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Networked Twins and Twins of Networks: an
Overview on the Relationship Between Digital

Twins and 6G
Hamed Ahmadi Senior Member, IEEE, Avishek Nag Senior Member, IEEE, Zaheer Khan Senior Member, IEEE,

Kamran Sayrafian Senior Member, IEEE, Susanto Rahadrja Fellow, IEEE

Abstract—Digital Twin (DT) is a promising technology for the
new immersive digital life with a variety of applications in areas
such as Industry 4.0, aviation, and healthcare. Proliferation of
this technology requires higher data rates, reliability, resilience,
and lower latency beyond what is currently offered by 5G. Thus,
DT can become a major driver for 6G research and development.
Alternatively, 6G network development can benefit from Digital
Twin technology and its powerful features such as modularity
and remote intelligence. Using DT, a 6G network (or some
of its components) will have the opportunity to use Artificial
Intelligence more proactively in order to enhance its resilience.
DT’s application in telecommunications is still in its infancy. In
this article we highlight some of the most promising research
and development directions for this technology.

Index Terms—Digital Twin, 6G, Industry 4.0, Artificial Intel-
ligence, Machine Learning, Network Resilience

I. INTRODUCTION

As commercial deployments of the fifth generation of mo-

bile networks (5G) continues in several countries, researchers

in the industry and academia have started to focus on the

sixth generation of mobile networks (6G). A range of new

technologies such as use of higher frequency bands (THz),

Orbital Angular Momentum (OAM) multiplexing, and in-

telligent surfaces have been proposed for this purpose. In

addition, innovative paradigms like integration of terrestrial

and satellite networks, massive use of Machine Learning (ML)

and Artificial Intelligence (AI), and quantum and molecular

communications for the physical, Medium Access Control

(MAC), and network layers are also under development. All of

these upcoming technologies and paradigms can be considered

as enablers of 6G [1], [2], [3]. However, researchers are still

debating on the importance or potential role of each one of the

aforementioned technologies in 6G. For example, Viswanathan

and Morgensen [1] believe that Unmanned Aerial Vehicles

(UAVs) and cell-free communications belong to the 5G era,

whereas Quantum, Visible Light, and molecular communi-

cations are more long-term technologies which will not be

mature enough even for 6G implementation. Since 6G is not

fully defined yet, these views are not necessarily shared by

other researchers.
Unlike the disagreement on the exact technologies that are

needed for the development of 6G, there are more productive
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TABLE I: KPIs of 5G and 6G [1], [2], [3].

KPIs 5G 6G

Data rate 10+Gbs 100 Gbs
Delay 1 ms 0.5 ms
Position precision meter centimeter
Reliability 99.9% 99.999%

Device intensity 1 Million/Km2 10 Million/Km2

Spectral efficiency - 3x more than 5G
Energy Efficiency - 10x more than 5G

discussions and close to agreement on 6G Key Performance

Indicators (KPIs). Table I shows the targeted KPIs of 6G in

comparison to 5G which are gathered from [1], [2], [3].

These KPIs are generally defined to satisfy the requirements

of the driving applications of 6G such as connected robotics,

autonomous systems, Augmented Reality (AR)/Virtual Reality

(VR)/Mixed Reality (MR), Blockchain and Trust technologies,

and wireless brain-computer interfaces [2]. Some of these

applications like connected robotics or AR/VR/MR have been

considered in 5G but their massive use could demand higher

levels of KPIs beyond what is achievable by 5G [2]. For

example, applications like autonomous driving and immersive

AR/VR/MR with high definition 360◦ video streaming for nav-

igation and/or entertainment are expected to require 99.999%

reliability and one millisecond latency [4].

The technologies and driving applications of 6G enable an

environment where a comprehensive digital representation of

the physical world can be created and maintained through

Digital Twins (DTs) of various objects. A DT is a real-time

evolving digital duplicate of a physical object or a process that

contains all of its history [5]. Its implementation involves mas-

sive real-time multi-source data collection, analysis, inference,

and visualisation. Although the DT technology already exists

in some industrial applications supported by 5G or even 4G

[6], it has not been widely adopted in other sectors, and has

not reached its full potential. The need for high throughput

(100 Gbs), reliable (99.999%) and pervasive communication

is one of the bottlenecks in realising DT’s potential, requiring

beyond-5G technologies. Therefore, 6G can be considered as

an enabler for massive adoption of DTs.

The popularity of DT depends on the popularity and neces-

sity of its applications. Potential high-connectivity-demanding

and rapidly emerging applications of DT ranging from

aerospace, which has very high mobility, to Industry 4.0,

which has very high number of devices in a location, and
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Fig. 1: Pillars of a Digital Twin System

healthcare with high reliability requirement, could be a major

driver toward the development of 6G [6]. In this paper we also

argue that the network itself can have its DT which will be an

important application of DT. In addition, as will be discussed

in the next sections, the DT technology itself integrated with

AI could act as a facilitator toward this development.

In this paper, we aim to highlight and further explore this re-

lationship between 6G and DT. Section II will further describe

DT and its features and requirements. Potential application of

DT in future communication networks and in particular 6G are

presented in Section III. 6G as a facilitator for wide adoption

of DTs is then discussed in Section IV. Finally, a road-map

for future research directions and some concluding remarks

are presented in Section V and VI, respectively.

II. DIGITAL TWIN

The term “Digital Twin” was first coined by Grieves in 2003

[7]. The technology became more popular after the emergence

of Industry 4.0 (in 2016) as it enabled integration of digital

manufacturing and cyber-physical systems.

A DT can be defined as a “virtual representation of an

asset, providing both a historical ledger of the asset’s previous

states, and real-time data on the asset’s current state”. The

asset can be an object, a machine, a process, or even a

system. A DT requires a real-time bidirectional connection

with its Physical Twin (PT). It should be clarified that DT is

more than an avatar, a surveillance, a simulation, or a simple

model. An avatar is a limited replica of the physical asset

without any possibility of controlling the asset. In addition,

the bidirectional connection with the PT, makes a DT more

sophisticated and capable than a surveillance system. Unlike

simulation, a DT ideally represents an actual asset with as little

assumptions or simplifications as possible (except those that

are required to digitally encode the physical asset involved).

While a DT can benefit from AR/VR/MR for visualisa-

tion purposes, it is different from augmented virtuality. The

main focus and goal of augmented virtuality is representa-

tion and human interaction. However, DTs mainly focus on

maintaining the full history and up-to-date information of

the assets/systems to facilitate intelligent and data-supported

decision making [8]. In the following, we briefly discuss

key features and specifications of DT as well as relevant

standardisation activities and challenges.

A. Key Features of Digital Twin

1) Pillars: A DT system is composed of three pillars i.e.,

physical, digital/virtual, and connection pillars [6]. Figure 1

presents an example of a DT system and its pillars. The

physical pillar, representing the PT, is the actual asset which

is the basis of the digital model and the source of its data.

The virtual/digital pillar, or equivalently the DT, is the host of

the data models, historical data of the PT, decision support,

AI, and visualisations. The DT is capable of sending control

commands to the physical pillar. The connection pillar between

a PT and a DT is the communication bridge that allows for

the exchange of data and control commands among them. The

connection pillar is not necessarily symmetric as the flow of

data in each direction, PT-to-DT versus DT-to-PT, requires

different levels of Quality of Service (QoS). In this paper, the

phrase DT system refers to a complete system consisting of

all three pillars, while the term DT only indicates the digital

pillar of the system. It should be emphasized that the DT or

digital pillar of any physical asset is only meaningful when it

is functioning as part of a complete DT system.

2) Modularity: Modularity is the key to interoperability and

interchangeability. Modularity enables the system to evolve

as the technology on each component evolves. In a modu-

lar system the interfaces are standardised and therefore the

components can be replaced, due to technology upgrade or

maintenance seamlessly.

A DT can be highly modular [9]. It is possible to create

a DT for every single component of an asset and create a

mega-DT by interconnecting the smaller DTs representing

those components. This feature enables rapid reproduction

of processes and knowledge transfer. Modularity of a DT

allows creating hybrid simulation and prototyping systems. In

such systems, the DTs of existing physical subsystems are

combined with a simulation of subsystems which still do not

have a corresponding PT. A hybrid system can accelerate the

design, development, and prototyping of new products and

services. It can also enable performance testing of the phys-

ical subsystems in a virtual replica of the target application

environment (within the boundaries of the data model used to

represent the related PTs).

3) Remote Intelligence: The capability to apply remote

intelligence to enhance the operation of the PT is another

important feature of a DT. A resource-limited physical device

or an old machinery can become more efficient or intelligent

by running data analysis, AI algorithms, or even conventional

optimisation and/or analysis algorithms on its DT which can

be located at the edge, or in the cloud.

B. Standardisation

Modularity feature of DT enables creation of mega-DTs

by rapid reproduction of processes from DTs of different

components. This necessitates interoperability among these

components and therefore highlights the importance of DT

standardisation. The current activities on DT standardisation

are focusing on data collection, storage, and exchange [10].

Microsoft1 is developing a programming language independent

1Commercial products and companies mentioned in this paper are merely
intended to foster understanding. Their identification does not imply recom-
mendation or endorsement by the National Institute of the Standards and
Technology.
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data management model based on JavaScript Object Notation

for Linked Data (JSON-LD) called Digital Twin Definition

Language (DTDL). DTDL is used for data management of

DTs that are deployed using Microsoft Azure. Although DTDL

addresses the interoperability challenges on Azure-based DTs,

lack of comprehensive standardisation could affect DT adop-

tion especially for their deployment on the edge [9].

Another candidate for widespread standardisation of DTs

could be the functional mockup interface (FMI) (https://fmi-

standard.org/). It is currently a free standard that enables

building DTs of different PTs using combinations of XML

and C codes.

Several other relevant existing standards for example, Object

Linking and Embedding for Process Control (OPC) Unified

Architecture (OPC-UA), which is a standard for machine-to-

machine communication can be leveraged towards DT stan-

dardisation. OPC-UA can be used to connect the components

of the PT and then the communication links between the PT

and the DT can utilise existing application programming inter-

faces (APIs) like the REpresentational State Transfer (REST)

API. All these standards along with newly defined ones can be

brought together to define a unified set of standards for DTs.

III. DIGITAL TWIN OF COMMUNICATION NETWORKS

So far the DT technology has been adopted in manufac-

turing, healthcare, and aviation [9]. In telecommunications

industry, companies like Spirent Communications and British

Telecommunication (BT) have started developing DTs for 5G

network components. These activities will pave the way for

full adoption of DT in 6G.

Similar to its application in other industries, using DT

of a telecommunication network or any of its components

can significantly improve network design and maintenance.

This directly affects network’s life cycle as discussed in the

remainder of this section.

A. Network and DT’s life cycle

The evolving digital replica of a network that is provided

by its DT can assist in the design, deployment, operation, and

expansion phases of a network. This is shown in Figure 2 and

further illustrated in the following.

1) Design and deployment: In the era of DTs, simulation

and model-based network design is replaced by an analytics-

supported design process. Modularity of DTs enables network

designers to exploit the existing knowledge on DTs of various

networks’ components. Engineers will then be able to design

the communication network by creating a hybrid-simulation

environment using the modularity feature. As observed in

Figure 2, the design and deployment phase starts with a

physical component of the network such as a Base Station (BS)

(shown in blue highlight) and its DT. The rest of the network is

designed in digital domain using AI. Once the design process,

test, and verification is complete through analytics in the

hybrid system, the deployment phase starts (the BS shown in

grey highlight). As different sections (or subsystems) of the

network are deployed, their DTs will be created and merged

with the hybrid simulation environment. By the end of the

deployment phase, the hybrid system becomes a complete DT.

The key difference in this methodology compared to existing

network simulation and planning tools used in 5G and earlier

generations, including general ones and proprietary tools, is

that, DT-based systems are connected to deployed physical

subsystems and the whole system evolves as the deployment

proceeds.

2) Smart operation, maintenance, and resilience: Phase

two deals with the operation of the network as shown in Figure

2’s operation phase. Here, an AI-enabled DT optimises the op-

erational parameters of the network based on the real-time data

and the knowledge generated through prior experience. Re-

silience is the ability of the network to maintain an acceptable

level of service in the event of various faults and challenges

to normal operation [11]. Resilience cannot be achieved if the

network is not prepared for potential disruptions. AI can check

all possible what-if scenarios and choose the network config-

uration which guarantees operation with the highest QoS. This

is a step beyond what is known as Self-organising Network

(SON). To achieve real resilience, the AI in the DT acts beyond

self-optimisation and self-healing, and performs prediction and

strategic planning. In SON, questions like placement of the

required intelligence and the coordination with legacy systems

still remains unclear. DT modularity supports intelligence at

the edge, federated learning, and transfer learning to provide

maximum resilience [4]. Basically modularity will bring the

flexibility to add and remove crucial components at different

locations and essentially provide the redundancy as and when

needed. It is true that redundancy improves the resilience, but

it also increases cost and overhead. Our point is that with DT

modularity, intelligence is supported and intelligence predicts

potential disruptions. Predicted disruptions can be taken care

of before happening and the system will be resilient without

the need of having costly redundant copies for each and every

component. Also, additional sensors and edge computation can

be used to create DTs for legacy equipment.

Maintenance, prediction, and strategic planning can be

better clarified with the following toy example. The equipment

used in a network have a certain lifetime beyond which

they either need maintenance or replacement. The estimated

lifetime is normally provided by the manufacturer. However,

in practice, the actual lifetime could differ from this estimate

based on the working load and physical condition of the

operating location. The AI on the network’s DT or each of

its component’s DT are capable of learning each component’s

lifetime from the manufacturer data, the real-time data received

from the PT, as well as other external factors. As a result,

the DT can modify the network’s working conditions to

maximise the lifetime of different equipment and/or efficiently

schedule maintenance time. In real scenarios, other than this

toy example, the optimisation should consider optimal service

and other important criteria too. Using AI facilitated by

DT to support network’s operation, enables the network to

predict its disruptions caused by components failure or other

sources, proactively respond to them, and/or prevent them

before happening.

3) Knowledge transfer, and robust expansion: The last

phase of most products in manufacturing is dismissal phase
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Fig. 2: A network’s life cycle using DT. The grey icons like base station indicate that they have not been deployed yet, and

the action results of the other side of arrow leads to their existence.

and release of a new product based on the changes in the

market and the lessons learnt from the existing product. In

telecommunications domain we can translate it to network

expansion to new domains, geographical locations, and/or

providing new services; for example, using DT of a 5G

network to transfer knowledge for the design phase of 6G.

Disconnected twins of components’ or the complete network

can be used for the design of new networks and testing new

services. Additionally, operators can monetise their experience

by selling the data and the created knowledge via disconnected

twins [12]. As shown in Figure 2, this phase closes the network

life cycle loop.

B. DT of the next-generation of networks

As 5G has already reached its deployment phase and its

standardisation has been almost completed, DT-based design

and operation of networks can show its benefit mostly in

6G. Using DT-based approach, 6G can be designed and

standardised in a more data-oriented fashion. In the operation

phase, 6G will be capable to handle its own DT while the

massive overhead created by the DT of the network cannot

be handled by 5G while supporting its high throughput and/or

ultra delay sensitive usual services. 6G’s high KPIs in addition

to its synergy with AI, will enable it to support the additional

overhead to have its own DT. In the next Section, we present

how 6G can support other DTs.

IV. 6G AS AN ENABLER OF DIGITAL TWIN

As discussed so far, a DT is implemented using a combi-

nation of a simulation of the physical system and a means to

communicate all the data generated by the physical system to

its DT and, the AI-processed, command and control from DT

to the physical system. The communication part involved in

the successful synergy between a DT and its corresponding

PT has to support ultra-reliable, real-time (or semi-real-time

depending on the application), and high QoS communication.

At present, DT technology is mainly used in industrial

plants and it is supported by 5G or earlier generations of

communication protocols. It is quite conceivable that wide

adoption of this technology results in higher capacity demands

as well as new scenarios beyond the capabilities of 5G. Next

we discuss some of these scenarios.

General Electric is one of the pioneers in using DT tech-

nology in manufacturing. According to the company $1.6B

has been saved by early detection of industrial components

failure through continuous remote monitoring of assets [13]. In

such scenarios, network reliability is extremely important, and

full wired connection is not an option due to its complexity

of installation and high cost. 6G promising a reliability of

99.999% translates to a yearly downtime of 5 minutes as

compared to the 8-and-half hours of downtime with 5G’s

99.9% reliability. Therefore, for future massive-scale industrial

IoT applications facilitated by DTs, a 6G network is more

advantageous than its 5G counterpart.

Figure 3 gives a schematic detail of how a PT in an

industrial Internet of Things (IoT) use-case can have different

DTs for each of its components distributed over the cloud

and the edge, supported by a 6G network infrastructure. The

PT, a factory with different physical systems, is modelled as

a combination of several DTs. The DTs are distributed in

various cloud and edge servers. The red dotted-lines represent

logical bidirectional connections between the PT and the DTs.

The network infrastructure as depicted in Figure 3 has a fully

automated control plane. This control plane can orchestrate the

network using AI algorithms that are continuously trained by

the network data. AI-supported autonomous operation of this

complex system (mega-DT) requires near-perfect connection

between the DTs on the edge and the cloud servers. 6G can

support this mega-DT with millisecond latency, 100 GB/s data
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Fig. 3: Communication of PT and Digital Twin over a 6G network

rate and 99.999% reliability.

A DT system can benefit from integrated modern visu-

alisation technology in order to display complex data types

to the users. To enable that, many networked data-collection

devices e.g., high-resolution cameras, are required and this

has to be enabled in the edge networks [5]. Processing ultra-

high-definition videos along with complex AI algorithms like

Deep Learning would require significant processing power

localised in a single or few nodes. A more feasible solution

is to enable federated AI where different components of the

AI algorithms can be distributed over the network nodes [4].

For example, a deep neural network can have some of its

inputs/outputs in the low-complexity edge nodes while hidden

neurons reside in the cloud with more processing power. These

spatially distributed components of the neural network require

ultra-reliable communication to avoid erroneous training and

output. Although federated AI has been implemented using

5G in small scale, its larger and more complex deployment

could require 99.999% reliability and one millisecond latency

of 6G [4].

Furthermore, due to the modularity feature of DTs, they

may not be localised in either a single node or a small

subset of nodes [9]. As a result, the data associated with

the DTs and the AI that operates on these data may have

to be distributed over the cloud and/or several edge servers

across the network. Seamless communication among these

distributed DTs, computation associated with the distributed

AI operating on these DTs, and maintaining security and

integrity of these data is a challenge. One solution is using

Blockchain-based transactions between these nodes. However,

high transaction throughput requirement (i.e., 10,000 trans-

actions per second and millisecond latency) of private and

consortium Blockchains can only be satisfied by 6G-level of

QoS [1].

V. FUTURE RESEARCH DIRECTIONS

Having introduced the concept of DT in telecommunications

and its potential roles in setting up and transforming 6G

networks, both as an enabler and a use-case, in this section

we enumerate several key research directions related to this

combined field.

A. DT Ownership Issues

DT ownership is a challenging issue with technical, finan-

cial, and legal aspects. The challenge is mainly caused by the

potential difference in the ownership of the physical entity

and the DT platform. A simplified example of this scenario

is the common fitness trackers. A fitness tracker device is

owned by an individual, while the generated data is owned by

and stored on the application provider’s cloud. Normally, the

individual can only access the data via a specific application

interface without the option of exporting the data. However,

the individual can disconnect the fitness tracker or simply

stop using it at any time. Since a DT contains more detailed

information and needs to be always connected with the phys-

ical object, ownership issues must be clarified. This is espe-

cially important considering the General Data Protection Rules

(GDPR) introduced in the European Union. In [12], the authors

considered home appliances in an IoT scenario. The owner of

an appliance, if also interested in full ownership of the data,

can buy, install and maintain its DT on his/her home gateway.

While this is a viable option, it requires owning a gateway

with sufficient storage capacity and security. Alternatively, the
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appliance owner can rent cloud/fog/edge services to install

and maintain the DT. Therefore, the ownership issue will go

hand-in-hand with cloud/fog/edge computing and placement

challenges. In [12] the IoT devices are connected to the home

network and the ownership scenario will be more complicated

in industrial settings with the use of 6G. The investigation of

more complicated ownership-related scenarios, especially for

process or system DTs with multiple components owned by

different entities, remains open for further research.

B. Ultra-Low-Latency and Reliable Communication between

DT and PT

As mentioned previously, a seamless real-time data ex-

change between the DT and the PT is a necessary condition

to define a DT system. Significant amount of data has to be

continuously and reliably exchanged between the pair. The

software tools, data analytics modules, and the data that makes

the DT an appropriate clone of the PT should mostly be stored

in the cloud. However, for some critical use-cases e.g., the DT

of a remote-surgery system, implementation in the edge might

be preferred [14].

Whatever the scenario, it is anticipated that most DT im-

plementations would require Ultra-Low-Latency and Reliable

Communication between the DT and its PT. Recent research

studies have established the importance of Ultra-Low-Latency

and Reliable Communication for some future applications,

and reported the development of technologies and algorithms

that could make that achievable [1], [2]. However, further

breakthroughs across all protocol layers of the network are still

needed to achieve strict latency and reliability requirements.

C. Federated DT in the Cloud/Edge

Resources such as power, storage, high-speed memory

are sometimes constrained in today’s networks. Therefore,

significant resource management is necessary to sustain a

technology like the DT, which includes communication, data

analysis, and AI-based computation. To accommodate various

use-cases of 6G-and-beyond-networks, it is anticipated that a

large percentage of the computation (including AI algorithms)

and storage is moved to the edge of the network [4]. The trend

will be similar if 6G-and-beyond-networks have to support

massive adoption of DT technology. Having said that, it will

be almost imperative that several backend solutions enabling

a DT for a particular PT need to be hosted in multiple data

centers in the cloud and/or edge.

There are several reasons for the need to do this distribution

or even replication of DTs. First of all, the storage and

computing facilities of the servers in the cloud or the edge may

pose system-level limitations to host a DT in one place. This

might create unnecessary performance bottlenecks. Secondly,

there might be failures in the servers or network links which

might hamper the seamless connectivity between a PT and its

DT. Therefore, it is pragmatic to distribute multiple copies of

DTs all over the cloud and/or the edge servers as illustrated

in Fig. 3.

Several components of the cloud and/or edge distributed

DTs need to communicate with one another to exchange data

and/or train AI models to establish automated and intelligent

operations. This can be termed as federated DT similar to

the concept of federated learning as proposed in [4]. It is

a challenging task to run such forms of synchronised and

collaborative AI algorithms over the nodes of the network.

This is still an open research area.

D. DT of an Entire Network

As mentioned before, the DT technology has not been

utilised much for telecommunication networks. Today’s

telecommunication networks are getting softwarised, owing

to new trends like Software Defined Network (SDN) and

Network Function Virtualisation (NFV). The advent of AI in

addition to the network softwarisation is further pushing the

drive towards automated and autonomous telecommunication

networks. Therefore, apart from the physical infrastructure

(i.e., transceivers, antennas, optical fibers, filters, etc.) most of

the other network components can be implemented as cloud-

native software.

This would constitute a paradigm shift in terms of how the

future networks can be managed and used, if a composite

DT of an entire network can be created. If the DTs of

the physical components of the networks (i.e., transceivers,

switches, links) can be implemented, they can be nicely

intertwined along with the other softwarised components of

the network to form a composite DT of the network. Just like

a massive manufacturing unit or a giant space shuttle can be

troubleshot and managed by tuning several parameters on their

DTs, an entire network can also be managed, upgraded, and

troubleshot using its DT. Several network services and new

technologies pertaining to the networks can also be tested and

pre-implemented on these massive-scale network DTs before

deploying in the real networks.

Figure 4 captures our vision towards enabling the DT of an

entire network. It also highlights some of the related research

issues like network monitoring and troubleshooting using AI-

based analytics and ownership issues using smart contracts

hosted in a Blockchain.

E. Experimental Investigation of DTs

The development of a complete LTE network using com-

mercially available software components such as AmarisoftTM

LTE 100 eNodeB, UE from software radio systems (srsUETM)

and a generic RF front end has been document in [15]. This

network was entirely switched ON/OFF using a python and

Linux based code. The code would turn on the LTE network,

stream a YouTube video, collect data from the video for

analysis in real-time and plot various performance curves. A

similar type of setup can prove to be a suitable starting point

for an experimental investigation of the DT of a network. More

developments would still be required to build a Graphical User

Interface (GUI) to visualise the operations of all components,

and to set up real time connections between the graphical

representations of the DTs and the PTs.
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Fig. 4: Digital Twin for an entire network

VI. CONCLUSIONS

In this paper we discussed the application of DT in network-

ing and presented its potential relationship with 6G. While

6G can facilitate realisation and adoption of DT in several

industries by providing the required levels of reliability and

speed, DT integrated with AI can also facilitate 6G net-

works design, deployment, and operation. This approach can

have significant impact on achieving high network resilience.

Additionally, demanding applications of DT ranging from

aerospace to Industry 4.0 and healthcare, could be a major

driver towards the development of 6G. Potential DT-related

research directions have also been highlighted in the paper.

REFERENCES

[1] H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,”
IEEE Access, vol. 8, pp. 57 063–57 074, 2020.

[2] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems:
Applications, Trends, Technologies, and Open Research Problems,”
IEEE network, 2019.

[3] The 5G Infrastructure Association, 5G-PPP, “European vision for the
6g network ecosystem,” White paper, no. 1, pp. 1–51, June 2021.

[4] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, 2019.

[5] Y. He, J. Guo, and X. Zheng, “From Surveillance to Digital Twin:
Challenges and Recent Advances of Signal Processing for Industrial
Internet of Things,” IEEE Signal Processing Magazine, vol. 35, no. 5,
pp. 120–129, 2018.

[6] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital Twin in Industry:
State-of-the-Art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2019.

[7] M. Grieves, “Digital Twin: Manufacturing Excellence through Virtual
Factory Replication,” White paper, vol. 1, pp. 1–7, 2014.

[8] M. Maier, A. Ebrahimzadeh, S. Rostami, and A. Beniiche, “The internet
of no things: Making the internet disappear and ”see the invisible”,”
IEEE Communications Magazine, vol. 58, no. 11, pp. 76–82, 2020.

[9] A. Rasheed, O. San, and T. Kvamsdal, “Digital Twin: Values, challenges
and Enablers from a Modeling Perspective,” IEEE Access, vol. 8, pp.
21 980–22 012, 2020.

[10] M. Jacoby and T. Usländer, “Digital twin and internet of things—current
standards landscape,” Applied Sciences, vol. 10, no. 18, p. 6519, 2020.

[11] H. Ahmadi, G. Fontanesi, K. Katzis, M. Z. Shakir, and A. Zhu, “Re-
silience of airborne networks,” in 2018 IEEE 29th Annual International

Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), 2018, pp. 1–2.
[12] C. Altun, B. Tavli, and H. Yanikomeroglu, “Liberalization of Digital

Twins of IoT-Enabled Home Appliances via Blockchains and Absolute
Ownership Rights,” IEEE Communications Magazine, vol. 57, no. 12,
pp. 65–71, 2019.

[13] Remote Monitoring Powered by Digital Twins.
[Online]. Available: https://www.ge.com/digital/
industrial-managed-services-remote-monitoring-for-iiot/

[14] H. Laaki, Y. Miche, and K. Tammi, “Prototyping a Digital Twin for Real
Time Remote Control Over Mobile Networks: Application of Remote
Surgery,” IEEE Access, vol. 7, pp. 20 325–20 336, 2019.

[15] I. Gomez, P. Sutton, A. Nag, A. Selim, L. Doyle, V. Ramachandran, and
A. Kokaram, “A software radio lte network testbed for video quality of
experience experimentation,” in 2017 Ninth International Conference on

Quality of Multimedia Experience (QoMEX), 2017, pp. 1–3.

BIOGRAPHIES

Hamed Ahmadi (SM’15) is an assistant professor in the department of
Electronic Engineering at University of York, UK. He received his Ph.D. from
National University of Singapore in 2012. Since then he worked at different
academic and industrial positions in Ireland and UK. His research interests
include design, analysis, and optimization of wireless communications net-
works, application of machine learning and Blockchain in wireless networks.

Avishek Nag (SM’18) is currently an Assistant Professor in the School of
Electrical and Electronic Engineering at University College Dublin (UCD) in
Ireland. Dr Nag received his PhD degree from the University of California,
Davis. He worked as a research associate at the CONNECT Centre for future
networks and communication in Trinity College Dublin, before joining UCD.
His research interests include the application of optimisation theory, AI, and
Blockchain in telecom networks. Dr Nag is the outreach lead for Ireland for
the IEEE UK & Ireland Blockchain Group.

Zaheer Khan received Dr.Sc. degree in electrical engineering from the
University of Oulu, Finland, in 2011. He was a Research Fellow/Principal
Investigator with the University of Oulu, from 2011 to 2016, where he is
currently an Adjunct Professor. His research interests include the implemen-
tation of advanced signal processing and wireless communications algorithms
on Xilinx FPGAs and Zynq system-on-chip (SoC) boards, application of game
theory to model distributed wireless networks, and wireless signal design. He
was a recipient of the Marie Curie Fellowship, from 2007 to 2008.



8

Kamran Sayrafian (SM’06) is a Senior Scientist and Program Lead at the
Information Technology Laboratory of the National Institute of Standards and
Technology (NIST) located in Gaithersburg, Maryland. He is leading several
strategic projects related to the application of IoT in Healthcare. Dr. Sayrafian
is also an affiliate Associate Prof. of Concordia University in Montreal,
Canada since 2016. He is currently member of the Editorial Board of the IEEE
Wireless Communication Magazine. His research interests include IoT-Health,
micro energy-harvesting technology, mobile sensor networking and RF-based
positioning. He has published over 120 conference and journal papers, and
book chapters in these areas, and has been the recipient of the IEEE PIMRC
2009, SENSORCOMM 2011, IEEE CSCN 2018 and IEEE EuCNC 2019 best
paper awards. Dr. Sayrafian is the co-inventor/inventor of four U.S. patents.

Susanto Rahardja (F’11) is currently with Institute for Infocomm Research.
His research interests are in multimedia, signal processing, wireless com-
munications, discrete transforms, machine learning and signal processing
algorithms and implementation. Dr Rahardja has more than 15 years of
experience in leading research team for media related research that cover areas
in Signal Processing, Media Analysis, Media Security and Sensor Networks.
He has published more than 300 papers and has been granted more than
70 patents worldwide out of which 15 are US patents. Dr Rahardja was
past Associate Editors of IEEE Transactions on Audio, Speech and Language
Processing and IEEE Transactions on Multimedia, past Senior Editor of the
IEEE Journal of Selected Topics in Signal Processing, and is currently serving
as Associate Editors for the Elsevier Journal of Visual Communication and
Image Representation and IEEE Transactions on Multimedia.


	I Introduction
	II Digital Twin
	II-A Key Features of Digital Twin
	II-A1 Pillars
	II-A2 Modularity
	II-A3 Remote Intelligence

	II-B Standardisation

	III Digital Twin of Communication Networks
	III-A Network and DT's life cycle
	III-A1 Design and deployment
	III-A2 Smart operation, maintenance, and resilience
	III-A3 Knowledge transfer, and robust expansion

	III-B DT of the next-generation of networks

	IV 6G as an Enabler of Digital Twin
	V Future Research Directions
	V-A DT Ownership Issues
	V-B Ultra-Low-Latency and Reliable Communication between DT and PT
	V-C Federated DT in the Cloud/Edge
	V-D DT of an Entire Network
	V-E Experimental Investigation of DT

	VI Conclusions
	References
	Biographies
	Hamed Ahmadi (SM'15)
	Avishek Nag (SM'18)
	Zaheer Khan
	Kamran Sayrafian (SM'06)
	Susanto Rahardja (F'11)


