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Abstract  

Interactions in complex solutions that consist of multiple components can be quantified via number 

correlations observed within an isochoric subsystem. The fluctuation solution theory carries out a 

conversion between experimental data, under isobaric conditions, and the isochoric number 

correlations, through cumbersome thermodynamic variable transformations. In contrast, we have 

recently demonstrated heuristically that direct transformation of statistical variables (i.e., those 

variables fluctuating in statistical ensembles such as volume and particle numbers) can lead to 

equivalent results via simple algebra. This paper reveals the geometrical basis of fluctuation and 

invariants underlying the equivalence between thermodynamic and statistical variable 

transformations. Based on the quasi-thermodynamic fluctuation theory and the postulate that 

concentration and its fluctuation are invariant under ensemble transformation, we show that the 

thermodynamic and statistical variable transformations correspond to the change of basis on a 

Hessian and statistical variables, respectively, under which the quadratic form of fluctuation is 

invariant. Statistical variable transformation can also be used in cases when a set of experimental 
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 2 

data do not belong to the same ensemble. When combined with the order-of-magnitude analysis, 

our formalism shows that the quasi-thermodynamic formalism of fluctuation at the thermodynamic 

limit is valid only for extensive variables and cannot be applied to intensive variables.  

Keywords: fluctuation solution theory; Hessian; thermodynamic variable transformation; tensor; 

intensive; extensive  

 

 

1. Introduction  

 

Quantifying interactions in complex solutions, that are composed of multiple components, is a 

challenging scientific question with many applications, such as colloids and surfactants [1,2], 

microemulsions [3], nanoparticles [4], and polymers including biopolymers [5]. The most general 

theoretical foundation is the fluctuation solution theory, initiated by Kirkwood and Buff [6], which 

quantifies interactions between constituent species via number covariance, related to the molecular 

distribution function [6–10]. The physical meaning of the fluctuation solution theory can be best 

illustrated by setting up within a multiple component solution an open, isochoric subsystem as (a 

theoretical device as) an observatory for particle numbers and their fluctuations and covariances 

therein [9,11,12]. However, the discrepancy between the isochoric “observatory” subsystem and 

the ensemble of experimental convenience (i.e., isobaric) necessitated thermodynamic variable 

transformation between the two ensembles, leading to significant calculus and algebra [6–10].  For 

the fluctuation solution theory to remain a useful tool for even more complex solutions [5,13,14], 

facilitating calculation [15,16] is indispensable.  
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Our goal is to facilitate thermodynamic variable transformation in the fluctuation theory, based 

on a geometrical perspective. A reasonable strategy would be to circumvent the isobaric to 

isochoric transformation required by the route initiated by Kirkwood and Buff [6,8,17,18]. We 

have recently proposed the statistical or “algebraic” transformation rules for number correlations 

as a facile alternative to the thermodynamic route [19]. This was conceived as a multiple-

component generalization of the following short-cut technique found in textbooks [20,21],  

〈𝛿𝑉𝛿𝑉〉{𝑇,𝑃,𝑁} = 𝑉2𝑁2 〈𝛿𝑁𝛿𝑁〉{𝑇,𝑉,𝜇} (1.1) 

which directly transforms the number fluctuation in a grand canonical ensemble 〈𝛿𝑁𝛿𝑁〉{𝑇,𝑉,𝜇} 
(with the chemical potential 𝜇, number 𝑁, and temperature 𝑇) to the volume fluctuation in an 

isobaric ensemble 〈𝛿𝑉𝛿𝑉〉{𝑇,𝑃,𝑁}  (where 𝑃  is the pressure). The crux of this approach is the 

algebraic relationship between the two deviations [19–21],  

𝛿𝑉 = − 𝑉𝑁 𝛿𝑁 
(1.2) 

which we will refer to as the statistical variable transformation. Eq. (1.2) provides a facile 

alternative to deriving the following relationship on the isothermal compressibility  

− 1𝑉 (𝜕𝑉𝜕𝑃)𝑁 = 𝑉𝑁2 (𝜕𝑁𝜕𝜇)𝑃 
(1.3) 

The derivation of Eq. (1.3) purely from the thermodynamic variable transformation of partial 

derivatives requires several careful steps, in contrast to the short-cut afforded by Eq. (1.2) [19–21].  

 

The statistical variable transformation, i.e., the generalization of Eq. (1.2) to multiple-component 

solutions [19], has exhibited considerable ease in re-deriving the Kirkwood-Buff theory, compared 

to the more cumbersome route via thermodynamic variable transformation [19]. An even more 

difficult problem of cooperative solubilization by hydrotropes and micelles [22–26], which 



 4 

requires the variable transformation on multiple-body correlation and higher-order thermodynamic 

derivatives, has been simplified by the statistical variable transformation [19]. Furthermore, the 

statistical variable transformation was proven to be useful for the questions beyond the remit of 

macroscopic chemical thermodynamics, such as the thermodynamic stability condition for a 

mixture in mesoscale confinement (which involves an additional degree of freedom coming from 

the boundary effect [27]) and in clarifying the similarity and difference between sorption on/into 

solid and liquid sorbents [28]. However, the theoretical foundation of the statistical variable 

transformation has remained rather ad-hoc. The present paper will show that the equivalence 

between the statistical and thermodynamic transformations can be established from the invariance 

of the quadratic form.  

 

To clarify the geometric foundation of fluctuation, the quasi-thermodynamic formalism [21,29–

35] of von Smoluchowski [36–38] and Einstein [38–40] will provide a useful perspective 

complementary to the ensemble-based formalism of Gibbs [41] which is used commonly as the 

foundation of the Kirkwood-Buff theory [6,8,17]. The quasi-thermodynamic formalism employs 

the minimum work associated with moving a molecule from the reservoir into the system, which 

is expressed in a quadratic form involving the Hessian matrix and the deviation vector of 

thermodynamic variables [25,27].  

 

Based on the quasi-thermodynamic formalism, the goal of this paper is to reveal the geometrical 

structure underlying the equivalence between the thermodynamic and statistical variable 

transformations. We will prove that a change of basis acts on the Hessian as thermodynamic 

variable transformation and the deviation vector as statistical variable transformation. 



 5 

transforming in the same manner as the metric tensor and displacement vector in geometry, 

respectively. Furthermore, statistical variable transformation can be used even in non-geometric 

cases when a set of experimental data have not been obtained within the same ensemble. However, 

intensive variables cannot be statistical variables within the quasi-thermodynamic formalism at the 

thermodynamic limit. This can be shown straightforwardly and intuitively via the order-of-

magnitude analysis within our formalism, thereby shedding light onto the much-debated topic 

[31,32,35,42,43] despite its entry into standard textbooks [21,44].  

 

2.  A quasi-thermodynamic formulation of size-invariant fluctuation  

 

Our goal is to facilitate thermodynamic variable transformation in the fluctuation solution theory 

from a geometrical perspective. The geometric basis of fluctuation will become apparent when 

one reformulates the Kirkwood-Buff solution theory [6,8,11] based on the quasi-thermodynamic 

formalism of fluctuation by von Smoluchowski and Einstein [36–40], which has been refined since 

then [21,29–35,45].  Let us consider an isochoric system, which consists of a small, open isochoric 

(constant volume) subsystem and a reservoir (denoted as 𝑟). The use of a small, open isochoric 

subsystem plays a key role in the observation of particle numbers and their correlations as the 

measure of solution structure [9,11,12]. Such a subsystem will be referred to as the isochoric 

(constant volume) observatory subsystem. What is essential is that the molecular species can go in 

and out of the observatory subsystem, so that their concentration and their fluctuations reflect 

intermolecular interaction [9,11,12]. Following Landau and Lifshitz [21], the minimum work done 

by the external medium on the isochoric system (i.e., the observatory subsystem and the reservoir), 
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𝛿𝑅𝑣 , which accompanies the exchange of matter between the observatory subsystem and the 

reservoir can be written as 𝛿𝑅𝑣 = 𝛿𝑒 + 𝛿𝐸(𝑟) (2.1) 

where 𝛿𝑒 is the change in the internal energy of the observatory subsystem and 𝛿𝐸(𝑟) is that of the 

reservoir. In this setup, 𝛿𝐸(𝑟) which accompanies the exchange of matter is expressed as [21]  𝛿𝐸(𝑟) = 𝑇(𝑟)𝛿𝑆(𝑟) + 𝜇1(𝑟)𝛿𝑁1(𝑟) + 𝜇2(𝑟)𝛿𝑁2(𝑟) (2.2) 

For simplicity, we consider a two-component mixture consisting of species 1 and 2. 𝜇𝑖 and 𝑁𝑖 are 

the chemical potential and the number of species 𝑖, respectively; 𝑇 is the temperature and the 

superscript (𝑟) represents the reservoir. Appendix A presents a justification, based on an order-of-

magnitude argument, why it suffices to consider only the change of numbers, 𝛿𝑁𝑖, up to the first 

order.  The observatory subsystem and the reservoir are in equilibrium, hence 𝜇1(𝑟) = 𝜇1 , 𝜇2(𝑟) =𝜇2 , 𝑇(𝑟) = 𝑇. We use the corresponding symbols without the superscript to denote quantities 

pertaining to the observatory subsystem. In addition, the conservation relationships hold between 

the subsystem and the reservoir, such that 𝛿𝑁1(𝑟) = −𝛿𝑛1, 𝛿𝑁2(𝑟) = −𝛿𝑛2, and 𝛿𝑆(𝑟) = −𝛿𝑠. We 

use the lower case characters to represent the thermodynamic quantities for the observatory 

subsystem. This is to reflect the small size of the observatory subsystem, even though it is still 

macroscopic [9,11,12]. Thus, the minimum work done by the external medium on the isochoric 

system that accompanies the exchange of matter between the subsystem and the reservoir can be 

obtained from Eqs. (2.1) and (2.2) as  𝛿𝑅𝑣 = 𝛿𝑒 − 𝑇𝛿𝑠 − 𝜇1𝛿𝑛1 − 𝜇2𝛿𝑛2 = 𝛿𝑎 + 𝑠𝛿𝑇 − 𝜇1𝛿𝑛1 − 𝜇2𝛿𝑛2 (2.3) 

where 𝑎 = 𝑒 − 𝑇𝑠 is the Helmholtz free energy. (Note that Eq. (2.3) corresponds to the well-

known result from thermodynamics that the Helmholtz free energy is the minimum work under 

constant 𝑇, 𝑣, 𝑛1 and 𝑛2). Equilibrium thermodynamics is recovered under 𝛿𝑅𝑣 = 0, which leads 
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to the familiar differential relationship. Our interest, however, is in the minimum work done by 

the external medium that accompanies the slight deviation (𝛿𝑛1 and 𝛿𝑛2) from the equilibrium 

distribution of the molecules inside the isochoric observatory subsystem. Expanding 𝛿𝑎 in Eq. 

(2.3) up to the second-order under constant temperature and volume,  

𝛿𝑎 = 𝜇1𝛿𝑛1 + 𝜇2𝛿𝑛2 + (𝜕2𝑎𝜕𝑛12)𝛿𝑛1𝛿𝑛1 + 2( 𝜕2𝑎𝜕𝑛1𝛿𝑛2)𝛿𝑛1𝛿𝑛2 + (𝜕2𝑎𝜕𝑛22)𝛿𝑛2𝛿𝑛2 
(2.4) 

Note that the variables for the second-order derivatives are 𝑛1 and 𝑛2. Appendix A presents an 

order-of-magnitude argument, justifying why up to the second-order terms should be incorporated 

for 𝛿𝑎. Combining Eqs. (2.3) and (2.4), we obtain the following quadratic form for the minimum 

work under constant temperature and volume:  

𝛿𝑅𝑣 = (𝛿𝑛1 𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2}( 
 𝜕2𝑎𝜕𝑛12 𝜕2𝑎𝜕𝑛1𝜕𝑛2𝜕2𝑎𝜕𝑛1𝜕𝑛2 𝜕2𝑎𝜕𝑛22 ) 

 
{𝑇,𝑣}

(𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} 
(2.5) 

The deviations, 𝛿𝑛𝑖, in Eq. (2.5) pertains to the observatory subsystem, whose ensemble variables 

are {𝑇, 𝑣, 𝜇1, 𝜇2}. For the Hessian matrix in Eq. (2.5), we have emphasized the isothermal-isochoric 

condition, {𝑇, 𝑣}, common to all the elements. Evaluating the thermodynamic derivatives in the 

Hessian matrix leads to the following form:   

𝛿𝑅𝑣 = (𝛿𝑛1 𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2}( 
 𝜕𝜇1𝜕𝑛1 𝜕𝜇1𝜕𝑛2𝜕𝜇2𝜕𝑛1 𝜕𝜇2𝜕𝑛2) 

 
{𝑇,𝑣}

(𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} 
(2.6) 

 

Now we show that Eq. (2.6) is size invariant, which plays a key role in deriving the statistical 

variable transformation rules [19] as will be shown in Section 4. This can be carried out most 
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effectively by employing the so-called 𝐴 matrix in the Kirkwood-Buff theory [6,8], denoted here 

as 𝑨𝒗 to emphasise its isochoric nature, defined as  

𝑨𝒗 = 𝑣𝑘𝑇( 
 𝜕𝜇1𝜕𝑛1 𝜕𝜇1𝜕𝑛2𝜕𝜇2𝜕𝑛1 𝜕𝜇2𝜕𝑛2) 

 
{𝑇,𝑣}

 

(2.7) 

All the elements of 𝑨𝒗 are intensive. Using Eq. (2.7), Eq. (2.6) can be rewritten as  𝛽𝛿𝑅𝑣 = 𝒃𝒗𝑻𝑨𝒗𝒃𝒗 (2.8) 

with 𝛽 = 1𝑘𝑇where 𝒃𝒗 is now a vector, whose elements are intensive, defined as  

𝒃𝒗 = 1√𝑣 (𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} (2.9) 

Since 𝛿𝑛𝑖 = 𝑂(√𝑣) for 𝑛 = 𝑂(𝑣) (see, for example, Chapter 2 of Ref [21]), the elements of 𝒃𝒗 

are also intensive. (Here we have used Landau’s symbol; 𝑂(𝑣) signifires “in the order of 𝑣”). 

Consequently, 𝛿𝑅𝑣 is intensive and size-invariant. This is because the order of magnitude (with 

respect to 𝑣) for the terms in Eq. (2.4) decreases by half when the order of the deviations (𝛿𝑛1 and 𝛿𝑛2) is increased by 1. Consequently, the first-order terms with respect to 𝛿𝑛1 and 𝛿𝑛2 in Eq. (2.4) 

are 𝑂(√𝑣) whereas the second order terms are 𝑂(1). The orders of magnitude consideration on 

the expansion of 𝛿𝑅𝑣  in Eq. (2.6) will play a crucial role in understanding whether the quasi-

thermodynamic formalism can be applied to the fluctuation of intensive variables (Section 8).   

 

This paper aims to exploit the geometric feature of Eq. (2.8) to facilitate thermodynamic variable 

transformation, which will be presented in Sections 4 and 5. The conventional approach, instead, 

aims to calculate the correlation between particle numbers, through the ensemble average of the 

following matrix constructed from the deviation vectors 
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𝑩𝒗 = 1𝑣 (𝛿𝑛1𝛿𝑛1 𝛿𝑛1𝛿𝑛2𝛿𝑛2𝛿𝑛1 𝛿𝑛2𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} = 𝒃𝒗𝒃𝒗𝑻 
(2.10) 

The ensemble average of 𝑩𝒗  is referred to as the Kirkwood-Buff 𝐵 matrix [6,8]. Assuming a 

Gaussian probability distribution, the following relationship can be derived for the 𝐵 matrix 〈𝑩𝒗〉 = 𝑨𝒗−𝟏 (2.11) 

(The derivation can be found in Section 3.1 of Ref [27] and Section 111 of Ref [21]). Hence the 

Kirkwood-Buff theory involves inverting 𝑨𝒗 and evaluating the thermodynamic derivatives in Eq. 

(2.7) under constant volume. Note that the experimental data on solutions are measured under 

constant pressure. This necessitates a successive series of thermodynamic variable 

transformations, and the resultant forms are algebraically complex, as can be seen in Refs [7,8]; it 

took more than two decades for the Kirkwood-Buff theory to be applied to solution thermodynamic 

data [46,47]. We will show in Sections 4-6 how such complex thermodynamic variable 

transformations involved in the fluctuation theory can be facilitated by a geometrical perspective.  

  

3. A statistical approach to ensemble transformation  

 

To circumvent thermodynamic variable transformation from isochoric to isobaric, it is convenient 

to define an isobaric fluctuation observatory subsystem, which contains the constant number of 

species 1. Such a subsystem is denoted in our notation as {𝑇, 𝑃, 𝑛1, 𝜇2}; species 2 can freely come 

in and out of the subsystem under constant 𝜇2. In this setup, 𝛿𝐸(𝑟) is expressed as  𝛿𝐸(𝑟) = 𝑇(𝑟)𝛿𝑆(𝑟) − 𝑃(𝑟)𝛿𝑉(𝑟) + 𝜇2(𝑟)𝛿𝑁2(𝑟) (3.1a) 
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The reservoir is in thermodynamic equilibrium with the subsystem, namely, 𝑇(𝑟) = 𝑇, 𝑃(𝑟) = 𝑃 

and 𝜇2(𝑟) = 𝜇2 , together with the conservation relationships, 𝛿𝑉(𝑟) = −𝛿𝑣 , 𝛿𝑁2(𝑟) = −𝛿𝑛2 . 

Following the same argument as in Section 2, Eq. (3.1) leads to   𝛿𝑅𝑃 = 𝛿𝑒 − 𝑇𝛿𝑠 + 𝑃𝛿𝑣 − 𝜇2𝛿𝑛2 = 𝛿𝑎 + 𝑠𝛿𝑇 + 𝑃𝛿𝑣 − 𝜇2𝛿𝑛2 (3.1b) 

again with the Helmholtz free energy, 𝑎 = 𝑒 − 𝑇𝑠. Under constant 𝑇, we obtain the following 

quadratic form for the minimum work, denoted as 𝛿𝑅𝑃:  

𝛿𝑅𝑃 = (𝛿𝑣 𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2}( 
 𝜕2𝑎𝜕𝑣2 𝜕2𝑎𝜕𝑣𝜕𝑛2𝜕2𝑎𝜕𝑣𝜕𝑛2 𝜕2𝑎𝜕𝑛22 ) 

 
{𝑇,𝑛1}

( 𝛿𝑣𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} 
(3.2) 

Note, again, that the thermodynamic variables for the deviation vector are {𝑇, 𝑃, 𝑛1, 𝜇2}, identical 

to those of the observatory subsystem. For the Hessian matrix in Eq. (3.2), we have emphasized 

the constant {𝑇, 𝑛1} as the common constraint for all the elements. Evaluating the thermodynamic 

derivatives, Eq. (3.2) becomes  

𝛿𝑅𝑃 = (𝛿𝑣 𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2}( 
 −𝜕𝑃𝜕𝑣 − 𝜕𝑃𝜕𝑛2𝜕𝜇2𝜕𝑣 𝜕𝜇2𝜕𝑛2 ) 

 
{𝑇,𝑛1}

( 𝛿𝑣𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} 
(3.3) 

In a parallel manner to 𝛿𝑅𝑣 in Section 2, Eq. (3.3) can be rewritten in a size-invariable manner, by 

introducing the size-invariant matrices composed of only intensive variables,   

𝑨𝑷 = 〈𝑣〉𝑘𝑇 ( 
 −𝜕𝑃𝜕𝑣 − 𝜕𝑃𝜕𝑛2𝜕𝜇2𝜕𝑣 𝜕𝜇2𝜕𝑛2 ) 

 
{𝑇,𝑛1}

 

(3.4) 

𝒃𝑷 = 1√〈𝑣〉 ( 𝛿𝑣𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} (3.5) 
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through which Eq. (3.3) can be written as  𝛽𝛿𝑅𝑃 = 𝒃𝑷𝑻𝑨𝑷𝒃𝑷 (3.6) 

Just as in Section 2, assuming Gaussian distribution, the following relationship can be derived 

[21,27] between the Hessian matrix  𝑨𝑷 and the correlation matrix, 〈𝑩𝑷〉,  〈𝑩𝑷〉 = 𝑨𝑷−𝟏 (3.7) 

where 𝐵𝑃 is defined as   

𝑩𝑷 = 1〈𝑣〉 ( 𝛿𝑣𝛿𝑣 𝛿𝑣𝛿𝑛2𝛿𝑛2𝛿𝑣 𝛿𝑛2𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} = 𝒃𝑷𝒃𝑷𝑻  
(3.8) 

 

The benefit of the isobaric formalism is that 𝐴𝑃 can be obtained directly from experimental data 

measured in the {𝑇, 𝑃, 𝑛1, 𝜇2} ensemble. The volume of the observatory subsystem (on which the 

fluctuation matrix, 𝑩𝑷, is defined), on the other hand, fluctuates. Using the isochoric observatory 

subsystem is advantageous because the effect of interaction is monitored by the particle numbers 

without any need to consider volume fluctuation. Therefore, particle number correlations are 

reported using the isochoric observatory subsystems. This necessitates a scheme to convert the 

isobaric correlation matrix, 𝑩𝑷, to its isochoric counterpart, 𝑩𝒗.  

 

A transformation from 𝑩𝑷  to 𝑩𝒗  can be carried out based on the one from 𝒃𝑷  to 𝒃𝒗 . We 

postulate that the concentration and its fluctuation are invariants, which do not depend on the 

ensembles for observation [19]. (The following intuitive approach has been proven to be 

equivalent to the invariance of concentration and its fluctuation [19].) Consequently, the change 

of solution composition, 𝑛2/𝑛1 , is the same in the {𝑇, 𝑃, 𝑛1, 𝜇2} and {𝑇, 𝑣, 𝜇1, 𝜇2} observatory 

subsystems 
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𝑛2 + (𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2}𝑛1 = 𝑛2 + (𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2}𝑛1 + (𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} (3.9) 

Eq. (3.9), via Maclaurin expansion, leads to [19] (𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} = (𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} − 𝐶(𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} + 𝑂(1) (3.10) 

where we have introduced 
𝑛2𝑛1 = 〈𝑛2𝑛1〉 + 𝑜(1) = 𝐶  as the solution composition at the 

thermodynamic limit. (Here, we have used Landau’s symbols, 𝑂  and 𝑜 , to denote orders of 

magnitude. 𝑂(1) denotes “of the order of 1”, which, in the context of Eq. (3.10), means that the 

order of intensive variables being lower than 𝑂(√𝑣) of the rest in Eq. (3.10). 𝑜(1) denotes “lower 

order than 1”, which, in the above case, means that the error between the two 𝑂(1) (intensive) 

quantities, 
𝑛2𝑛1  and 〈𝑛2𝑛1〉 is of a lower order of magnitude.)  The fluctuation of 𝑐𝑖 = 𝑛𝑖𝑣  does not 

depend on the ensembles adopted for the observatory subsystem [19], hence   𝑛1 + (𝛿𝑛1){𝑇,𝑣,𝜇1𝜇2}𝑣 = 𝑛1𝑣 + (𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2} (3.11a) 

𝑛2 + (𝛿𝑛2){𝑇,𝑣,𝜇1𝜇2}𝑣 = 𝑛2 + (𝛿𝑛2){𝑇,𝑃,𝑛1𝜇2}𝑣 + (𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2}  
(3.11b) 

The Maclaurin expansion leads to  (𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} = −𝑛1𝑣 (𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2} + 𝑂(1) (3.12a) 

(𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} = (𝛿𝑛2){𝑇,𝑃,𝑛1𝜇2} − 𝑛2𝑣 (𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2} + 𝑂(1) (3.12b) 

From the Gibbs-Duhem equation, 𝑉1 𝑛1〈𝑣〉+ 𝑉2 𝑛2〈𝑣〉 = 1 can be derived for closed isobaric ensembles, 

with 𝑉𝑖  being the partial molar volume of species 𝑖 . Here we invoke the invariance of 

concentrations, which, in this context, is that the mean 
𝑛𝑖〈𝑣〉 in the closed isobaric observatory 

subsystem is the same as 〈𝑛𝑖𝑣 〉{𝑇,𝑃,𝑛1,𝜇2} in the partially open observatory subsystem. It follows that 
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𝑉1 〈𝑛1𝑣 〉{𝑇,𝑃,𝑛1,𝜇2} + 𝑉2 〈𝑛2𝑣 〉{𝑇,𝑃,𝑛1,𝜇2} + 𝑜(1) = 1 at the thermodynamic limit. Eq. (3.12) leads to 

[19] (𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2} − 𝑉2(𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} = −𝑉1(𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} − 𝑉2(𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} (3.13a) 

Using Eq. (3.10) to eliminate (𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} from the left-hand side, we obtain  

(𝛿𝑣){𝑇,𝑃,𝑛1,𝜇2} = − 1𝑐1 (𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} (3.13b) 

where 𝑐1 = 𝑛1/𝑣 . We emphasize here that 𝑐1  in Eq. (3.13) has been introduced at the 

thermodynamic limit. Note that Eq. (3.13) is about{𝑇, 𝑣, 𝜇1, 𝜇2} → {𝑇, 𝑃, 𝑛1, 𝜇2} transformation, 

instead of {𝑇, 𝑣, 𝜇1, 𝜇2} → {𝑇, 𝑃, 𝑛1, 𝑛2}  presented in Ref [19]. This case with experimental 

significance will be discussed in Section 6.  

 

The transformation scheme, Eq. (3.10), together with the {𝑇, 𝑣, 𝜇1, 𝜇2} → {𝑇, 𝑃, 𝑛1, 𝑛2} 
counterpart of Eq. (3.13) (see Section 6), was verified by their successful re-derivation of the 

Kirkwood-Buff theory [19]. This means that the thermodynamic variables can be converted 

algebraically, through the “statistical” transformation for variances [19]. However, the relationship 

between the two approaches to variable transformations, statistical and thermodynamic, has 

remained unclear. This will be resolved in the subsequent sections.  

 

4. Geometrical foundation of the statistical and thermodynamic variable transformations  

 

Our goal is to reveal a deeper reason as to why the statistical variable transformation (i.e., via Eqs. 

(3.10) and (3.13)) gives equivalent results as the thermodynamic variable transformation (i.e., 
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between 𝑨𝒗 and 𝑨𝑷 via converting partial derivatives). As a first step, we combine Eqs. (3.10) and 

(3.13) in the following manner:  𝒃𝑷 = 𝑫𝒃𝒗 (4.1a) 

𝑫 ≡ (−𝑐1−1 0−𝐶 1) (4.1b) 

Here we show that Eq. (4.1) can be derived from the general approach to coordinate 

transformation, namely,  

( 𝛿𝑣𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} = ( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}𝜕𝑛2{𝑃}𝜕𝑛1{𝑣} 𝜕𝑛2{𝑃}𝜕𝑛2{𝑣}) 

 (𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} 
(4.2) 

where we have abbreviated the ensemble variables in the Hessian for calculation facility. To 

calculate the elements, we use the postulated invariance of concentration and density, which can 

be summarized using Eqs. (3.9) and (3.11) as  𝑛1𝑣{𝑃} = 𝑛1{𝑣}𝑣  (4.3a) 

𝑛2{𝑃}𝑛1 = 𝑛2{𝑣}𝑛1{𝑣} (4.3b) 

Note that the quantities without { } in the subscript are constants. Using Eqs. (4.3a) and (4.3b), the 

transformation matrix in Eq. (4.2) can be calculated as  

( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}𝜕𝑛2{𝑃}𝜕𝑛1{𝑣} 𝜕𝑛2{𝑃}𝜕𝑛2{𝑣}) 

 = ( 
 − 𝑛1𝑣𝑛1{𝑣}2 0−𝑛1𝑛2{𝑣}𝑛1{𝑣}2 𝑛1𝑛1{𝑣}) 

 = (− 1𝑐1 0−𝐶 1) 

(4.4a) 

To evaluate the final step, we have carried out the following expansions and retained the terms up 

to 𝑂(1):  
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𝑛𝑖{𝑣}𝑛𝑖 = 1 + 𝛿𝑛𝑖𝑛𝑖 + 𝑜 ( 1√𝑣) (4.4b) 

𝑛1{𝑣}𝑣 = 〈𝑛1{𝑣}〉𝑣 (1 + 𝛿𝑛1𝑛1 ) + 𝑜 ( 1√𝑣) = 𝑐1 (1 + 𝛿𝑛1𝑛1 ) + 𝑜 ( 1√𝑣) (4.4c) 

𝑛2{𝑣}𝑛1{𝑣} = 〈𝑛2{𝑣}〉〈𝑛1{𝑣}〉 (1 + 𝛿𝑛2𝑛2 − 𝛿𝑛1𝑛1 ) + 𝑜 ( 1√𝑣) = 𝐶 (1 + 𝛿𝑛2𝑛2 − 𝛿𝑛1𝑛1 ) + 𝑜 ( 1√𝑣) (4.4d) 

Eq. (4.4a) is the same as the transformation matrix 𝐷 in Eq. (4.1b) at the thermodynamic limit.  

 

The same matrix 𝐷 can carry out the thermodynamic variable transformation on the Hessian. 

This can be seen from the following:   

( 
𝜕𝜕𝑣𝜕𝜕𝑛2) {𝑇,𝑃,𝑛1,𝜇2} = ( 

 𝜕𝑛1{𝑣}𝜕𝑣{𝑃} 𝜕𝑛2{𝑣}𝜕𝑣{𝑃}𝜕𝑛1{𝑣}𝜕𝑛2{𝑃} 𝜕𝑛2{𝑣}𝜕𝑛2{𝑃}) 
 
( 
 𝜕𝜕𝑛1𝜕𝜕𝑛2) 

 
{𝑇,𝑣,𝜇1,𝜇2}

= (𝑫𝑻)−𝟏( 
 𝜕𝜕𝑛1𝜕𝜕𝑛2) 

 
{𝑇,𝑣,𝜇1,𝜇2}

 

(4.5) 

which can be proven easily via  

( 
 𝜕𝑛1{𝑣}𝜕𝑣{𝑃} 𝜕𝑛2{𝑣}𝜕𝑣{𝑃}𝜕𝑛1{𝑣}𝜕𝑛2{𝑃} 𝜕𝑛2{𝑣}𝜕𝑛2{𝑃}) 

 
( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}𝜕𝑛2{𝑃}𝜕𝑛1{𝑣} 𝜕𝑛2{𝑃}𝜕𝑛2{𝑣}) 

 𝑇 = 𝐼 (4.6) 

As a result, the Hessian transformation becomes  
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𝑨𝑷 = ( 
𝜕𝜕𝑣𝜕𝜕𝑛2) {𝑇,𝑃,𝑛1,𝜇2} (

𝜕𝑎𝜕𝑣 𝜕𝑎𝜕𝑛2){𝑇,𝑃,𝑛1,𝜇2}
= (𝑫𝑻)−𝟏( 

 𝜕𝜕𝑛1𝜕𝜕𝑛2) 
 
{𝑇,𝑣,𝜇1,𝜇2}

( 𝜕𝑎𝜕𝑛1 𝜕𝑎𝜕𝑛2){𝑇,𝑣,𝜇1,𝜇2}𝑫−𝟏
= (𝑫𝑻)−𝟏𝑨𝒗𝑫−𝟏 

(4.7) 

This leads to the relationship for the change of basis for the thermodynamic variables  𝑫𝑻𝑨𝑷𝑫 = 𝑨𝒗  (4.8) 

 

We have obtained a complete set of transformation rules for thermodynamic fluctuations for 

both the Hessian matrix of thermodynamic second derivatives (Eq. (4.8)) and the deviation vector 

(Eq. (4.1a)). Under these rules, we can show that  𝛽𝛿𝑅𝑃 = 𝒃𝑷𝑻𝑨𝑷𝒃𝑷 = 𝒃𝒗𝑻𝑫𝑻𝑨𝑷𝑫𝒃𝒗 = 𝒃𝒗𝑻𝑨𝒗𝒃𝒗 = 𝛽𝛿𝑅𝑣 (4.9) 

Thus, we have established that the quadratic form of fluctuation, 𝛿𝑅 = 𝛿𝑅𝑃 = 𝛿𝑅𝑣, is invariant 

under ensemble transformation. The transformation rules (Eqs. (4.1a) and (4.8)) belong to a 

universal mathematical formalism encountered for the change of basis and the consequent 

transformation of the Hessian metric tensor in differential geometry. 

 

Even though the geometrical structure underlying classical thermodynamics has been recognized 

for a long time [33,48,49], the significance here is of practical value; the considerable reduction of 

calculation demonstrated via the statistical variable transformation for the fluctuation solution 
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theory [19] was essentially the application of tensor calculus for the change of basis, applied 

directly on the deviation vector instead of the Hessian.  

 

5. Isothermal compressibility  

 

So far, we have been focusing on a transformation between the two open systems, {𝑇, 𝑣, 𝜇1, 𝜇2} 
and {𝑇, 𝑃, 𝑛1, 𝜇2}. Under isothermal conditions, both observatory subsystems have two statistical 

variables. Because of the same dimensionality, conversion between the two was straightforward 

via the change of basis. In the Kirkwood-Buff theory of solutions, the isothermal compressibility, 𝜅𝑇, plays an important role in connecting thermodynamic measurements to number fluctuations 

[6–8,50]. Due to its wide availability, the use of isothermal compressibility is sensible also from a 

practical point of view. Unlike the osmotic nature of {𝑇, 𝑣, 𝜇1, 𝜇2} and {𝑇, 𝑃, 𝑛1, 𝜇2}, isothermal 

compressibility refers to the {𝑇, 𝑃, 𝑛1, 𝑛2} ensemble, which enables a symmetrical treatment of 

species 1 and 2. However, because of an additional constraint on the particle number, only 𝑣 is the 

remaining statistical variable. This requires a separate theoretical treatment.  

 

The minimum work 𝛿𝐸(𝑟) for the {𝑇, 𝑃, 𝑛1, 𝑛2} subsystem is expressed as  𝛿𝐸(𝑟) = 𝑇(𝑟)𝛿𝑆(𝑟) − 𝑃(𝑟)𝛿𝑉(𝑟) (5.1) 

The reservoir is in thermodynamic equilibrium with the subsystem, namely, 𝑇(𝑟) = 𝑇 and 𝑃(𝑟) =𝑃, together with the conservation relationship, 𝛿𝑉(𝑟) = −𝛿𝑣. Following the same argument as in 

Sections 2 and 3, Eq. (5.1) leads to the following quadratic form for the minimum work under 

constant temperature, denoted as 𝛿𝑅𝜅:  
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𝛿𝑅𝜅 = (𝜕2𝑎𝜕𝑣2){𝑇,𝑛1,𝑛2} (𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2}2 = −(𝜕𝑃𝜕𝑣){𝑇,𝑛1,𝑛2} (𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2}2  
(5.2) 

The application of the Gaussian distribution [21] yields a well-known relationship,  

𝑘𝑇𝜅𝑇 = −𝑘𝑇𝑣 (𝜕𝑣𝜕𝑃){𝑇,𝑛1,𝑛2} = 〈𝛿𝑣𝛿𝑣〉{𝑇,𝑃,𝑛1,𝑛2}〈𝑣〉{𝑇,𝑃,𝑛1,𝑛2}  
(5.3) 

 

Here, the conversion rule is different from Eqs. (3.13) in that, the number of species 2 is now kept 

constant. A pair of relationships that maps the statistical variables in {𝑇, 𝑣, 𝜇1, 𝜇2} to the ones in {𝑇, 𝑃, 𝑛1, 𝑛2} is available, which from the invariance of concentration, just like Eq. (3.11), as 

(𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2} = − 1𝑐1 (𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} + 𝑂(1) (5.4a) 

(𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2} = − 1𝑐2 (𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} + 𝑂(1) (5.4b) 

Combining Eqs. (5.4a) and (5.4b) under 𝑐1𝑉1 + 𝑐2𝑉2 = 1 leads to  (𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2} = −𝑉1(𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} − 𝑉2(𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} + 𝑂(1)  (5.5) 

Using Eqs. (5.4a) and (5.5), we obtain the following equivalent expressions:   〈𝛿𝑣𝛿𝑣〉{𝑇,𝑃,𝑛1,𝑛2}= 𝑉12〈𝛿𝑛1𝛿𝑛1〉{𝑇,𝑣,𝜇1,𝜇2} + 2𝑉1𝑉2〈𝛿𝑛1𝛿𝑛2〉{𝑇,𝑣,𝜇1,𝜇2}+ 𝑉22〈𝛿𝑛2𝛿𝑛2〉{𝑇,𝑣,𝜇1,𝜇2} 
(5.6a) 

〈𝛿𝑣𝛿𝑣〉{𝑇,𝑃,𝑛1,𝑛2} = 𝑉1𝑐1 〈𝛿𝑛1𝛿𝑛1〉{𝑇,𝑣,𝜇1,𝜇2} + 𝑉2𝑐1 〈𝛿𝑛1𝛿𝑛2〉{𝑇,𝑣,𝜇1,𝜇2} (5.6b) 

Because both 𝑛1  and 𝑛2  change in the {𝑇, 𝑣, 𝜇1, 𝜇2} , the expression for 〈𝛿𝑣𝛿𝑣〉{𝑇,𝑃,𝑛1,𝑛2}  must 

contain both 𝛿𝑛1 and 𝛿𝑛2. Eq. (5.6) was shown to be equivalent to the well-known expression 

from the Kirkwood-Buff theory [19].  
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If isothermal compressibility is chosen as one of the links between experiment and number 

fluctuation, Eq. (5.6) can be used in place of one of three equations for the determination of 𝑩𝒗. 

The disadvantage of this approach, however, is that the tensor transformation, which has led to 

clarity and facility in Section 5, can no longer be applied.  

 

6. Statistical variable transformation in inhomogeneous solutions 

 

We have demonstrated in the previous section that the determination of the number correlation 

matrix from experimental data sometimes requires a combination of different ensembles/bases, 

beyond the simplicity afforded by a geometrical formalism. The most logical approach would be 

to keep the geometry of the theory by processing experimental data through thermodynamic 

variable conversion. Here we propose a practical alternative using a mixed deviation vector 

belonging to two different bases. Such a vector can no longer be treated geometrically as in the 

previous section but reflects the practice of thermodynamic data analysis in multiple-component 

solutions.   

  

Let us construct a mixed deviation vector by combining Eqs. (3.10) and Eq. (5.5a),  

( (𝛿𝑣){𝑇,𝑃,𝑛1,𝑛2}(𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2}) = (−𝑉1 −𝑉2−𝐶 1 ) (𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} (6.1) 

which exhibits a striking similarity to the fundamental relationship for the preferential solvation 

theory [9,12,51], namely, how the solvation free energy of a dilute solute (𝜇𝑢∗ , solute denoted as 𝑢) depends on 𝑃 and 𝜇2, as  
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( 
 (𝜕𝜇𝑢∗𝜕𝑃 )𝑇,𝑛1,𝑛2−(𝜕𝜇𝑢∗𝜕𝜇2)𝑇,𝑃,𝑛1) 

 = (−𝑉1 −𝑉2−𝐶 1 ) (〈𝑛1〉𝑢 − 〈𝑛1〉〈𝑛2〉𝑢 − 〈𝑛2〉){𝑇,𝑣,𝜇1,𝜇2} 
(6.2) 

which was obtained by swapping the indexes 1 and 2 in Eq. (15) of Ref [15]. Here, 〈 〉𝑢 refers to 

the ensemble average in an inhomogeneous ensemble around a solute, whose centre of mass is 

fixed in position and can be treated as an external field [52,53].  The fixed solute can be converted 

to a component in a homogeneous ensemble, via [15,22] 〈𝛿𝑛𝑖𝛿𝑛𝑢〉〈𝑛𝑢〉 = 〈𝑛𝑖〉𝑢 − 〈𝑛𝑖〉 (6.3) 

which is a relationship valid for infinitely dilute solute, through which Eq. (6.2) can be rewritten 

as  

〈𝑛𝑢〉 ( 
 (𝜕𝜇𝑢∗𝜕𝑃 )𝑇,𝑛1,𝑛2−(𝜕𝜇𝑢∗𝜕𝜇2)𝑇,𝑃,𝑛1) 

 = (−𝑉1 −𝑉2−𝐶 1 ) (〈𝛿𝑛1𝛿𝑛𝑢〉〈𝛿𝑛2𝛿𝑛𝑢〉){𝑇,𝑣,𝜇1,𝜇2} 
(6.4a) 

By now, the right-hand side of Eq. (6.4a) clearly shows its relations with the correlation between 𝛿𝑛𝑢 and Eq. (6.1), as  

( 〈𝛿𝑣𝛿𝑛𝑢〉{𝑇,𝑃,𝑛1,𝑛2}〈𝛿𝑛2𝛿𝑛𝑢〉{𝑇,𝑃,𝑛1,𝜇2}) = (−𝑉1 −𝑉2−𝐶 1 ) (〈𝛿𝑛1𝛿𝑛𝑢〉〈𝛿𝑛2𝛿𝑛𝑢〉){𝑇,𝑣,𝜇1,𝜇2} (6.4b) 

 

Now we show that the transformation of the mixed deviation vector, Eq. (6.1), is indeed the 

foundation of the preferential solvation theory (Eq. (6.2)). To demonstrate this, we need to show 

the following relationship arising from the combination of Eqs. (6.3), (6.4a), and (6.4b):   
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( 
 (𝜕𝜇𝑢∗𝜕𝑃 )𝑇,𝑛1,𝑛2−(𝜕𝜇𝑢∗𝜕𝜇2)𝑇,𝑃,𝑛1) 

 = 1〈𝑛𝑢〉 ( 〈𝛿𝑣𝛿𝑛𝑢〉{𝑇,𝑃,𝑛1,𝑛2}〈𝛿𝑛2𝛿𝑛𝑢〉{𝑇,𝑃,𝑛1,𝜇2}) = ( (〈𝑣〉𝑢 − 〈𝑣〉){𝑇,𝑃,𝑛1,𝑛2}(〈𝑛2〉𝑢 − 〈𝑛2〉){𝑇,𝑃,𝑛1,𝜇2}) 

(6.5) 

Justifying Eq. (6.5) is straightforward, using only the basics of statistical thermodynamics. The 

solvation free energy of a solute in infinite dilution, 𝜇𝑢∗ , can be expressed in terms of the 

inhomogeneous and homogeneous partition functions in two different ways, as [54]  

𝑒−𝛽𝜇𝑢∗ = 𝑌𝑢(𝑇, 𝑃, 𝑛1, 𝑛2)𝑌(𝑇, 𝑃, 𝑛1, 𝑛2)  
(6.6a) 

𝑒−𝛽𝜇𝑢∗ = Γ𝑢(𝑇, 𝑃, 𝑛1, 𝜇2)Γ(𝑇, 𝑃, 𝑛1, 𝜇2)  
(6.6b) 

where Γ  and 𝑌  are the partition functions in the {𝑇, 𝑃, 𝑛1, 𝜇2}  and {𝑇, 𝑃, 𝑛1, 𝑛2}  ensembles, 

respectively, and the inhomogeneous ensemble with a fixed solute is denoted by the subscript 𝑢. 

Differentiating Eq. (6.6a) with respect to 𝑃 and Eq. (6.6b) by 𝜇2 proves Eq. (6.5) straightforwardly.  

 

We have thus demonstrated that the statistical variable transformation can be used beyond the 

strictly defined geometrical foundation of the change of basis. The basic equation of the 

preferential solvation theory (Eq. (6.2)) [9,11,12,15,16] was revealed to be the statistical variable 

transformation on a mixed deviation vector. This picture is much more straightforward than the 

approaches based on thermodynamic variable transformation from the Kirkwood-Buff tradition 

[55].   

 

7. Fluctuation of intensive variables  
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So far, our deviation vectors have been composed exclusively of extensive variables, and the 

statistical variable transformation has been concerned only with the transformation between such 

deviation vectors. Consequently, our focus so far was on the correlations between extensive 

variables. However, the fluctuations of intensive variables, such as pressure and temperature, have 

been calculated using the quasi-thermodynamic formalism, which has been promulgated in the 

standard textbooks [21,44] yet has been debated [31,32,35,42,43].  

 

Here we show that the deviation vectors for the quasi-thermodynamic formalism of fluctuation 

must be composed exclusively of extensive variables at the thermodynamic limit. To this end, let 

us take the {𝑇, 𝑃, 𝑛1, 𝑛2} ensemble as an example. In Section 6, the quadratic form consisted only 

of one extensive variable, 𝛿𝑣; the deviation vector is one dimensional, in contrast to the two-

dimensional vectors for the {𝑇, 𝑣, 𝜇1, 𝜇2} and {𝑇, 𝑃, 𝑛1, 𝜇2}  ensembles in Sections 2-4. If the 

deviation of an intensive variable, say, 𝛿𝜇2, can be considered, the {𝑇, 𝑣, 𝜇1, 𝜇2} → {𝑇, 𝑃, 𝑛1, 𝑛2} 
conversion could be carried out via a change of basis.  

 

We start by assuming the following change of basis:  

( 𝛿𝑣𝛿𝜇2){𝑇,𝑃,𝑛1,𝑛2} = ( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}𝜕𝜇2{𝑃}𝜕𝑛1{𝑣} 𝜕𝜇2{𝑃}𝜕𝑛2{𝑣}) 

 (𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} 
(7.1) 

where the ensembles in the elements of the Hessian matrix were abbreviated as {𝑣} and {𝑃} for 

simplicity. Now we apply the order-of-magnitude analysis on Eq. (7.1). To do so, let us remember 

that the elements of the deviation vectors in Sections 2-5 were 𝑂(√𝑣)  and those of the 
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transformation matrix 𝐷 (see Eq. (4.1)) were 𝑂(1). To facilitate the comparison, we rewrite Eq. 

(7.1) into the following form to make all the deviation vector elements 𝑂(√𝑣):   
( 𝛿𝑣√〈𝑣〉𝛿𝜇2){𝑇,𝑃,𝑛1,𝑛2} = ( 

 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}√〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛1{𝑣} √〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛2{𝑣}) 
 (𝛿𝑛1𝛿𝑛2){𝑇,𝑣,𝜇1,𝜇2} 

(7.2a) 

Consequently, the deviation matrix elements have the following orders of magnitude:  

( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}√〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛1{𝑣} √〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛2{𝑣}) 

 = ( 𝑂(1) 𝑂(1)𝑂 ( 1√𝑣) 𝑂 ( 1√𝑣)) 

(7.2b) 

Therefore, at the thermodynamic limit (𝑣 → ∞) required for the observatory subsystems [9,12], 

the transformation matrix (Eq. (7.2b)) is rank 1. This means that there is no transformation possible 

to form any basis sets that include intensive variables at the thermodynamic limit. In Appendix B, 

we have carried out a similar order-of-magnitude analysis for the statistical variable transformation 

underlying the calculation of 〈𝛿𝑃𝛿𝑃〉 and 〈𝛿𝑇𝛿𝑇〉 for a single component solution.  

 

Let us apply our method for evaluating the transformation matrix, based on the postulate of 

invariant concentration and its fluctuation, to Eq. (7.1). The invariance relationships are  𝑛1𝑣{𝑃} = 𝑛1{𝑣}𝑣  (7.3a) 

𝑛2𝑣{𝑃} = 𝑛2{𝑣}𝑣  (7.3b) 

𝑛2{𝜇2}𝑛1{𝜇2} = 𝑛2𝑛1{𝑛2} (7.3c) 

through which we obtain 
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( 
 𝜕𝑣{𝑃}𝜕𝑛1{𝑣} 𝜕𝑣{𝑃}𝜕𝑛2{𝑣}√〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛1{𝑣} √〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛2{𝑣}) 

 = (  
 − 1𝑐1 − 1𝑐2
−√〈𝑣〉{𝑃}𝑐1 𝜕𝜇2{𝑃}𝜕𝑣{𝑃} −√〈𝑣〉{𝑃}𝑐2 𝜕𝜇2{𝑃}𝜕𝑣{𝑃} )  

 
 

(7.4a) 

To derive Eq. (7.4a), we have carried out the following expansions and retained their leading terms:    𝜕𝑣{𝑃}𝜕𝑛1{𝑣} = − 1𝑐1 (1 − 2𝛿𝑛1𝑛1 ) + 𝑜 ( 1√𝑣) (7.4b) 

𝜕𝑣{𝑃}𝜕𝑛2{𝑣} = − 1𝑐2 (1 − 2𝛿𝑛2𝑛2 ) + 𝑜 ( 1√𝑣) (7.3c) 

√〈𝑣〉{𝑃} 𝜕𝜇2{𝑃}𝜕𝑛𝑖{𝑣} = √〈𝑣〉{𝑃}𝑐𝑖 𝜕𝜇2{𝑃}𝜕𝑣{𝑃} (1 + 2𝛿𝑣𝑣 ) + 𝑜 (1𝑣) 
(7.3d) 

At the thermodynamic limit, the rank of Eq. (7.4a) reduces 1, because the second-row elements 

are both 𝑂 ( 1√𝑣), compared to the first row elements which are 𝑂(1).   
 

Thus, at the thermodynamic limit, statistical variables must be extensive in the quasi-

thermodynamic formalism. However, for smaller systems, intensive variables may also be 

statistical variables. Yet it is important to recognize that the quadratic form of fluctuation is 

founded upon the exchange of matter and/or entropy between the observatory subsystem and the 

reservoir, as well as the conservation of volume under isobaric conditions. Note that these 

conditions (written down only for extensive variables) alongside the small size of the observatory 

subsystem are the key for 𝛿𝑅 to take a quadratic form of the variables pertaining only to the 

subsystem (Appendix A).  

 

8. Conclusion  
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According to the fluctuation solution theory, interactions in multiple component solutions are 

quantified via number correlations using an open isochoric subsystem [6–8]. A considerable 

mathematical complication arises when calculating such correlations from experiments, due to the 

need for converting the experimental data measured under isobaric conditions to the grand 

canonical ensemble, usually through a series of cumbersome thermodynamic variable 

transformations [6–8]. Extending the fluctuation theory to cooperative solubilization (which 

requires multiple-body correlations) [22–26] has required even more complicated calculus for 

thermodynamic variable transformation. Recently, we have proposed a significantly simpler 

alternative, i.e., a direct algebraic transformation of variances and number correlations between 

ensembles [19]. Our statistical variable transformation was demonstrated to be equivalent to the 

conventional Kirkwood-Buff theory [19], to lead to a significant simplification of cooperative 

solubilization theory [19,26], and to be applicable even for mesoscopic systems [27], yet the 

precise relationship between the two transformations remained unclear.  

 

The present paper has established a geometrical foundation underlying the equivalence between 

the statistical and thermodynamic variable transformation. Based on the quasi-thermodynamic 

fluctuation theory [21,36,38–40] and the postulate that concentration and its fluctuation is invariant 

under the change of ensembles [19], we have proven that the minimum work accompanying 

particle exchange is also invariant. Consequently, ensembles can be changed just like the change 

of basis in the quadratic form of fluctuation, which transforms the Hessian as thermodynamic 

variable transformation and the deviation vector (consequently, the correlation matrix) as the 

statistical variable transformation. We have thus shown that a geometrical elucidation of 
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fluctuation was the reason behind the significant reduction in the calculation via statistical variable 

transformation.  

 

The statistical variable transformation provides an intuitive insight into the fluctuation of 

intensive variables within the quasi-thermodynamic formalism, which has been debated 

[31,32,35,42,43]. A simple argument based on the order-of-magnitude analysis has shown that 

conversion from an extensive to intensive statistical variable at the thermodynamic limit leads to 

the reduction in rank of the transformation matrix. At the thermodynamic limit, the statistical 

variables within the quasi-thermodynamic formalism should therefore be exclusively extensive.   

 

The geometrical foundation of classical thermodynamics has been recognized for a long time 

[33,48,49]. However, fluctuations in multiple component solutions have been studied without it, 

leading to mathematical complications [6–8]. Thus, the statistical variable transformation [19], 

proven here to be equivalent to thermodynamic variable transformation, is an efficient alternative, 

which is straightforward to generalize to 𝑛 -component solutions in general. Even for a 

combination of experimental data that do not belong to the same ensemble, statistical variable 

transformation can be applied with a facility.  
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Appendix A  

 

To derive Eq. (2.5), 𝛿𝑎 in Eq. (2.4) was taken up to the second-order while 𝛿𝐸(𝑟) in Eq. (2.2) 

was retained only up to the first order. This can be justified by comparing the orders of magnitude. 

Following the notation of the main text, let 𝑣  and 𝑉(𝑟)  be the volumes of the observatory 

subsystem and the reservoir, respectively, with 𝑣 ≪ 𝑉(𝑟). Expanding Eq. (2.2) up to the second-

order yields  

𝛿𝐸(𝑟) = 𝑇(𝑟)𝛿𝑆(𝑟) + 𝜇1(𝑟)𝛿𝑁1(𝑟) + 𝜇2(𝑟)𝛿𝑁2(𝑟) +∑ 𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑁𝑗 𝛿𝑁𝑖(𝑟)𝛿𝑁𝑗(𝑟)𝑖,𝑗
+∑ 𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑆(𝑟) 𝛿𝑁𝑖(𝑟)𝛿𝑆(𝑟)𝑖 + 𝜕2𝐸(𝑟)𝜕𝑆(𝑟)𝜕𝑆(𝑟) 𝛿𝑆(𝑟)𝛿𝑆(𝑟) 

(A.1) 

Carrying out the order of magnitude analysis,  
𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑁𝑗 = 𝑂 ( 1𝑉(𝑟)). However, from the number 

conservation relationship, 𝛿𝑁𝑖(𝑟) = −𝛿𝑛𝑖 , it follows that 𝛿𝑁𝑖(𝑟) = 𝑂(√𝑣) . Consequently, 

𝛿𝑁𝑖(𝑟)𝛿𝑁𝑗(𝑟) = 𝑂(𝑣), which leads to 
𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑁𝑗 𝛿𝑁𝑖(𝑟)𝛿𝑁𝑗(𝑟) = 𝑂 ( 𝑣𝑉(𝑟)). Likewise, 

𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑆(𝑟) = 𝑂 ( 1𝑉(𝑟)) 
and 

𝜕2𝐸(𝑟)𝜕𝑆(𝑟)𝜕𝑆(𝑟) = 𝑂 ( 1𝑉(𝑟)). Combining these with the entropy conservation relationship, 𝛿𝑆(𝑟) =
−𝛿𝑠 , according to which 𝛿𝑆(𝑟) = 𝑂(√𝑣) , we also obtain

𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑆(𝑟) 𝛿𝑁𝑖(𝑟)𝛿𝑆(𝑟) = 𝑂 ( 𝑣𝑉(𝑟))  and 

𝜕2𝐸(𝑟)𝜕𝑆(𝑟)𝜕𝑆(𝑟) 𝛿𝑆(𝑟)𝛿𝑆(𝑟) = 𝑂 ( 𝑣𝑉(𝑟)).  
 

In contrast, the second-order terms in Eq. (2.5) are all 𝑂(1), because ( 𝜕2𝑒𝜕𝑛𝑖𝛿𝑛𝑗) = 𝑂 (1𝑣) and 

𝛿𝑛𝑖𝛿𝑛𝑗 = 𝑂(𝑣). Because of 𝑣 ≪ 𝑉(𝑟), 𝑂 ( 𝑣𝑉(𝑟)) is lower in order than 𝑂(1). Consequently, the 
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second-order terms of Eq. (A.1) are negligible when we incorporate up to the 𝑂(1) contributions 

in Eq. (2.5).  

 

The same argument applies to Section 3, where we need to consider the following additional 

terms:  

−𝑃(𝑟)𝛿𝑉(𝑟) +∑ 𝜕2𝐸(𝑟)𝜕𝑁𝑖𝜕𝑉(𝑟) 𝛿𝑁𝑖(𝑟)𝛿𝑉(𝑟)𝑖 + 𝜕2𝐸(𝑟)𝜕𝑆(𝑟)𝜕𝑉(𝑟) 𝛿𝑆(𝑟)𝛿𝑉(𝑟)
+ 𝜕2𝐸(𝑟)𝜕𝑉(𝑟)𝜕𝑉(𝑟) 𝛿𝑉(𝑟)𝛿𝑉(𝑟) 

(A.2) 

Here we include 𝛿𝑉(𝑟) = −𝛿𝑣  into our consideration, according to which 𝛿𝑉(𝑟) = 𝑂(√𝑣) . 

Repeating the same argument leads to the conclusion that Eq. (A.2) is of 𝑂 ( 𝑣𝑉(𝑟)), which is 

negligible under 𝑣 ≪ 𝑉(𝑟). The expansions in Appendix B can be done in a similar manner.   

 

 

Appendix B 

 

At the thermodynamic limit, the statistical variables for the quadratic form of fluctuation must be 

exclusively extensive where no intensive variables are permitted. Let us illustrate this point 

through the calculation of 〈𝛿𝑃𝛿𝑃〉 and 〈𝛿𝑇𝛿𝑇〉 for a single component solution, starting carefully 

from setting up the observatory subsystem and the reservoir that are in equilibrium, 𝑇(𝑟) = 𝑇 and 𝑃(𝑟) = 𝑃 , with the conservation relationships, 𝛿𝑉(𝑟) = −𝛿𝑣 , 𝛿𝑆(𝑟) = −𝛿𝑠 . The number of 

particles, 𝑛, in the subsystem is kept constant. The minimum work in this system is  𝛿𝑅 = 𝛿𝑒 − 𝑇𝛿𝑠 + 𝑃𝛿𝑣 (B.1) 
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Expanding 𝛿𝑒 in Eq. (B.1) up to the second-order,  

𝛿𝑒 = 𝑇𝛿𝑠 − 𝑃𝛿𝑣 + (𝜕2𝑒𝜕𝑠2)𝛿𝑠𝛿𝑠 + 2( 𝜕2𝑒𝜕𝑠𝛿𝑣) 𝛿𝑠𝛿𝑣 + (𝜕2𝑒𝜕𝑣2)𝛿𝑣𝛿𝑣 
(B.2) 

As before, Eqs. (B.1) and (B.2) are combined in a quadratic form, with the Hessian matrix 

evaluated in the following format:  

𝛿𝑅 = (𝛿𝑠 𝛿𝑣){𝑛}( 𝜕𝑇𝜕𝑠 𝜕𝑇𝜕𝑣−𝜕𝑃𝜕𝑠 −𝜕𝑃𝜕𝑣){𝑛} (𝛿𝑠𝛿𝑣){𝑛} 
(B.3) 

The quadratic form can be simplified by noting the following set of thermodynamic relationships 

[21,44] that correspond to the Hessian matrix in Eq. (B.3):  

(𝛿𝑇𝛿𝑃){𝑛} = (𝜕𝑇𝜕𝑠 𝜕𝑇𝜕𝑣𝜕𝑃𝜕𝑠 𝜕𝑃𝜕𝑣)(𝛿𝑠𝛿𝑣){𝑛} 
(B.4) 

To facilitate a comparison with the extensive-to-extensive coordinate transformation, here we 

make the intensive deviation vectors in the same order of magnitude as the extensive, as  

(√𝑛𝛿𝑇√𝑛𝛿𝑃){𝑛} = (√𝑛
𝜕𝑇𝜕𝑠 √𝑛 𝜕𝑇𝜕𝑣√𝑛 𝜕𝑃𝜕𝑠 √𝑛 𝜕𝑃𝜕𝑣)(𝛿𝑠𝛿𝑣){𝑛} 

(B.5a) 

Applying the order-of-magnitude analysis on Eq. (B.5a) shows  

(√𝑛 𝜕𝑇𝜕𝑠 √𝑛 𝜕𝑇𝜕𝑣√𝑛 𝜕𝑃𝜕𝑠 √𝑛 𝜕𝑃𝜕𝑣) = ( 
 𝑂 ( 1√𝑣) 𝑂 ( 1√𝑣)𝑂 ( 1√𝑣) 𝑂 ( 1√𝑣)) 

 
 

(B.5b) 

that the transformation matrix is in fact a zero matrix at the thermodynamic limit, unlike the 𝑂(1) 
elements for the extensive-to-extensive transformation. Consequently, at the thermodynamic limit, 

Eq. (B.5) ceases to be a statistical variable transformation that preserves dimensionality. 
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