
This is a repository copy of Fractional quantum numbers, complex orbifolds and 
noncommutative geometry.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177541/

Version: Accepted Version

Article:

Mathai, Varghese and Wilkin, Graeme Peter Desmond orcid.org/0000-0002-1504-7720 
(2021) Fractional quantum numbers, complex orbifolds and noncommutative geometry. 
Journal of Physics A: Mathematical and Theoretical. 314001. ISSN 1751-8113 

https://doi.org/10.1088/1751-8121/ac0b8c

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



FRACTIONAL QUANTUM NUMBERS, COMPLEX ORBIFOLDS AND
NONCOMMUTATIVE GEOMETRY

VARGHESE MATHAI AND GRAEME WILKIN

Abstract. This paper studies the conductance on the universal homology covering space
Z of 2D orbifolds in a strong magnetic field, thereby removing the integrality constraint on
the magnetic field in earlier works [3, 29, 25] in the literature. We consider a natural Landau
Hamiltonian on Z and study its spectrum which we prove consists of a finite number of low-
lying isolated points and calculate the von Neumann degree of the associated holomorphic
spectral orbibundles when the magnetic field B is large, and obtain fractional quantum
numbers as the conductance.
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Introduction

The fundamental work of Avron, Seiler, Zograf [3] studies a class of quantum systems
on compact Riemann surfaces for which the transport coefficients simultaneously display
quantization and fluctuation. The two related notions of transport coefficients that they
consider are conductance and charge transport. The mathematical tool used in their work
is a local families index theorem due to Quillen [28, 1]. It splits the conductances into
two parts. The first is explicit and universal, that is, it is, up to an integral factor, the
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canonical symplectic form on the space of Aharonov-Bohm fluxes and is quantized, therefore
providing a connection to the Integer Quantum Hall effect (IQHE) [31, 2, 4]. The second
piece in the formula is a complete derivative, hence it does not affect charge transport. It
affects however the conductance as a fluctuation term. In contrast to the first, it depends
on spectral properties of the Hamiltonian, as it is related to the zeta function regularization
of its determinant. In [3], Avron, Seiler and Zograf study transport coefficients associated
to the ground state for any compact Riemann surface X where the magnetic field B is a
large integer. In [29] the transport coefficients associated to the eigensections of low lying
eigenvalues are considered for any compact Riemann surface where the magnetic field B is a
large integer. In earlier work [25], the transport coefficients associated to the eigensections of
low lying eigenvalues are considered for any compact complex 2D orbifold where the magnetic
field B is a large fraction.

The goal of this paper is to remove the topological constraints on the magnetic field (either
integrality or rationality) in earlier works [3, 29, 25] in the literature. To achieve this, we
instead study the conductance and charge transport on the universal homology orbi-covering
space Z of 2D orbifolds in a strong magnetic field. It turns out that there is a projective
unitary action of Z2g on L2(Z), known as magnetic translations, which commutes with the
self-adjoint Hamiltonian

H =
~2

2m

(
∇∗

A∇A +
R

6

)
,

where ∇A = d+iA is a connection on the trivial line bundle on Z with curvature (∇A)
2 = iB̃,

and R is the constant scalar curvature of Z in a hyperbolic metric. We also assume that
the magnetic field B̃ is a constant multiple of the volume form θ d volZ for some large value
of θ ∈ R. Since Z is a noncompact Riemann surface, the Hamiltonian H acting on L2(Z)

typically has continuous spectrum. However, we show in Theorem 2.1 that there are finitely
many eigenvalues {µ1, . . . µm−1} of the Hamiltonian H that are isolated in the spectrum of H
and which are near zero. Let {Eµj

, j = 1, . . .m−1} denote the corresponding eigenspaces. In
Theorem 2.1 we show that these eigenspaces consist of holomorphic sections and compute the
rank rj = dimC Eµj

. Let {Pj, j = 1, . . .m− 1} denote the respective orthogonal projections
Pj : L2(Z) → Eµj

and let τ denote the von Neumann trace. Then by [23], Eµj
has a ∂̄-

operator ∇ = Pj(∂̄)
rj , where Pj ∈ M(rj, Aθ) and Aθ is a complex noncommutative torus in

dimension 2g, generated by the magnetic translations. An open question is whether there
is a connection on Eµj

such that ∇2
= 0 that is ∇ is a flat ∂̄ operator in the sense of [23],

which is known to be true in the commutative case as shown in [29]. We remark that the
Hamiltonian H can be interpreted as a family of Hamiltonians parametrised by Aθ which
can be viewed as the noncommutative analog of the Jacobian variety of X.

Hyperbolic 2D surfaces are typically prohibited experimentally as they cannot be isomet-
rically embedded in three dimensional Euclidean space [14]. A recent striking development
in [16] indisputably shows that lattices of certain resonators can be used to produce artificial
photonic materials in an effectively curved space, including the 2D hyperbolic plane. In
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particular, they conducted numerical tight-binding simulations of hyperbolic analogs of the
Kagome lattice and demonstrated that they display a flat band, similar to that of their Eu-
clidean counterpart. The authors of [16] also constructed a proof-of-principle experimental
device which realizes a finite section of non-interacting heptagon-kagome lattice.

We mention alternate approaches to (fractional) quantum numbers on hyperbolic space.
These approaches are for smooth surfaces [8, 7, 9], for orbifolds [17, 18, 19] for the bulk-
boundary correspondence [24] and for orbifold symmetric products [20]. These papers use
operator algebras and noncommutative geometry methods, in contrast to the holomorphic
geometry methods used in this paper. For a recent analysis of the IQHE, see [15], where
the generating functional, the adiabatic curvature and the adiabatic phase for the IQHE are
studied on a compact Riemann surface with integral magnetic field, but using holomorphic
methods inspired by [3].

Acknowledgements. VM thanks the Australian Research Council for support via the
Australian Laureate Fellowship FL170100020. He gave a talk partly based on this paper at
the conference, Topological Phases of Interacting Quantum Systems, BIRS, Oaxaca, Mexico,
June 2–7, 2019. GW would also like to thank the University of Adelaide for their hospitality
during the development of this paper. His visit was funded by FL170100020.

1. Preliminaries

1.1. The maximal abelian cover. Let X be a compact Riemann surface of genus g with
a hyperbolic metric. The first homology is the abelianisation of G := π1(X)

H1(X) = G/[G,G].

Let p : Z → X be the maximal abelian cover with π1(Z) = [G,G]. For any x ∈ X, we have
p−1(x) ∼= H1(X), and so the commutator subgroup has infinite index.

A theorem of Griffiths [13, 4.2] shows that the commutator subgroup [G,G] is then a free
group. The homology H1(Z) is then the corresponding free abelian group, and hence the
cohomology with coefficients in any ring R is the dual H1(Z,R) ∼= Hom(H1(Z), R). Putman
[27, Lem. A.1] shows that the generators of the commutator subgroup can be realised
geometrically as loops on the surface that bound a one-holed torus.

The infinite cover p : Z → X defined above is induced from the Abel-Jacobi inclusion
X →֒ J(X) and the universal cover of the Jacobian

(1.1)
Z J̃(X)

X J(X)

ι̃

p q

ι

To see this, let q : Z ′ → X be the covering of X induced from the universal cover of the
Jacobian. Note that Z ′ is connected. Then choose x ∈ X and note that the action of
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H1(X) ∼= H1(J(X)) ∼= πX(J(X)) on p−1(x) ∼= H1(X) ∼= q−1(x) is the same for both Z and
Z ′. Therefore the two coverings are isomorphic.

1.2. Magnetic translations. The Abel-Jacobi inclusion ι : X →֒ J(X) induces an isomor-
phism ι∗ : H1(J(X),R) ∼= H1(X,R), and the induced map ι∗ : H2(J(X),R) ↠ H2(X,R) is
surjective. In fact, if the magnetic field is B = θω, where ω is the Kähler 2-form on X and
θ ∈ R, then one has,

[B] = [θω] = ι∗
[
θ

g
ΘX

]
∈ H1,1(X,R)

where [ΘX ] ∈ H1,1(J(X),R) is the Theta divisor.
Let B′ = θ

g
ΘXbe the closed (1,1)-form on the Jacobian J(X). Then B̃′ = q∗B′ is a closed

2-form on J̃(X). Since J̃(X) is contractible, H2(J̃(X),R) = {0}, so that B̃′ = dA′ for some
1-form A′ on J̃(X).

Now 0 = γ∗(B̃′)− B̃′ = d(γ∗A′ −A′), so that γ∗A′ −A′ is a closed 1-form on J̃(X) for all
γ ∈ Γ = H1(X,Z) = H1(J(X),Z). Since J̃(X) is contractible, H1(J̃(X),R) = {0}, so that
γ∗A′−A′ = dφ′

γ, where φ′
γ is a smooth function on J̃(X) normalised by φ′

γ(ι̃(x0)) = 0 for all
γ ∈ Γ and for some x0 ∈ Z.

Define A := ι̃∗A′ ∈ Ω1(Z) and φγ := ι̃∗φ′
γ, and note that B̃ = p∗B = dA. Moreover, φγ

satisfies the identity

(1.2) φγ2(x) + φγ1(γ2 · x)− φγ1+γ2(x) = φγ1(γ2 · x0)

for all x ∈ Z and γ1, γ2 ∈ Γ. Now define σ : Γ× Γ → U(1) by

(1.3) σ(γ1, γ2) = eiϕγ1 (γ2·x0).

Then the above identity (1.2) shows that σ satisfies the cocycle condition

(1.4) σ(γ1, γ2)σ(γ1 + γ2, γ3) = σ(γ1, γ2 + γ3)σ(γ2, γ3), γ1, γ2, γ3 ∈ Γ.

For each γ ∈ Γ, define operators on L2(Z) by

Uγf(x) = f(γ−1x)

Sγf(x) = eiϕγ(x)f(x).

Then the above identities imply that Tγ := Uγ ◦ Sγ satisfies Tγ1Tγ2 = σ(γ1, γ2)Tγ1γ2 , and
hence defines a twisted or projective action of Γ on L2(Z).

1.3. The magnetic Schrödinger operator. Let ∇A = d + iA be a connection on the
trivial line bundle on Z. Then the curvature of ∇A is (∇A)

2 = iB̃. Consider the magnetic
Schrödinger operator

(1.5) H =
~2

2m

(
∇∗

A∇A +
R

6

)
,

where R is the constant scalar curvature of Z. Then Uγ∇A = ∇γ−1∗AUγ and Sγ∇γ−1∗A =

∇ASγ, so that TγH = HTγ for all γ ∈ Γ.
4



Notice that H is bounded below, so the spectral projection

Pλ = χ(−∞,λ)(H) ∈ W ∗(Γ, σ)⊗ B(L2(F)),

where F is a connected fundamental domain for the action of Γ on Z, B(L2(F)) denotes the
bounded operators on the Hilbert space L2(F), and W ∗(Γ, σ) denotes the σ-twisted group
von Neumann algebra of Γ generated by the magnetic translations acting on ℓ2(Γ).

If however λ is in a spectral gap of H, then it is a standard result (cf. [6, Thm. 1]) that
the spectral projection belongs to the much smaller algebra,

Pλ = χ(−∞,λ)(H) = f(H) ∈ C∗(Γ, σ)⊗K(L2(F)),

where K(L2(F)) denotes the compact operators on the Hilbert space L2(F), and C∗(Γ, σ)

denotes the σ-twisted group C∗-algebra of Γ and f is a holomorphic function defined in a
neighbourhood of (−∞, λ]. When B̃ is a constant multiple θ d volZ of the hyperbolic volume,
which is the case that we will focus on in this paper, then C∗(Γ, σ) is the noncommutative
torus Aθ in dimension 2g.

1.4. The noncommutative torus. Here we recall the definition of the higher dimensional
noncommutative torus, its complex structure and K-theory, and the range of the trace and
also the 2-trace on K-theory. Let p = 2g and Θ be a (p× p) skew-symmetric matrix. Then

σ(γ, γ′) = exp

(
2π

√
−1
∑

j<k

Θjkγjγ
′
k

)
, where γ = (γ1, . . . , γp), γ

′ = (γ′
1, . . . , γ

′
p) ∈ Zp.

is a U(1)-valued group 2-cocycle on Zp. Let C(Zp, σ) denote the twisted group algebra, that
is for functions f1, f2 : : Zp → C of finite support, the twisted convolution product is

f1 ⋆σ f2(γ) =
∑

γ1+γ2=γ

f1(γ1)f2(γ2)σ(γ1, γ2)

Then C(Zp, σ) acts on bounded operators on ℓ2(Zp) by the formula above. The operator
norm closure C(Zp, σ) is defined to be the noncommutative torus AΘ or the twisted group
C∗-algebra C∗(Zp, σ).

There is an abstract definition of AΘ that is useful to recall. The noncommutative torus
AΘ is the universal C∗-algebra with p unitary generators Uj, 1 ≤ j ≤ p, subject to the basic
commutation relation

UjUk = e2πiΘjkUkUj.

This algebra carries a gauge action of the torus Tp via

t · (Un1
1 · · ·Und

d ) = tn1
1 · · · tnd

d Un1
1 · · ·Und

d , t = (t1, · · · , td) ∈ Tp.

There are associated infinitesimal generators δj, which are ∗-derivations, defined by

δj(Uk) = 2πiδjkUk.
5



The algebra AΘ also carries a canonical tracial state τ invariant under the gauge action,
sending 1 to 1 and sending a monomial Un1

1 · · ·Unp

d to 0 unless all of the nj vanish. Be-
cause of the commutation relation, any element of AΘ has a canonical (formal) expansion
in terms of the monomials Un1

1 · · ·Unp

d . Since every element of AΘ has a unique expression∑
an⃗ U

n1
1 · · ·Unp

d , so

τ

(
∑

n⃗

an⃗ U
n1
1 · · ·Unp

d

)
= a0⃗

The smooth noncommutative torus AΘ consists of all elements
∑

an⃗ U
n1
1 · · ·Unp

d such that the
coefficients an⃗ form a rapidly decreasing sequence in S(Zp). It is also the smooth vectors for
the gauge action of Tp on AΘ. It follows that AΘ is the domain of the (powers of) derivations
δkj that are the infinitesmal generators of the gauge action. There is a natural continuous
cyclic 2-cocycle τc on AΘ. Let f0, f1, f2 ∈ AΘ. Then

(1.6) τc(f0, f1, f2) =

g∑

i=1

τ(f0(δi(f1)δi+g(f2)− (δi+g(f1)δi(f2))).

where c is the area 2-cocycle on Zp corresponding to the symplectic form.
The inclusion AΘ →֒ AΘ is known to induce an isomorphism in K-theory, K•(AΘ) ∼=

K•(AΘ). The range of the trace on K-theory has been computed [5, 11]:

(1.7) τ(K0(AΘ)) = Z+
∑

0<|I|<p

Pf(ΘI)Z+ Pf(Θ)Z,

where I runs over subsets of {1, . . . , p} with an even number of elements, and ΘI denotes
the skew-symmetric submatrix of Θ = (Θij) with i, j ∈ I. The formula (see section 1 in [22])

e
1
2
dxtΘdx =

∑

I

Pf(ΘI)dx
I

is key to this computation, together with the twisted L2-index theorem [21].
We can also compute the range of a certain higher trace on K-theory. Let ΘX denote the

theta divisor. In real coordinates, ΘX =
∑g

i=1 dxi ∧ dxi+g. Let c be the group cocycle that
corresponds to ΘX . Then setting Ii = {i, i+ g}, one has

(1.8) τc(K0(AΘ)) =

g∑

i=1

∑

Ii⊂I

Pf(ΘI\Ii)Z

where I runs over subsets of {1, . . . , p} with an even number of elements, and ΘI\Ii denotes
the skew-symmetric submatrix of Θ = (Θij) with i, j ∈ I \ Ii. The method of proof again
uses [5, 18] and can be deduced from Corollary 5.7.2 in [26].

1.5. Noncommutative complex torus and holomorphic vector bundles. The follow-
ing is recalled from [23]. Define a tangent space of AΘ to be the (commutative) Lie algebra
g = span (δ1, · · · , δ2n). A complex structure on AΘ and AΘ is a choice of an endomorphism
J of g satisfying J2 = −1. It thus defines an isomorphism gC

∼= g
hol ⊕ g

antihol as a direct sum
of holomorphic and antiholomorphic tangent spaces, namely the ±i-eigenspaces of J . There
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is a similar splitting of the complexified cotangent space g
∗
C. The pair (AΘ, J) will be called

a noncommutative complex torus of complex dimension n.
A vector bundle E over AΘ will mean a finitely generated projective (right) module. A

holomorphic vector bundle E will mean such a bundle equipped with a holomorphic connec-
tion ∇, meaning a map E → E ⊗

(
g

antihol)∗ satisfying the Leibniz rule

(1.9) ∇∂̄j
(e · a) = ∇∂̄j

(e) · a+ e · ∂̄j(a).

Note that any vector bundle of rank r can be equipped with a holomorphic connection simply
by writing E = p(AΘ)

r for some projection p, and then defining ∇ = p(∂̄)r.
More interesting are flat holomorphic connections, which satisfy the flatness condition

(∇)2 = 0. It is not the case that every vector bundle has a flat holomorphic connection.

2. Summary of results

This section contains the main results of the paper.

Theorem 2.1. Let H be the magnetic Schrödinger operator of (1.5).
(1) Let m > 0 be the largest integer such that θ − m(2g − 2) > 0. If λ = µq for some

integer q such that 0 ≤ q < m, where

µq = (2q + 1)θ − q(q + 1)(2g − 2),

then λ = µq is an isolated point in the spectrum of H. It follows that the spectral
projection Pλ ∈ Aθ ⊗K(L2(F)).

(2) The eigenspace Eλ = Im(Pλ) for λ as above, consists of holomorphic sections.

(3) The von Neumann dimension of Eλ, dimτ (Eλ), is equal to τ(Pλ), where τ : Aθ ⊗
K(L2(F)) → C is the von Neumann trace. Then Eµq

is infinite dimensional since we
show that

dimτ (Eµq
) = (2q + 1)(1− g) + θ > 0,

and so the von Neumann dimension dimτ (Eµq
) of the spectral subspace grows linearly

with q.

(4) Let λ = µq. The Chern number of Eλ is

(2.1) τ2(Pλ, Pλ, Pλ) = τ(PλdPλdPλ) = 2g.

In particular, it is an integer and it is independent of q. In the case of an orbifold
given as a quotient X = X ′/Γ of a smooth Riemann surface X ′ by a finite group Γ,
the Chern number is a rational number

(2.2) 2g − 2 + #(R/Γ) +
2− n

|Γ| ,

7



where R is the ramification divisor of the ramified cover X ′ → X. Here we use the
well known fact that the noncommutative torus C∗(Γ, σ) comes with a canonical cyclic
2-cocycle,

τ2(f0, f1, f2) =

g∑

j=1

τ(f0δjf1δj+gf2 − δj+gf1δjf2))

for fk ∈ C(Γ, σ). This is derived to be the conductance 2-cocycle τK in Corollary 5,
[8], see also page 73 in [18].

The subsequent sections contain the proof of these results. Parts (1) and (2) follow from
Theorem 3.2, part (3) is proved in Lemma 4.2 and the results of part (4) are contained in
(5.1) and (5.2).

3. Discrete values of the spectrum of the Laplacian on the maximal
abelian cover

The main result of this section is Theorem 3.2, proving the first two parts of Theorem 2.1.
Let E → X be a complex line bundle. Since Z is a noncompact surface then the pull-

back Ẽ is topologically trivial, and any holomorphic structure on Ẽ is also trivial (see for
example [12, Thm. 30.4]), however Ẽ admits many different gauge-equivalent structures as
a holomorphic bundle, or equivalently as a Hermitian bundle with a unitary connection. In
order to normalise the eigenvalues of the Laplacian, we will fix a metric on X of constant
Gauss curvature χ(X) so that vol(X) = 2π, and use the pullback metric on the maximal
abelian cover Z → X. Fix a Hermitian metric on Ẽ and a Hermitian connection ∇θ, and let
θ = i ∗ F∇θ ∈ R be the curvature, which we assume from now on to be constant. In general
θ can be any real number; in the special case that ∇θ is the pullback of a constant curvature
connection on a line bundle E → X, then the Chern-Weil formula deg(E) = i

2π

∫
X
∗F∇θ = θ

shows that θ = deg(E) ∈ Z.
Elliptic regularity shows that the eigensections of (∇θ)∗∇θ are smooth. In the following,

we will use the Sobolev space H2(Z,E) ⊂ L2(Z,E) as the domain of the Laplacian, on which
(∇θ)∗∇θ is self-adjoint, and continuous as an operator H2(Z,E) → L2(Z,E).

The main result of this section is Theorem 3.2, which shows that the low-lying eigenvalues
of the Laplacian (∇θ)∗∇θ are the discrete values given by (3.4), and that the corresponding
eigensections are images of holomorphic sections of the associated bundle K−q ⊗ Ẽ given by
(3.5).

Decomposing ∇θ into (0, 1) and (1, 0) parts induces operators ∂∇θ and ∂̄∇θ , which satisfy
the following identities for the Laplacian and the curvature

(3.1) (∇θ)∗∇θ = ∆θ
∂̄ +∆θ

∂ , i ∗ F∇θ = ∆θ
∂ −∆θ

∂̄ .

Combining these shows that

(3.2) (∇θ)∗∇θ = 2∆θ
∂̄ + i ∗ F∇θ = 2∆θ

∂̄ + θ,
8



and so the eigensections of (∇θ)∗∇θ with eigenvalue µ correspond exactly to eigensections
of ∆θ

∂̄
with eigenvalue 1

2
(µ − θ). The first consequence of this is that µ ≥ θ, since ∆θ

∂̄
is

non-negative. Secondly, we see that the sections in the kernel of ∆θ
∂̄

(corresponding to the
holomorphic sections of E) are eigensections of (∇θ)∗∇θ with eigenvalue θ.

The basic example of such a connection on a trivial bundle with trivial metric on Cg is

∂̄∇θ

= ∂̄ +
1

4
iθzdz̄, ∂∇θ

= ∂ − 1

4
iz̄dz,

where we use the shorthand zdz̄ :=
∑g

k=1 zkdz̄k, z̄dz :=
∑g

k=1 z̄kdzk. One can easily check
that e−

1
4
iθ|z|2 is in ker ∂̄∇θ and therefore is an eigenfunction of (∇θ)∗∇θ with eigenvalue θ.

Since the inclusion Z →֒ Cg induced from the Abel-Jacobi map is a holomorphic embedding,
then the restriction of e− 1

4
iθ|z|2 to Z ⊂ Cg is also in ker ∂̄∇θ and therefore an eigenfunction

of the Laplacian.
Therefore the lowest eigenvalue of (∇θ)∗∇θ is determined by the curvature θ, and the

corresponding eigensections are determined by the holomorphic sections of E. The next
theorem extends this result to show that the higher eigenvalues of (∇θ)∗∇θ also have an
explicit description. Most importantly, they are discrete in the interval [0, µm), where m

and µm are defined below. For compact surfaces, this result is due to Prieto in [30], and the
proof below involves extending these techniques to apply to the noncompact infinite genus
surface Z.

First, we set some notation. Let T be the tangent bundle of Z, which we assumed to have
constant Gauss curvature χ(X). The bundle T also has a canonical holomorphic structure
and Hermitian metric induced from that of Z, and the dual is identified with the canonical
bundle K, which then has an induced connection. Define

∇θ,q := ∇̃Kq ⊗∇θ

to be the connection on Ẽ⊗Kq for any q ∈ Z, and decompose into (1, 0) and (0, 1) parts to
define the associated operators

∂∇θ,q

: Ω0(Ẽ⊗Kq) → Ω1,0(Ẽ⊗Kq) ∼= Ω0(Ẽ⊗Kq+1)

∂̄∇θ,q

: Ω0(Ẽ⊗Kq) → Ω0,1(Ẽ⊗Kq) ∼= Ω0(Ẽ⊗Kq−1).

Remark 3.1. In analogy with (3.1), note that the Laplacians satisfy the identity

(3.3) i ∗ F∇θ,q = ∆∂θ,q −∆∂̄θ,q .

In particular, if θ − q(2g − 2) > 0, then ∂∇θ,−q

: Ω0(Ẽ⊗K−q) → Ω0(Ẽ⊗K−q+1) is injective,
since ∆∂θ,−q = θ − q(2g − 2) + ∆∂̄θ,−q is strictly positive.

We then have two sequences of homomorphisms given by composing these operators as q

increases or decreases

Ω0(Ẽ⊗Kq−1) Ω0(Ẽ⊗Kq) Ω0(Ẽ⊗Kq+1) Ω0(Ẽ⊗Kq+2)
∂∇

θ,q−1
∂∇

θ,q

∂̄∇
θ,q

∂∇
θ,q+1

∂̄∇
θ,q+1

∂̄∇
θ,q+2

9



Theorem 3.2. Fix a metric on Z with constant Gauss curvature χ(X) = 2− 2g, and let m
be the largest integer such that θ −m(2g − 2) > 0. For each integer 0 ≤ q ≤ m, define
(3.4) µq = (2q + 1)θ − q(q + 1)(2g − 2).

Then the spectrum of the Laplacian in the interval [0, µm) consists of the discrete eigenvalues
µq for each q = 0, . . . ,m − 1. For each such eigenvalue µq, the corresponding space of
eigensections Eµq

is equal to

(3.5) Eµq
= ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

(
ker ∂̄∇θ,−q

)
⊂ Ω0(Ẽ).

In particular, Eµq
and ker ∂̄∇θ,−q are isomorphic as Aθ modules.

Remark 3.3. These are exactly the same as the eigenvalues in the discrete spectrum of the
Laplacian on H2 computed by Comtet and Houston [10] (in (3.4) Z has Gauss curvature
− 1

a2
= χ(X)). This is a nontrivial observation, since the cover H2 → Z has structure group

the infinitely generated free group π1(Z) = [π1(X), π1(X)], and so the L2 spectrum on Z is
not necessarily contained in the L2 spectrum on H2.

The proof of this theorem is contained in Propositions 3.6 and 3.7 below. Before proving
these propositions we first need some basic results about the Laplacian on Z. In the following,
the closure will always be taken in the Sobolev space H2(Z, Ẽ), which we use for the domain
of the Laplacian.
Lemma 3.4. For each q, the space of sections is a direct sum
(3.6) Ω0(Ẽ⊗Kq) ∼= ker ∂̄∇θ,q ⊕ im ∂∇θ,q−1 .

The next result describes how the curvature measures the failure of the operators ∂∇θ,−(q+1)

and ∂̄∇θ,q+1 to commute with the associated Laplacians. The proof is a local calculation as
carried out in [30, Prop. 10], and so it also applies to the maximal abelian cover Z.
Lemma 3.5. In the following diagram

Ω0(Kq+1 ⊗ Ẽ) Ω0(Kq ⊗ Ẽ)

Ω0(Kq+1 ⊗ Ẽ) Ω0(Kq ⊗ Ẽ)

∂̄∇
θ,q+1

∆θ,q+1
∂

∆θ,q
∂

∂̄∇
θ,q+1

we have
(3.7) ∆θ,q

∂ ◦ ∂̄∇θ,q+1 − ∂̄∇θ,q+1 ◦∆θ,q+1
∂ = −i∂̄∇θ,q+1 ∗ F∇θ,q+1 .

Equivalently, the above diagram commutes up to a factor of −i∂̄∇θ,q+1 ∗ F∇θ,q+1. Similarly,
in the following diagram

Ω0(K−(q+1) ⊗ Ẽ) Ω0(K−q ⊗ Ẽ)

Ω0(K−(q+1) ⊗ Ẽ) Ω0(K−q ⊗ Ẽ)

∂∇
θ,−(q+1)

∆
θ,−(q+1)

∂̄
∆θ,−q

∂̄

∂∇
θ,−(q+1)

10



we have

(3.8) ∆θ,−q

∂̄
◦ ∂∇θ,−(q+1) − ∂∇θ,−(q+1) ◦∆θ,−(q+1)

∂̄
= i∂∇θ,−(q+1) ∗ F∇θ,−(q+1) .

Equivalently, the above diagram commutes up to a factor of +i∂∇θ,−(q+1) ∗ F∇θ,−(q+1).

3.1. An expression for the eigensections. Recall the definition of m as the largest integer
such that K−m ⊗ Ẽ has positive curvature, or equivalently such that θ −m(2g − 2) > 0.

The first proposition constructs eigensections of the Laplacian with given eigenvalues.

Proposition 3.6. For all 0 ≤ q ≤ m, the sections in

(3.9) ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q
(
ker ∂̄∇θ,−q

)
⊂ Ω0(Ẽ)

are eigensections of (∇θ)∗∇θ with eigenvalue

µq = (2q + 1)θ − q(q + 1)(2g − 2).

Proof. Let s−q ∈ ker ∂̄∇θ,−q ⊂ Ω0(Ẽ⊗K−q), and let s = ∂∇θ,−1 ◦ · · · ◦∂∇θ,−q

s−q. Then Lemma
3.5 implies that

∆θ
∂̄s = ∆θ

∂̄(∂
∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

s−q) = ∂∇θ,−1 ◦∆θ,−1

∂̄
◦ ∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−q

s−q

+ ∂∇θ,−1

(i ∗ F∇θ,−1)∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−q

s−q

= ∂∇θ,−1 ◦∆θ,−1

∂̄
◦ ∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−q

s−q

+ (θ − (2g − 2))s,

(3.10)

since the curvature i∗F∇θ,−1 of the connection on Ẽ⊗K−1 is constant and equal to θ−(2g−2).
Repeatedly applying Lemma 3.5 shows that

∆θ
∂̄(∂

∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

s−q) = ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q ◦∆θ,−q

∂̄
s−q +

(
q∑

ℓ=1

(θ − ℓ(2g − 2))

)
s

=

(
qθ − q(q + 1)(2g − 2)

2

)
s,

(3.11)

since s−q is holomorphic by assumption. Therefore (3.2) shows that

(∇θ)∗∇θs = 2∆θ
∂̄s+ i ∗ F∇θs = ((2q + 1)θ − q(q + 1)(2g − 2)) s.

The statement of (3.9) on the closure of this space of sections in H2(Z,E) follows by tak-
ing sequences of such sections and noting that the Laplacian is continuous as an operator
H2(Z,E) → L2(Z,E). □

3.2. Spectral gaps around the low-lying eigenvalues. In this section we show that the
eigensections of Proposition 3.6 are the only eigensections with eigenvalue bounded above by
µm = (2m+ 1)θ −m(m+ 1)(2g − 2). As a consequence, we see that in the interval [0, µm),
the spectrum is discrete and consists of eigenvalues µ0, . . . , µm−1.
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Proposition 3.7. In the interval [0, µm), the spectrum of the Laplacian (∇θ)∗∇θ takes the
discrete values µq = (2q + 1)θ− q(q + 1)(2g − 2) for each q = 0, . . . ,m− 1, and the space of
eigensections is

Eµq
= ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

(
ker ∂̄∇θ,−q

)
⊂ Ω0(Ẽ).

This defines an isomorphism of Aθ-modules Eµq
∼= H0(Ẽ⊗K−q).

Proof. From (3.2) it follows directly that s ∈ ker ∂̄∇θ implies that (∇θ)∗∇θs = θs = µ0s.
We have ker ∂̄∇θ

= ker(∂∇θ,−1
)∗ = coker ∂∇θ,−1 , and so there is a direct sum decomposition

Ω0(Ẽ) ∼= ker ∂̄∇θ ⊕ im ∂∇θ,−1 .

First consider the case where s ∈ im ∂∇θ,−1 (we will generalise this to s ∈ im ∂∇θ,−1 below).
Write s = ∂∇θ,−1

t. We can make this choice unique by choosing t ∈ (ker ∂∇θ,−1
)⊥, although

this is not necessary in the following proof. Equation (3.8) shows that

∆θ
∂̄s = ∆θ

∂̄ ◦ ∂∇θ,−1

t = i∂∇θ,−1 ∗ F∇θ,−1t+ ∂∇θ,−1 ◦∆θ,−1

∂̄
t ∈ im ∂∇θ,−1

.

Since the curvature i ∗ F∇θ,−1 is constant, then i∂∇θ,−1 ∗ F∇θ,−1t = (i ∗ F∇θ,−1)∂∇θ,−1
t =

(i ∗ F∇θ,−1)s, and so

(3.12) (∇θ)∗∇θs = 2∆θ
∂̄s+ i ∗ F∇θs = (2i ∗ F∇θ,−1 + i ∗ F∇θ)s+ 2∂∇θ,−1 ◦∆θ,−1

∂̄
t.

If t ∈ ker ∂̄∇θ,−1 , then the remaining term vanishes and we obtain

(3.13) (∇θ)∗∇θs = 2∆θ
∂̄s+ i ∗ F∇θs = (2i ∗ F∇θ,−1 + i ∗ F∇θ)s,

which gives us the bound that we want, since i ∗ F∇θ,−1 = θ − (2g − 2) is positive.
If t ∈ (ker ∂̄∇θ,−1

)⊥, then we want to show that the final term in (3.12) is non-negative.
Take the L2 inner product of both sides of (3.12) with s = ∂∇θ,−1

t to obtain

(3.14)
〈
(∇θ)∗∇θs, s

〉
= ⟨(2i ∗ F∇θ,−1 + i ∗ F∇θ)s, s⟩+ 2

〈
∂∇θ,−1 ◦∆θ,−1

∂̄
t, ∂∇θ,−1

t
〉
.

The final term is
〈
∂∇θ,−1 ◦∆θ,−1

∂̄
t, ∂∇θ,−1

t
〉
=
〈
∆θ,−1

∂ ◦∆θ,−1

∂̄
t, t
〉

=
〈(

∆θ,−1

∂̄
+ i ∗ F∇θ,−1

)
◦∆θ,−1

∂̄
t, t
〉

from (3.1)

=
〈
∆θ,−1

∂̄
t,∆θ,−1

∂̄
t
〉
+ i ∗ F∇θ,−1

〈
∆θ,−1

∂̄
t, t
〉
.

Since i∗F∇θ,−1 > 0 and ∆θ,−1

∂̄
is non-negative, then this final term from (3.14) is non-negative.

Therefore (3.14) becomes
〈
(∇θ)∗∇θs, s

〉
≥ ⟨(2i ∗ F∇θ,−1 + i ∗ F∇θ)s, s⟩
= (2i ∗ F∇θ,−1 + i ∗ F∇θ) ⟨s, s⟩

⇔
〈
(∇θ)∗∇θs, s

〉

⟨s, s⟩ ≥ 2i ∗ F∇θ,−1 + i ∗ F∇θ ,

and so there is a gap in the spectrum at θ = i ∗ F∇θ , since 2i ∗ F∇θ,−1 > 0.
12



Now consider a general s ∈ im ∂∇θ,−1 , and write s = limn→∞ sn for a sequence {sn} ⊂
im ∂∇θ,−1 such that ∥(∇θ)∗∇θsn∥ is bounded and ∥sn∥2 = ∥s∥2. As before, write sn = ∂∇θ,−1

tn
for each n and apply the same argument as above to show that

〈
(∇θ)∗∇θsn, sn

〉

⟨s, s⟩ =

〈
(∇θ)∗∇θsn, sn

〉

⟨sn, sn⟩
≥ 2i ∗ F∇θ,−1 + i ∗ F∇θ .

Therefore, since the operator (∇θ)∗∇θ is continuous and ∥(∇θ)∗∇θsn∥ is bounded, then

〈
(∇θ)∗∇θs, s

〉

⟨s, s⟩ = lim
n→∞

〈
(∇θ)∗∇θsn, sn

〉

⟨s, s⟩ ≥ 2i ∗ F∇θ,−1 + i ∗ F∇θ .

In summary, if s ∈ im ∂∇θ,−1 , then ⟨(∇θ)∗∇θs,s⟩
⟨s,s⟩

≥ 2i ∗ F∇θ,−1 + i ∗ F∇θ , and so the eigenvalues
of (∇θ)∗∇θ on im ∂∇θ,−1 are bounded below by 2i ∗ F∇θ,−1 + i ∗ F∇θ . Since 2i ∗ F∇θ,−1 > 0

then there is a spectral gap at the lowest eigenvalue i ∗ F∇θ .
Continuing inductively, suppose that s ∈ im ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q . Again, we can decompose

Ω0(Ẽ ⊗ K−q) ∼= im ∂∇θ,−(q+1) ⊕ coker ∂∇θ,−(q+1) . Given any t ∈ Ω0(Ẽ ⊗ K−q), there exists
a sequence {tn} ⊂ im ∂∇θ,−(q+1) ⊕ coker ∂∇θ,−(q+1) such that limn→∞ tn = t. Write tn =

∂∇θ,−(q+1)
un + vn with un ∈ Ω0(Ẽ⊗K−(q+1)) and vn ∈ coker ∂∇θ,−(q+1) ∼= ker ∂̄∇θ,−q .

The same argument as before shows that

∆θ
∂̄(∂

∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

vn) = ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q ◦∆θ,−q

∂̄
vn

+

(
q∑

ℓ=1

(θ − ℓ(2g − 2))

)
∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

vn

=

(
qθ − q(q + 1)(2g − 2)

2

)
∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

vn,

and therefore ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

vn is an eigensection of (∇θ)∗∇θ = 2∆θ
∂̄
+ i ∗ F∇θ with

eigenvalue 2
(
qθ − q(q+1)(2g−2)

2

)
+ θ = (2q + 1)θ − q(q + 1)(2g − 2).

Now consider sn = ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−(q+1)
un. Again, the same argument as above shows

that

(3.15) ∆θ
∂̄sn = ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un +

q+1∑

ℓ=1

(θ − ℓ(2g − 2)) sn.
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It remains to show that the inner product of the first term with sn = ∂∇θ,−1 ◦· · ·◦∂∇θ,−(q+1)
un

is non-negative. To see this, write
〈
∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−1 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

=
〈
(∂∇θ,−1

)∗∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

=
〈
∆θ,−1

∂ ∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

=
〈(

i ∗ F∇θ,−1 +∆θ,−1

∂̄

)
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

= (i ∗ F∇θ,−1)
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

+
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un,∆

θ,−1

∂̄
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉
.

In the final expression above, the first term is a positive multiple of
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉
.

In order to evaluate the second term, we can use Lemma 3.5 and the same process as in the
proof of Proposition 3.6 to write

∆θ,−1

∂̄
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un = ∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un

+ C · ∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un,

where C is a positive constant. Therefore we obtain a positive multiple of
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉

plus the non-negative term
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)
∆

θ,−(q+1)

∂̄
un

〉
.

Now repeat the same process on the term
〈
∂∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

∆
θ,−(q+1)

∂̄
un, ∂

∇θ,−2 ◦ · · · ◦ ∂∇θ,−(q+1)

un

〉
.

Continuing inductively, at the end of the process we obtain non-negative terms plus a positive
multiple of the non-negative term

〈
∆

θ,−(q+1)

∂̄
un, un

〉
. Substituting this into (3.15), we see

that
〈
∆θ

∂̄sn, sn
〉
≥

q+1∑

ℓ=1

(θ − ℓ(2g − 2)) ⟨sn, sn⟩ .

By taking sequences as before, this inequality is preserved in the limit, and therefore it
applies to sections in the closure. Since θ − m(2g − 2) > 0 by assumption, then the final
term in this sum is strictly positive if q ≤ m − 1, and so there is a gap in the spectrum of
∆θ

∂̄
at the eigenvalue

∑q

ℓ=1(θ − ℓ(2g − 2)). By (3.2) there is then a gap in the spectrum of
(∇θ)∗∇θ at the eigenvalue µq when q ≤ m− 1.

Finally, since ∂∇θ,−ℓ commutes with Tγ for all ℓ by the results of Section 1.3 and it is
injective for all ℓ ≤ m by Remark 3.1, then this ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q defines an isomorphism
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of Aθ modules

H0(Ẽ⊗K−q) ∼= Eµq
= ∂∇θ,−1 ◦ · · · ◦ ∂∇θ,−q

(
ker ∂̄∇θ,−q

)
.

□

4. An Index Theorem

In the previous notation, let ∇θ be the unitary connection on the trivial line bundle on
Z, whose curvature is equal to iB̃ = iθω̃. Consider the Dolbeault operator ∂̄ on X , and
lift it to ˜̄∂ on Z, which is invariant under the group of deck transformations Z2g for the
abelian cover Z → X. Let E → X be a holomorphic vector bundle over X, and ∇E a (0, 1)

connection on E. Let Ẽ denote the lift of E to Z, and ∇̃E the lift of ∇E to Z. Then as before,
one checks that the operator ˜̄∂ ⊗ ∇̃E ⊗∇θ is invariant under the projective action of Z2g as
in the previous section. Here

(4.1) ˜̄∂ ⊗ ∇̃E ⊗∇θ : Ω0,0
(2)(Z,E) −→ Ω0,1

(2)(Z,E)

where Ω0,j
(2)(Z,E), j = 0, 1 denotes the space of square integrable differential j-forms on Z

with coefficients in E.
Define

h0(∇̃E ⊗∇θ) = dimτ (kerL2( ˜̄∂ ⊗ ∇̃E ⊗∇θ)).

By L2-Serre duality,

h1(∇̃E ⊗∇θ) = h0(∇̃E∗⊗K ⊗∇−θ) = dimτ (kerL2( ˜̄∂ ⊗ ∇̃E∗⊗K ⊗∇−θ)).

where τ denotes the von Neumann trace or dimension. Elliptic regularity ensures that these
numbers are finite.

The goal of this section is to prove the following result.

Theorem 4.1 (L2-Riemann-Roch for projective actions). The L2 index of the induced con-
nection ˜̄∂ ⊗∇K−j ⊗∇θ is

indexL2( ˜̄∂ ⊗∇E ⊗∇θ) = h0(∇E ⊗∇θ)− h1(∇E ⊗∇θ)

= deg(E) + rk(E)θ + (1− g)rk(E)
(4.2)

In the case where E = K−q
X is a power of the canonical bundle on X, then

(1) the L2 index is

h0(∇K−q ⊗∇θ)− h1(∇K−q ⊗∇θ) = (2q + 1)(1− g) + θ.

(2) (vanishing) If θ > 2g − 2, then h1(∇θ) = 0, so that h0(∇θ) = 1− g + θ.

Proof. Note that since Z is a Riemann surface, then (4.1) is a complex, and by the higher
twisted index theorem in [18], the index is

IndexAθ
( ˜̄∂ ⊗ ∇̃E ⊗∇θ) = [ker( ˜̄∂ ⊗ ∇̃E ⊗∇θ)− coker( ˜̄∂ ⊗ ∇̃E ⊗∇θ)] ∈ K0(AΘ).
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As in the index for a family of elliptic operators, in general neither coker( ˜̄∂ ⊗ ∇̃E ⊗ ∇θ)

nor ker( ˜̄∂ ⊗ ∇̃E ⊗ ∇θ) are finite projective modules, however under a vanishing condition
coker( ˜̄∂ ⊗ ∇̃E ⊗ ∇θ) = 0, then ker( ˜̄∂ ⊗ ∇̃E ⊗ ∇θ) is a finite projective module, which is
therefore a holomorphic vector bundle in terminology of subsection 1.5.

Then by the twisted index theorem [21], one has

τ
(
IndexAθ

( ˜̄∂ ⊗ ∇̃E ⊗∇θ)
)
=

1

2π

∫

X

Todd(ΩX) tr exp(Ω
E) exp(θω)

=
1

2π

∫

X

(1 +
1

2
ΩX)(rk(E) + tr(ΩE))(1 + θω)

= deg(E) + rk(E)θ + (1− g)rk(E).

On the other hand,

τ
(
IndexAθ

( ˜̄∂ ⊗ ∇̃E ⊗∇θ)
)
= h0(∇̃E ⊗∇θ)− h1(∇̃E ⊗∇θ),

which completes the proof of (4.2).
Now let E = K−q

X be the holomorphic line bundle. We conclude from (4.2) that

(4.3) h0(∇̃K−q ⊗∇θ) = (−q deg(KX) + θ) + 1− g = (2q + 1)(1− g) + θ > 0.

If q ≥ 0 is such that (q + 1)(2g − 2)− θ < 0, then (3.1) implies that h0(∇̃Kq+1 ⊗∇−θ) = 0.
Using L2 Serre duality we conclude that

(4.4) h1(∇̃K−q ⊗∇θ) = h0(∇̃Kq+1 ⊗∇−θ) = 0.

□

Theorem 3.2 shows that kerAθ
( ˜̄∂ ⊗ ∇̃E ⊗∇θ) = Eµq

, the µq-th eigenspace of the magnetic
Laplacian. Using Theorem 4.1 and the terminology in subsection 1.5, we have the following
result on the dimension of these eigenspaces, which proves part (3) of Theorem 2.1.

Lemma 4.2. Let Eµq
be the µq-th eigenspace of the magnetic Laplacian. Then

(1) Eµq
is a holomorphic vector bundle over Aθ ⊗K(L2(F)), and

(2) The von Neumann dimension is dimτ (Eµq
) = (2q + 1)(1− g) + θ > 0.

5. Chern number of Eµq
via a higher index theorem

Our goal is to calculate the Chern number of the spectral subspace Eµq
as a finite projective

Aθ-module, which will complete the proof of the final part of Theorem 2.1. We do this by
using the higher twisted index theorem [18, Thm. 2.2]. The argument goes as follows. Let
c be the group cocycle on Z2g corresponding to the symplectic 2-form, and let τc be the
corresponding continuous 2-cocycle from (1.6). Applying the higher twisted index theorem
and simplifying, we see that

τc(indexAθ
( ˜̄∂ ⊗ ∇̃K−j ⊗∇θ)) =

∫

X

φ(c).
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By the vanishing theorem (4.4), we deduce that if θ > (j+1)(2g−2) then kerAθ
( ˜̄∂⊗∇K−j⊗∇θ)

is a finite projective Aθ module, and

τc(kerAθ
( ˜̄∂ ⊗ ∇̃K−j ⊗∇θ)) =

∫

X

φ(c).

Now φ(c) is easily seen to be the Bergman volume form on X, and
∫
X
φ(c) = 2g if X is a

genus g Riemann surface. Finally, we will prove in Theorem 3.2 that

kerAθ
( ˜̄∂ ⊗ ∇̃K−j ⊗∇θ) ∼= Eµq

as Aθ modules, therefore we conclude that if X is a genus g Riemann surface, then the Chern
number of Eµq

is

(5.1) τc(Eµq
) =

∫

Σ

φ(c) = 2g,

which proves (2.1).
We can extend the above calculations to the case of a “good” orbifold given by a quotient

X = X ′/Γ as follows. Let g′ be the genus of X ′ and let p : X ′ → X be the associated
ramified cover. Since φ(c) pulls back to the Bergman volume form on X ′, then

∫

X

φ(c) =
1

|Γ|

∫

Σ′

p∗φ(c) =
2g′

|Γ| .

Let ny = |Γy| be the order of the isotropy group at each point y ∈ X ′, let R = {y ∈ X ′ :

ny > 1} be the ramification divisor, and let n = |R| be the total number of ramification
points in X ′. The Riemann-Hurwitz theorem shows that

2g′ − 2 = |Γ|(2g − 2) +
∑

y∈X′

(ny − 1)

⇔ 2g′

|Γ| = 2g − 2 +
2

|Γ| +
1

|Γ|
∑

y∈X′

(ny − 1)

= 2g − 2 +
1

|Γ|
∑

y∈R

ny +
2− n

|Γ| .

The term 1
|Γ|

∑
y∈R ny can be further simplified by noting that for each y ∈ R, the number

of points in the orbit Γ · y is equal to |Γ|
ny

. Therefore 1
|Γ|

∑
y∈R ny is equal to the number of

Γ-orbits in R, which we denote by #(R/Γ). In conclusion, we have proved that
∫

X

φ(c) = 2g − 2 + #(R/Γ) +
2− n

|Γ| .

By Theorem 3.2, we know that there is an isomorphism of Aθ modules kerAθ
( ˜̄∂⊗∇̃E⊗∇θ) ∼=

Eµq
, the µq-th eigenspace of the magnetic Laplacian. All of the above is summarised in the

following lemma, which proves (2.2) and thus concludes the proof of Theorem 2.1.
17



Lemma 5.1. The Chern class of the µq-th eigenspace of the magnetic Laplacian is

(5.2) τc(Eµq
) = 2g − 2 + #(R/Γ) +

2− n

|Γ| .
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