected to remain accurate provided that
the Dirac bands remain intact (so that the low-energy picture in figure 1 is justified) and the system is
sufficiently disordered so that λτ ≪ 1.

2.2. Unified coupled spin-charge drift-diffusion equations
The quantum kinetic equation governing the one-particle reduced density matrix in the large distance and
long time limits is obtained after an inverse Fourier transform (−ıω → ∂t and ıqi →∇i) of equation (23) as

HD · δρ⃗(x, t) =



−Q
∂

∂t
−

∑

i=x,y

Pi∇i + L



 · δρ⃗(x, t) = vν0∂tA⃗ext(x, t) . (24)

Transport equations for the coarse-grained variables N(x, t) =−δρ00(x, t), Sa(x, t) =
1
2δρ0a(x, t),

Ji(x, t) =−vδρi0(x, t) and J a
i (x, t) =

v
2δρia(x, t) can now be derived by replacing the 16× 16 matrices

Q= Q(ε,λ,τ), Pi = Pi(ε,λ,τ) and L= L(ε,λ,τ) with their explicit forms (see appendix). To leading order
in 1/ετ and λτ , we obtain

∂tN+∇· J= 0 , (25)
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Table 2. Coefficients in the coupled spin–charge drift–diffusion equations. Only nonzero components are listed.

Λ Spin density precession Λ
zx
x = Λ

zy
y =−1 , Λxx

z = Λ
yy
z = 1

Γ Spin current transfer Γ
xx
xz = Γ

yy
yz = 1, Γzx

xx = Γ
zy
xy = Γ

zx
yx = Γ

zy
yy =−1,Γyy

xz = Γ
xx
yz = 1

Ω Spin current precession Ωx
xz =Ω

y
yz = 1, Ωz

xx =Ωz
yy =−1

Υ Spin current swapping Υ
xy
xy = Υ

yx
yx = 1, Υ

yy
xx = Υ xx

yy =−1

∂tS
a +∇·J a =

2λ

v
Λab

c J c
b +

ν0
2
Ba , (26)

∂tJi +
v2

2
∇iN=−

Ji
2τ

−
4λ2

ϵ
ϵijJ

z
j +

ν0
2
v2Ei , (27)

∂tJ
a
i +

v2

2
∇iS

a + vλτ Γab
ic ∇bJ

c
i =−

J a
i

2τ
+ vλΩa

icS
c +λ2τ Υ ab

ic J
c
b − δazϵij

λ2

ε
Jj , (28)

where Ei =−∂tA
ext
i0 is the externally applied electric field and Ba = (1/v)∂tAext

0a (x, t) is the external Zeeman
field (‘spin injection field’) that induces a nonequilibrium spin density [75]. The coefficients Λab

c ,Γab
ic ,Ω

a
ic and

Υ ab
ic are listed in table 2 and εij denotes the rank-2 Levi-Civita symbol (i, j= x,y). Different perturbations

(e.g. a spin-dependent electric field Ea
i =−∂tAia) can be easily incorporated via a suitable parameterization

of the generalized external vector potential entering equation (24).
The drift–diffusion equations (25)–(28) are the main results of this work. Equations (25) and (26) are

generalized continuity relations and equations (27) and (28) express the time evolution of the currents as a
sum of drift, diffusion, spin precession and spin–charge conversion processes. Standard constitutive relations

Ji =−D∇iN−
8τλ2

ε
ϵijJ

z
j + ν0τv

2Ei , (29)

J a
i =−D∇iS

a − 2vλτ 2Γab
ic ∇bJ

c
i + 2vλτΩa

icS
c + 2λ2τ 2Υ ab

ic J
c
b − δa,zϵij

2τλ2

ε
Jj , (30)

where D= v2τ is the diffusion constant [76], hold to good accuracy insofar as ω ≪ λ. Sublattice-staggered
charge Ns and spin densities Sas (see table 1) are conspicuously absent from these relations. In terms of the
underlying diffuson Hamiltonian, these observables are linked to dispersionless modes with large gaps and
are thus effectively decoupled from the low-energy dynamics. We expect such terms to play a role in graphene
heterostructures with broken sublattice symmetry [34–36], which is beyond the scope of the this article.

2.3. Spin Hall and spin-galvanic effects: the DC regime
Equations (25)–(28) provide a physically transparent scheme to interpret and predict a variety of SOC
phenomena of fundamental and technological relevance. Before discussing new applications of the
formalism, we briefly revisit two well established results for BR-coupled graphene [26, 36]. We start with the
SHE [41], i.e. the appearance of a transverse spin current upon application of a DC charge current, first
observed in semiconductors [77, 78]. In graphene with random SOC (e.g. induced by dilute adatoms), a
robust SHE can be induced via resonant skew scattering [13, 14, 54–56]. In contrast, for graphene systems
with a spatially uniform BR effect, the SHE is strictly vanishing unless supplemented with proximity-induced
spin–valley coupling or spin-dependent disorder.

Detailed information on the SHE can be obtained from the drift–diffusion equations with little effort.
The so-called intrinsic spin Hall angle θintsH = 2τλ2/ε, which appears explicitly in equations (29)–(30),
diverges in the clean limit (τ →∞) and does not correspond per se to a steady-state transport quantity. The
actual spin Hall angle, defined as the ratio between near-equilibrium spin Hall current and applied charge
current,

θsH(ω) := 2ϵij
J z
i

Jj

∣

∣

∣

∣

q=0,Ba=0

= θintsH + θdissH(ω) , (31)

is obtained by solving the system of coupled equations (25)–(28) and receives important disorder corrections
even in the clean limit. The ‘SHE cancellation’ in the DC limit θdissH(0) =−θintsH is a fundamental consequence
of SU(2)-spin covariance of pure Rashba models as shown by Dimitrova [79]. This result can also be
interpreted as the unavoidable outcome for a 2D system with an isotropic and fully in-plane spin texture.
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Because the electronic states are admixtures of orthogonal spin states, phase shifts experienced by the spin-up
and spin-down components of scattered wavefunctions from scalar impurities cannot be distinguished,
implying the absence of skew scattering [36]. As discussed in section 2.4, a robust SHE nevertheless takes
place at finite frequencies (i.e. an optical SHE) or when the system is perturbed by a spin-injection field.

Also of interest is the inverse spin-galvanic effect (ISGE), whereby an applied current magnetizes the
conduction electrons, thus generating a net spin polarization density [80, 81]. Its microscopic origin lies in
the spin–momentum locking of Bloch eigenstates caused by the BR effect (figure 1(c)). While the equilibrium
spin polarization averaged over the Fermi surface in a nonmagnetic system must vanish identically (equation
(3)), an external electric field effectively breaks the time-reversal symmetry, by causing an imbalance the
occupation of states with opposite momenta, which allows the build up of a net transverse spin polarization.
The ISGE efficiency can be easily read out from equation (30) by replacing the pure spin current by its
steady-state value in the minimal model, i.e. J a

i = 0. The charge-to-spin conversion efficiency is obtained as:

κij := 2v
Si

Jj

∣

∣

∣

∣

q=0,Ba=0

= ϵij
1

λτ
θintsH = ϵij

2λ

ε
. (32)

This relation (first derived in [26]) discloses an optimal spin-charge conversion efficiency at the spin-gap
edge, i.e. κxy(ε= 2λ) = 1. The ISGE efficiency parameter decays algebraically with the energy of charge
carriers, which makes the effect detectable at room temperature over a wide range of charge carrier densities.
The robust ISGE in graphene with BR effect has been observed in a recent series of experiments [27–30].

2.4. Application: optical spin Hall and spin galvanic effects
As a novel application of the formalism, we derive the optical response of BR-coupled graphene. To this end,
we solve the charge–spin drift–diffusion equations (equations (26)–(28)) subject to time-dependent electric
and spin-injection fields, with Fourier transforms Ei(ω) (i= x,y) and Ba(ω) (a= x,y,z), respectively. In the
Dyakonov–Perel regime with ωτ ≪ λτ ≪ 1≪ ϵτ , the macroscopic observables of interest are found, after
tedious but straightforward calculations, to be

Ji(ω) =
gvετ

π

[

Ei(ω)

1− 2ıωτ
+ ϵij

2λ

vε

Bj(ω)
(

1− ıωτ∥
)

(1− 2ıωτ)

]

, (33)

Sa(ω) =
gvετs,a
2πv2

[

ϵjaz
8vλ3τ 2

ε

Ej(ω)

(1− 2ıωτ)(1− ıωτs,a)
+

Ba(ω)

1− ıωτs,a

]

, (34)

J z
i (ω) =

gvετ zss
2πv

[

ıvϵij
ωτ

ετ zss

Ej(ω)

(1− 2ıωτ)
(

1− ıωτ∥
) −

Bi(ω)

1− ıωτ∥

]

, (35)

J i
i (ω) =

gvετ iss
2πv

Bz(ω)

1− ıωτ⊥
, (36)

where the factor of gv = 2 accounts for valley degeneracy. Furthermore, εzij denotes the rank-3 Levi-Civita

symbol, τ i=x,y
ss = τ zss/2 with τ zss = 1/2λ, and τs,a is the Dyakonov–Perel relaxation time introduced earlier

[here, τs,(x,y) ≡ τ∥ and τs,z ≡ τ⊥ = τ∥/2, with τ∥ = (4λ2τ)−1].
Equations (33)–(36) reveal several interesting features of the Dirac–Rashba model. First, a finite SHE is

established in the presence of a time-dependent electric field (equation (35)). Second, a spin-injection field
gives rise to a charge current (i.e. direct spin galvanic effect) (equation (33)) and a nonequilibrium spin
polarization (equation (34)). Moreover, a pure spin current is induced by an applied spin-injection field
(equations (35)–(36)). The induced spin-current density is polarized transversely to the spin-injection field.
With the exception of the SHE, all such effects are present in the DC limit.

The linear response functions to external fields can be readily obtained from equations (33)–(36). For
example, the optical conductivity [σij(ω) = δJi(ω)/δEj(ω)], spin-galvanic susceptibility [χij(ω) =
δSi(ω)/δEj(ω)] and spin Hall conductivity [σz

yx(ω) = δJ z
y (ω)/δEx(ω)] read as

σii(ω) = 2gv
ετ

1− 2ıωτ
, (unitsofe2/h) (37)
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χij(ω)≃−
2gvϵij
v

λτ

1− ıωτ∥
, (unitsofe/2π) (38)

σz
ij(ω)≃−ıϵijgv

ωτ

1− ıωτ∥
, (unitsofe/2π) (39)

where subleading corrections of order ωτ have been neglected for simplicity. These results deserve a few
comments. The expression for σxx(ω) coincides with the familiar Drude model result, which is valid in the
semiclassical regime with ετ ≫ 1 [82]. More interestingly, the optical spin-galvanic susceptibility (equation
(38)) generalizes the findings of [26] to an external electric field with nonzero frequency. Here, ωτ∥ emerges
as an important parameter that governs the imaginary part of the response function, whereas the physics of
the DC regime reflects the average spin-precession angle experienced between consecutive scattering events
(i.e. θp = λτ ).

3. Summary and outlook

We derived a quantum kinetic equation and the associated set of coupled spin–charge linear transport
equations that govern the dynamics of Rashba-coupled 2D Dirac fermions in graphene proximitized by
high-SOC materials. These equations, which are valid in the presence of arbitrary external fields, provide a
quantitative description of rich interlinked spin–orbit scattering phenomena characteristic of 2D systems
with broken inversion symmetry, including Dyakonov–Perel-type spin relaxation, direct and inverse DC
spin-galvanic and optical spin Hall effects.

The distinctive feature of the SO(5) algebraic approach formulated in this work is that the exact large
distance and long time behavior of the linear response one-particle density matrix, and thus also the
expectation value of any local observable, is uniquely determined by a generalized inverse diffusonmatrix (i.e.
a diffusonHamiltonian) that spans the full vector space of a 16-dimensional Clifford algebra. This is to be
contrasted with the familiar SU(2) approach for two-dimensional electron gases [50, 83], whose
Fourier-space diffuson operators are 4× 4 matrices restricted to the space of charge and spin-polarization
densities. The enlarged (16× 16) diffuson Hamiltonian derived here emphasizes the manifestation of
entanglement between the spin and pseudospin (sublattice) degrees of freedom that is ubiquitous across van
der Waals materials. Furthermore, it provides direct access to the time evolution of all thermodynamic
macroscopic observables, including spin-current density, spin-polarization density and sublattice-staggered
densities.

This work opens up a number of avenues that can be explored in the framework introduced here. These
range from the exploration of nonequilibrium opto-spintronic phenomena in group-VI dichalcogenide
monolayers and van der Waals heterostructures with sizable spin–valley coupling, to the role played by
spin–orbit-active impurities in spin dynamics and spin–charge conversion effects. In particular, asymmetric
scattering precession [56] and skew scattering effects can be systematically explored by means of a
nonperturbative T-matrix ladder scheme that resums all single-impurity scattering diagrams [26, 37, 39].
Such an extension of our diagrammatic treatment would be helpful in understanding the emergent transport
physics of 2D van der Waals materials with broken sublattice symmetry, where the presence of non-coplanar
k-space spin textures at low energies is known to enable robust spin Hall effects irrespective of the type of
impurities [36, 38], in addition to strongly modifying the spin dynamics [34, 35]. Moreover, our formalism
could be employed to investigate how proximity-induced SOC affects the nonlocal resistance in Hanle-type
spin precession experiments beyond its impact on the spin lifetimes. This could be examined by deriving a
generalized spin diffusion equation accounting for the interplay of spin-valley coupling, intervalley scattering
and the Bychkov-Rashba effect.
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Appendix

The diffuson Hamiltonian in the standard weak SOC regime with ϵτ ≫ 1 reads as

HD(q,ω) = ıωQ− ıP · q+ L≃
1

τ









(

A11 A12

A12 A22

) (

C11 O

C21 O

)

(

C11 −C21
O O

) (

B11 O

O B22

)









, (40)

whereO is the null matrix,A11 =−ıωτ I,

A12 =









ıvqxτ 0 0 0
0 ıvqxτ 0 −2λτ
0 0 ıvqxτ 0
0 2λτ 0 ıvqxτ









, (41)

A22 =









1− 2ıωτ 0 0 0
0 1− 2ıωτ 0 2ıvqxλτ 2

0 0 1− 2ıωτ 2ıvqyλτ 2

0 −2ıvqxλτ 2 −2ıvqyλτ 2 1− 2ıωτ









, (42)

B11 =









1− 2ıωτ 0 0 0
0 1− 2ıωτ 0 2ıvqxλτ 2

0 0 1− 2ıωτ 2ıvqyλτ 2

0 −2ıvqxλτ 2 −2ıvqyλτ 2 1− 2ıωτ









, (43)

C11 =









ıvqyτ 0 0 0
0 ıvqyτ 0 0
0 0 ıvqyτ −2λτ
0 0 2λτ ıvqyτ









, (44)

C21 =









0 0 0 − 4λ2τ
ε

0 0 −2τ 2λ2 0
0 2τ 2λ2 0 0

− 4λ2τ
ε

0 0 0









, (45)

and B22 = [−πετ/ ln(vΛ/ε)+ ıπ2τω/(4 ln2 (vΛ/ε))]I. Here, I denotes the 4× 4 identity matrix and Λ is a
momentum cutoff used to regularize the integrals in equation (19).
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