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Lifelong Mixture of Variational Autoencoders
Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—In this paper, we propose an end-to-end lifelong
learning mixture of experts. Each expert is implemented by
a Variational Autoencoder (VAE). The experts in the mixture
system are jointly trained by maximizing a mixture of indi-
vidual component evidence lower bounds (MELBO) on the log-
likelihood of the given training samples. The mixing coefficients
in the mixture model, control the contributions of each expert in
the global representation. These are sampled from a Dirichlet
distribution whose parameters are determined through non-
parametric estimation during the lifelong learning. The model
can learn new tasks fast when these are similar to those
previously learnt. The proposed Lifelong mixture of VAE (L-
MVAE) expands its architecture with new components when
learning a completely new task. After the training, our model
can automatically determine the relevant expert to be used when
fed with new data samples. This mechanism benefits both the
memory efficiency and the required computational cost as only
one expert model is used during the inference. The L-MVAE
inference model is able to perform interpolations in the joint
latent space across the data domains associated with different
tasks and is shown to be efficient for disentangled learning
representation.

Index Terms—Lifelong learning, Mixture of Variational Au-
toencoders, Multi-task learning, Mixture of Evidence Lower
Bounds, Disentangled representations.

I. INTRODUCTION

Deep learning models suffer from catastrophic forgetting [1]

when training on multiple databases in a sequential manner, in-

dicating that a model quickly forgets the characteristics of the

previously learned experiences while adjusting to learning new

information. The ability of artificial learning systems of contin-

uously acquiring, preserving, transferring skills and knowledge

throughout their lifespan is called lifelong learning [1]. Exist-

ing related approaches adopt three different methodologies:

using dynamic architectures, embedding regularization during

the training, and employing generative replay mechanisms.

Dynamic architecture approaches [2], [3], [4], [5], [6] would

increase the network capacity by adding new layers and new

processing units on each layer in order to adapt the network’s

architecture to acquiring new information. However, such

approaches would require a specific architecture design while

the number of parameters would increase progressively with

the number of tasks. Regularization approaches [7], [8], [9],

[10], [11] aim to impose a penalty when updating the network’

parameters in order to preserve the knowledge associated

with previously learned tasks. These approaches, in practice,

suffer from performance degradation when learning a series

of tasks where the datasets are entirely different from the

previously learned ones. Memory-based methods use a buffer

in order to upload previously learned data samples [12], [13],

or utilize powerful generative networks such as a Variational

Autoencoders (VAEs) [14], [15], [16], [17] or a Generative

Adversarial Networks (GANs) [18], [19] as a memory-based

replay network that reproduces and generates data which is

consistent with what has seen and learned before. These

approaches would need additional memory storage space in

order to store the generated data while the performance on

the previously learned tasks is heavily dependent on the

generator’s ability to realistically replicate data.

Recently, the state of the art methods show promising

results on prediction tasks [6], [7], [20], [21], [22], [23] but

they do not capture the underlying structure behind the data,

which prevents them from being applied in a wide range

of applications. There are only very few attempts addressing

representation learning under the lifelong setting [16], [15].

The performance of these methods degrades significantly

when engaging in the lifelong training on datasets containing

complex images or on a long sequence of tasks. The reason

is that these approaches require to retrain their generators on

artificially generated data. Meanwhile, the performance loss

on each dataset is accumulated during the lifelong learning

of a sequence of several tasks. To address this problem, we

propose a probabilistic mixture of experts model, where each

expert infers a probabilistic representation of a given task. A

Dirichlet sampling process defines the likelihood of a certain

expert to be activated when presented with a new task.

This paper has the following contributions :

• We propose a novel mixture learning model, namely

the Lifelong Mixture of VAEs (L-MVAE). Instead of

capturing different characteristics of a database as in

other mixture models [24], [25], [26], [27], the proposed

mixture model enables to automatically embed the knowl-

edge associated with each database into a distinct latent

space modelled by one of the mixture’s experts during

the lifelong learning.

• A mixing-coefficient sampling process is introduced in L-

MVAE in order to activate or drop out experts. Besides

defining an adaptive architecture for the model, this pro-

cedure accelerates the learning process when acquiring

new tasks while overcoming forgetting of the previously

learned tasks.

The remainder of the paper contains a detailed overview of

the existing state of the art in Section II, while the proposed

L-MVAE model is discussed in Section III. In Section IV we

discuss the theory behind the proposed L-MAE model, while

in Section V we explain how the proposed methodology can be

used in unsupervised, supervised and semi-supervised learning

applications. The expansion mechanism for the model’s archi-

tecture is presented in Section VI. The experimental results

are analyzed in Section VII while the conclusions are drawn

in Section VIII.
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II. RELATED RESEARCH STUDIES

A variational autoencoder (VAE) [28] is made up of two

networks, an encoder and a decoder. Given a data set, the

encoder extracts a latent vector z, and the decoder aims

to reconstruct the given data from the latent vectors. A

number of research works have been developed for capturing

meaningful and disentangled data representations by using the

VAE framework [29], [30], [31], [32], [33]. These approaches

show promising results on achieving disentanglement between

latent variables as well as interpretable visual results, where

specific properties of the scene can be manipulated through

changing the relevant latent variables. However, these models

work well only on data samples drawn from a single domain,

corresponding to a specific database used for training. When

they are re-trained on a different database, their parameters

are updated and then they fail to perform on the tasks learned

previously. This happens because they do not have appropriate

objective functions to deal with catastrophic forgetting [9],

[34], [35].

Recently, there have been some attempts to learn cross-

domain representations under the lifelong learning by intro-

ducing an environment-dependent mask that specifies a subset

of generative factors [16], or by proposing a teacher-student

lifelong learning framework [15] and a hybrid model [36]

based on Generative Adversarial Nets (GANs) [37] and VAEs.

The models proposed in [15], [16], [36] are based on the

Generative Replay Mechanisms (GRM) aiming to overcome

forgetting. However, these methods suffer from poor perfor-

mance when considering complex data.

Aljundi et al. [38] proposed a lifelong learning system

named the Expert Gate model, where new experts are added

to a network of experts. The most relevant autoencoder from

the given set of experts is chosen during the testing stage,

according to the reconstruction error of the data. This may

not necessarily correspond to the best log-likelihood estimate

for the best data. Moreover, the Expert Gate model was used

only for supervised classification tasks.

Regularization based approaches alleviate catastrophic for-

getting by adding an auxiliary term that penalizes changes in

the weights when the model is trained on a new task [6], [7],

[8], [9], [10], [11], [35], [39], [40], [41] or store past samples

to regulate the optimization [20], [42]. However, regularization

based approaches have huge computation requirements when

the number of tasks increases [43].

In another direction of research, mixtures of VAEs have

been employed for continuous learning [24], [25], [26], [27].

These models are able to capture underlying complex struc-

tures behind data and therefore perform well on many down-

stream tasks including clustering and semi-supervised classi-

fication. However, these mixture models would only capture

characteristics of a single database, which had been split into

batches, and tend to forget previously learned data character-

istics when attempting to learn a sequence of distinct tasks. In

contrast to the above mentioned methods, our model is able

to capture underlying generative latent variable representations

across multiple data domains during the lifelong learning.

III. THE LIFELONG MIXTURE OF VAES

A. Problem formulation

In this paper we consider a model made up of a mixture

of networks which is able to deal with three different learning

scenarios: supervised, semi-supervised and unsupervised, un-

der the lifelong learning setting. Let us consider a sequence of

tasks and denote D(k) = {x
(k)
i ,y

(k)
i }Nk

i as a dataset character-

izing the k− th task, where x
(k)
i ∈ X (k) is the source domain

and y
(k)
i ∈ Y(k) is the target domain which is usually defined

by class labels, while each domain {D(i)|i = 1, . . . ,K} is

associated to a given task. We aim to learn a model which

not only generates or reconstructs data but which can also

generate meaningful representations useful for various tasks

during a lifelong learning process.

B. Mixture objective function

Traditional mixture models [44], [45] normally capture

different characteristics of a dataset by learning several latent

variable vectors, with distinct sets of variables associated to

each mixture’ component. In this paper, we implement each

expert by using a generative latent variable model, such as

a VAE, pθ(x, z) = pθ(x|z)p(z), where z ∈ IRd is the

latent variable and θ represents the decoder’s parameters.

The learning goal of the generative model is to maximize

the log-likelihood of the data distribution, which is actually

a difficult problem due to the intractability of the marginal

distribution p(x) =
∫

pθ(x|z)p(z)dz, requiring access to

all latent variables. Instead, we optimize the evidence lower

bound (ELBO) on the data log-likelihood, [28] :

log p(x) ≥ Ez∼qε(z|x)[log pθ(x|z)]−DKL[qε(z|x)||p(z)]

= LVAE,θ,ε(x),
(1)

where qε(z|x) is called the variational distribution, and ε
represents the parameters of the encoder. We use the Gaussian

distribution for both the prior p(z) as well as for the variational

distribution qς(z|x). The latent variable z is sampled using

the reparametrization trick [28] zi = ui + δ ⊗ σi, where ui

and σi are inferred by the encoder, and δ is sampled from

N (0, I). pθ(x|z) is implemented by a decoder with trainable

parameters θ, receiving the latent variables z and producing

data reconstructions x′.

When considering that we have K experts in the mixture

model, we introduce the loss function named MELBO, as the

Mixture of individual ELBOs Li
V AE(x), defined through (1) :

LL−MVAE(x) =

K
∑

i=1

wiL
i
V AE(x)

K
∑

i=1

wi

, (2)

where wi is the mixing coefficient, which controls the sig-

nificance of the i-th expert. We model all mixing coefficients

by using a Dirichlet distribution {w1, . . . , wK} ∼ Dir(a), of

parameters a = {a1, . . . , aK}. In the following we describe

a mechanism for selecting appropriate L-MVAE components

during the training.
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C. The selection of L-MVAE mixture’s components during

training

Certain research studies [24], [25] have considered equal

contributions for the components of deep learning mixture

systems. However, in this paper we consider that each mixture

component is specialized for a specific task. The selection of a

specific mixture component is performed through the mixing

weights wi, i = 1, . . . ,K. We assume that the weighting

probability for each mixture’s component is drawn from a

Multinomial distribution, such as the Bernoulli distribution,

defined by a Dirichlet prior.

Assignment vector. In the following, we introduce an as-

signment vector c, with each of its entries ci ∈ {0, 1},

i = 1, . . . ,K, representing the probability of including or not

the i-th expert in the mixture. ci is sampled from as Bernoulli

distribution. Before starting the training, we set all entries as

ci = 0, i = 1, . . . ,K. The assignment probability for each

mixing component is calculated considering the sample log-

likelihood of each expert after learning each task, as :

p(cj) = 1−
exp(−Lj

V AE(xb)) + u c′j
K
∑

i=1

exp(−Li
V AE(xb)) + u c′i

,
(3)

where xb is a data sample sampled from the given data batch,

drawn from the database corresponding to the current task

learning. c′j denotes the assignment variable for j-th expert,

before evaluating Eq. (3), and represents the value resulted

when learning the previous task. u c′j is used to ensure that

p(cj) is outside the range of possible values for c′j = 1,

when evaluating (3), and therefore we consider u as a large

value. Then we find the maximum probability for a mixing

component :

p(cj∗) = max(p(c1), . . . , p(cK)) , (4)

where j∗ represents the index corresponding to the selected

VAE component according to the parameters learnt during

the previous tasks. We then normalize the other assignment

variables, except for j∗ by :

p(ci) =

{

1 c′i = 1

0 c′i = 0
, i = 1, 2, . . . ,K, i 6= j∗ . (5)

Since c′i is an assignment corresponding to the learning process

of the previous task, before evaluating Eq. (3), in order to

determine the dropout status of i-th expert during the current

task learning, we use Eq. (5) to recover the dropout status of

all experts except for j∗-th expert which is actually dropped

out from the future training because it is going to be used

for recording and reproducing the information associated with

the current task being learnt. When learning the first task, all

mixture’s components will be trained and then when leaning

the second task, only K − 1 components are trained, while

one component is no longer trained because it is considered

as a depository of the information associated with the first

task. This component will consequently be used to generate

information consistent with the probabilistic representation

associated with the first task. This process is continued until

the last task is being learnt when at least one VAE is available

for training. In consequence the number of mixing components

K considered initially should be at least equal to the number

of tasks assumed to be learned during the lifelong learning

process. In Section VI we describe a mechanism for expanding

the mixture.

The sampling of mixing weights. Suppose that L-MVAE

finished learning the t-th task. We collect several batches of

samples {xi, . . . ,xN} from the (t + 1)-th task where each

xi represents the i-th batch of samples, which are used to

evaluate the assignment vector c by using Eq. (3). We calculate

the average probability p(cj) =
∑N

i=1 p(c
i
j)/N where each

p(cij) represents the probability for the assignment of the i-th
batch of sample, xi. Then we find p(cj∗) by using Eq. (4)

and we recover the previous assignments except for cj∗ by

using Eq. (5). Then, the Dirichlet parameters are calculated in

order to fix the mixture components containing the information

corresponding to the previously learnt tasks while making the

other mixture’s components available for training with the

future tasks. For the mixing components that have been used

for learning the previous tasks, we consider

ai =

{

e ci = 1
1−e∗K′

K−K′
ci = 0 , i = 1, . . . ,K ′

(6)

where e is a very small positive value. For i = 1, . . . ,K ′,

where K ′ represents the number of tasks learnt so far out

of a total of K given tasks, during the lifelong learning.

A small value for the Dirichlet parameters implies that the

corresponding mixture components are no longer trained.

Then mixing weights w1, . . . , wK are sampled from Dirichlet

distribution with parameters a1, . . . , aK . In the final, we train

the mixture model with w1, . . . , wK by using Eq. (2) at the

(t+ 1)-th task learning.

Testing phase. Suppose that after the lifelong learning pro-

cess, we have trained K components. In the testing phase,

we perform a selection of a single component to be used

for the given data samples. We firstly calculate the selection

probability {v1, . . . , vK} by calculating the log-likelihood of

the data sample for each component :

vi =
exp(− 1

Lj
V AE

(x)
)

K
∑

i=1

exp(− 1
Li

V AE
(x)

)

, i = 1, . . . ,K .
(7)

Then we select a component by sampling the mixing weight

vector w from Categorical distribution Cat(v1, . . . , vK).
The structure of the proposed L-MVAE model is shown in

Figure 1. In the following section we evaluate the convergence

properties of the proposed L-MVAE model during the lifelong

learning.

IV. THEORETICAL ANALYSIS OF L-MVAE

In this section, we evaluate the convergence properties of

the proposed L-MVAE model during the lifelong learning. We

evaluate the evolution of the objective function LL−MVAE(x)
during the training and how we can define a lower bound on

the data’s log-likelihood. We also show how L-MVAE model

infers across several tasks during the lifelong learning.
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Fig. 1. The structure of the proposed Lifelong Mixture of VAEs learning system with K = 4 components. Each expert has an independent inference and
generation process and therefore we can calculate Li

V AE
(x), the ELBO for each expert. Each ci represents the probability of the assignment for the i-th

component, which is used to determine each ai by using Eq. (6). Then the mixing weights {w1, . . . , w4} are sampled from the Dirichlet distribution and
are used in Eq. (2). During the testing phase, for given data samples we select an appropriate mixture component to be used.

Definition. Let us define the following function :

LEMIX(x) =

K
∑

i=1

wi exp(L
i
V AE(x)) (8)

where Li
V AE(x) is defined for i-th mixture component by

considering the objective function (1) and where we consider
∑K

i=1 wi = 1. We also define the likelihood function for the

mixture model, denoted as LL−Log(x).
Lemma. By considering LL−Log(x), defining the likelihood

function

LL−Log(x) =
∑K

i=1
wi

∫

pθi(x|z)pθi(z)dz, (9)

and the previous Definition, we have :

logLL−Log(x) > logLEMIX(x). (10)

Proof. After considering the latent variables z for each VAE

component, the marginal log-likelihood of the mixture is given

by :

logLL−Log(x) = log

(
∫

∑K

i=1
wipθi(x, z)dz

)

= log

(

∑K

i=1
wi

∫

pθi(x|z)pθi(z)dz

)

,

(11)

We know that log pθi(x) = log
∫

pθi(x|z)pθi(z)dz is

bounded by the local ELBO objective function Li
V AE,θi,εi

(x),
according to (1), and we have

∫

pθi(x|z)pθi(z)dz ≥ exp(Li
V AE,θi,εi

(x)) , (12)

where θi represents the parameters for the i-th mixture com-

ponent.

Since the log function is a monotone increasing function,

then we have:

log

(

∑K

i=1
wi

∫

pθi(x|z)pθi(z)dz

)

≥

log

(

∑k

i=1
wi exp(Eqεi (z|x)

[log pθi(x|z)− log qεi(z|x)])

)

,

(13)

which proves the Lemma.

Theorem 1: Optimizing the mixture’s objective function,

LL−MVAE(x), corresponds to finding a lower bound on the

log-likelihood of the data, logLL−Log(x).

Proof 1: From the Lemma, we have :

logLL−Log(x) = log

(

∑K

i=1
wi

∫

pθi(x|z)pθi(z)dz

)

≥ log

(

∑K

i=1
wi exp(L

i
V AE,θi,εi

(x))

)

,

(14)

When we optimize the mixture’s objective function

LL−MVAE(x), the loss Li
V AE,θi,εi

(x) corresponding to each

component is increased. Then, the right hand side from (14)

will be increased to approximate logLL−Log(x), given that the

logu is monotonically increasing for u ∈ [0,+∞). However,

any increase has an upper limit in LL−Log(x), according to

(14)

�

Theorem 2: Let us define logL⋆
L−Log(x) as the log-

likelihood of the objective function LL−MVAE(x). Then we

have logL⋆
L−Log(x) ≤ max{log pθi(x)}, ∀i ∈ {1, . . . ,K}

during the inference, where log pθi(x) represents the log-

likelihood of a single VAE model, characterized by parameters

θi.

Proof 2: Estimating the log-likelihood logL⋆
L−Log(x) dur-

ing the inference is intractable because the generation pro-

cess of the mixture model involves an implicit component

selection procedure. By considering (2), the log-likelihood

logL⋆
L−Log(x) is given by :

logL⋆
L−Log(x) = log

(

K
∑

i=1

wiL
i
V AE,θi,εi

(x)

)

, (15)

where
∑K

i=1 wi = 1, where the mixing parameters wi are

sampled from Cat(τ), τ = (τ1 τ2 . . . τK)T where τi =
log pθi(x)/

∑K

j=1 log pθj (x). The marginal log-likelihood

log pθi(x) for each VAE component is given by its approx-

imation Li
V AE,θi,εi

(x). The proposed model selects only the
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most suitable expert VAE, indexed as h, which has the highest

likelihood for the given data samples used during the training :

logL⋆
L−Log(x) ≤ Lh

V AEθh,εh
(x),

log pθh(x) ≥ Lh
V AEθi,εi

(x), i = 1, . . . ,K,
(16)

�

where log pθh(x) = max{log pθi(x)}, i = 1, . . . ,K. This

shows that during the testing stage, we can evaluate the

data’s log-likelihood, by using the proposed L-MVAE model.

Unlike in the approach from [38], the proposed mixture

system not only that can perform generation tasks but it also

learns meaningful data representations across the domains

assimilated during the lifelong learning process.

V. DEFINING THE LIFELONG MVAE FOR SUPERVISED,

SEMI-SUPERVISED AND UNSUPERVISED LEARNING

In this section, we extend the mixture model for being

used under various types of learning paradigms, such as :

unsupervised, supervised, and semi-supervised.

Unsupervised disentangled representation learning. In or-

der to encourage the latent representations to capture meaning-

ful variations of data under unsupervised learning assumptions,

we extend the disentangled representation learning approach

from [32], which was built by using a similar concept to the

β-VAE [29] used for modelling disentangled representations

in single VAE models. We extend [32] to be used for the

mixture objective function by replacing (2) with the following

loss function :

LUS

L−MVAE,ε̃,θ̃
(x) =

K
∑

i=1

wi (−γ|DKL(qεi(zi|x)||p(zi))− C|

+Ezi∼qε̃i (zi|x) log pθ̃i(x|zi)
)

(17)

where we have
∑K

i=1 wi. The first term represents the

Kullback-Leibler (KL) divergence associated with the output

of each VAE decoder, by considering the disentanglement

among the latent space variables, weighted by wi, while the

last term is associated with the log-likelihood of the data

reconstruction by each mixture’s encoder. The parameters

associated with the disentanglement are set similarly to those

from [29]: C is linearly increasing during the training, starting

from a low value, while γ defines the contribution of this mod-

ified KL term to the objective function. ε̃ = {ε̃i|i = 1, . . . ,K}
and θ̃ = {θ̃i|i = 1, . . . ,K} represent the parameters for all

encoders and decoders of the mixture and of the individual

components, respectively.

Lifelong supervised learning. We consider that the given

data {X |xi ∈ X , i = 1, . . . , N} is labelled {Y|yi ∈ Y, i =
1, . . . , N}, within a supervised learning framework. When

considering a single VAE component we define a latent gen-

erative variable model pθ(x, z,d) = pθ(x|z,d)p(z,d), where

z is the continuous latent variable and d is the latent variable

associated with the discrete information, labels for example.

Then we derive its corresponding ELBO, considering two

distinct encoders, characterized by the parameters ε and ς for

the discrete z and continuous d latent variables, respectively,

as follows:

LS
θ,ε,ς(x) = Eqε,ς(z,d|x) log

[

pθ(x, z,d)

qε,ς(z,d|x)

]

= Eqε,ς(z,d|x) log

[

pθ(x|z,d)p(z)p(d)

qε(z|x)qς(d|x)

]

= Eqε,ς(z,d|x) log[pθ(x|z,d)] + Eqς,ε,δ(z,d|x) log

[

p(z)

qε(z|x)

]

+ Eqε,ς(z,d|x) log

[

p(d)

qς(d|x)

]

= Eqε,ς(z,d|x) log[pθ(x|z,d)]

−DKL[qε(z|x)||p(z)]−DKL[qς(d|x)||p(d)].
(18)

This equation uses the assumption that z is independent

from d, which is guaranteed by using two separate inference

models qε(z|x) and qζ(d|x) for modelling z and d. Eq. (18)

corresponds to the ELBO for one of the components in our

mixture model. We then define the mixture’s objective function

by evaluating a sum over all individual components ELBO’s,

each multiplied by its associated mixing coefficient, resulting

in :

LS
L−MVAE(x) =

K
∑

i=1

wi(Eqεi,ςi (z,d|x)
[log pθ (x|z,d)]

−DKL[qεi(z|x)||p(z)]−DKL[qςi(d|x)||p(d)]),

(19)

where ε = {εi|i = 1, . . . ,K} and ς = {ςi|i = 1, . . . ,K}, rep-

resent the parameters for the encoders modelling continuous z,

and discrete d, latent variables, for each mixture’ component.

We call each qξi(d|x) as the class-specific encoder. The last

two terms from (19) represent the KL divergences between

the posterior and prior distributions for the variables z and

d, associated to the continuous and discrete latent spaces,

respectively.

For the discrete variables we consider sampling using the

Gumbel-Max trick for qς(d|x), as in [46], [47], in order

to produce differentiable discrete variables. We implement

qς(d|x) by using a neural network of parameters ς in which

the last layer implements the softmax function producing the

probability vector d′ = (d′1, d
′
2, . . . , d

′
K), while the sampling

process is defined by :

dk =
exp((log d′k + gk)/T )

∑K

i exp((log d′i + gi)/T )
(20)

where dk is the sampled value and d′k is its probability. gk
is sampled from the Gumbel(0, 1) distribution. The sample

vector d is treated as a continuous approximation of the

categorical representation (one-hot vector). This sampling

process is incorporated into both generation and inference

stages. For enforcing the discrete latent variables d to capture

discriminative information such as the data type, we introduce

a mixture of cross-entropy loss LS−Mix,̃,ς(x) :

LS−Mix,ς(x) = E(x,y)∼(X ,Y)

K
∑

i=1

wiη(qςi(d|x),y) , (21)

where we incorporate the individual VAE components cross-

entropy loss η(·, ·) weighted by the associated mixing coef-

ficients, characterizing the encoders specific to learning the
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discrete variables, into a single objective function for the

mixture system and ς = {ς1, . . . , ςk}. The pseudocode for

the supervised learning is provided in Algorithm 1 where we

firstly optimize the parameters of the model by using Eq. (19)

and Eq. (21) at each iteration.

Lifelong semi-supervised learning. We also consider the

semi-supervised learning context [48] for the proposed L-

MVAE model. Under the semi-supervised setting, we only

have a small subset of labeled observations x, with labels y

with and a much larger number of unlabeled data samples

x̂ for each learning task, where x̂,x ∈ X . In semi-supervised

learning the unlabelled data samples are then associated based

on their statistical consistency with the labelled data. Labels y

replace the discrete variables d, used for supervised learning,

during the decoding process, and the objective function is:

LSemS

Mix,θ̃,ε̃,ς̃
(x̂) =

K
∑

i=1

wi

(

Eqεi,ςi (z,y|x
′) [log pθ (x

′|z,y)]

−DKL[qεi(z|x̂)||p(z)])
(22)

where LSemS

Mix,θ̃,ε̃,ς̃
(x̂) is the loss function for the semi-

supervised learning of the L-MVAE model,
∑K

i=1 wi = 1,

while θ̃, ε̃ and ς̃ represent the mixture’s model parameters

characterizing the decoders and the encoders specific to the

continuous z and to the labels y, respectively.

In addition to LSemS
Mix (x̂) from (22), we also optimize the

parameters ς̃ using the mixture cross-entropy LS−Mix(x),
similar to equation (21), used for supervised learning. For

the unlabeled samples, missing labels are inferred by using

Gumble-softmax based sampling in which the probability

vector d′ is sampled from the encoder, defined by qς(d|x
′).

These resulting discrete variables are then used during the

decoding. The final objective function for semi-supervised

learning tasks is defined as:

LSemS
L−MVAE(x) = LSemS

Mix (x̂) + βLS
L−MVAE(x) , (23)

where the first term is given in (22), and β controls the

importance of the loss associated to the supervised learning

LS
L−MVAE(x), which is defined in (19). We separately opti-

mize the parameters of the model by using (23) and (21) during

each iteration, similar to the supervised learning setting.

VI. MIXTURE EXPANSION MECHANISM

A given mixture architecture has limits in its modelling

capabilities. Such limits are especially exposed during the

lifelong learning, when the model has to learn new tasks.

In this section, we introduce a procedure for expanding the

L-MVAE architecture in order to enhance the architecture

ability to deal successfully with a growing number of tasks.

Meanwhile we aim to use a minimal number of model param-

eters and optimize the training time for efficiently learning all

tasks. We introduce a joint network by adding to the existing

VAE component structure consisting in an encoder and a

decoder, defined by the parameters θ′1 and ε′1, respectively,

a sub-encoder and a sub-decoder, with parameters θS and

εS , respectively. During the first task learning, we build the

first mixture component based on this joint network. We use

Algorithm 1: Supervised training for the L-MVAE

model.
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pθ1(x|z) and qε1(z|x) to represent the decoder and encoder,

respectively, where θ1 = {θS , θ
′
1} and ε1 = {εS , ε

′
1}. During

the training we update both the shared parameter set {θS , εS}
and the specific parameter set {θ′1, ε

′
1} when learning the first

task. For the following task learning, the {θS , εS} parameters

are fixed, while when a new component would be added,

then only its corresponding specific parameter set {θ′2, ε
′
2} is

updated using Eq. (1) considering the new task for training. In

the following, we introduce a new mechanism for acquiring

the knowledge corresponding to a new task during the lifelong

learning, by either updating an existing mixture component, or

adding a new component and training its parameters. We show

the process of the proposed expansion mechanism in Fig. 2.

In order to allow a single component to learn several

similar tasks, we introduce a similarity measure between the

probabilistic representation associated with a new task and the

information recorded by each learnt mixture component. If the

new task is novel enough relative to the already learnt knowl-

edge, the mixture model will add a new component in order to

learn the new task. Otherwise the training algorithm will select

and update the most appropriate component. Let us consider

that the mixture model has K components after learning the

j − 1-th task. We would like to evaluate the novelty of the j-

th task by comparing the knowledge acquired by each of the
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Component 1

..

Component K

Evaluation

After (j-1)-th task 
learning Yes

No

...

Load  samples 
from j-th task 

ComponentK+1
Build a new component

Select a component

Add

Component S

Component 2..
j-th task

1( , )jK X X 

2( , )jK X X 

( , )j KK X X 

1min { ( , )}K
k j kK X X S  å

j-th task

Fig. 2. The illustration of the component expansion mechanism. Once the (j − 1)-th task was finished, we collect samples from the j-th database and then
evaluate the compatibility between the data from j-th database and the probabilistic representation of each component by using Eq. (24). Then Eq. (25) is
used to either select an existing component of the mixture or to expand the network by adding a new component. The added component during the j-th task
learning is marked in a red rectangle. The testing phase for the expansion mechanism is identical to the one shown in Fig. 1.

K components and the probabilistic representation of the j-th

task. We consider a probabilistic representation of the j-th task

by randomly selecting a set {Xj |xj,i ∈ Xj ; i = 1, . . . , Nj}
where in the experiments we consider Nj = 1000 samples.

The probabilistic representation of the knowledge acquired by

each expert is represented by its ability to generate specific

data. Thus, we generate for each expert k = 1, . . . ,K, a

dataset {X ′
k|fθk(xj,l) ∈ X ′

k; l = 1, . . . , N ′
k}, where in the

experiments we consider N ′
l = 1000, for l = 1, . . . ,K and j

represents the database used for sampling the original data xj,l.

We define as statistical similarity the following L2 distance

between all data from each two datasets :

K(Xj ,X
′
k) =

1

Nj

1

N ′
k

Nj
∑

i=1

N ′

k
∑

l=1

‖xj,i − fθk(xj,l)‖ , (24)

for all k = 1, . . . ,K. A new expert K + 1 is built in the

mixture model when none of the experts is able to generate

data similar to those from the new dataset, according to the

following criterion :

K

min
k=1

{K(Xj ,X
′
k)} > S⋆ , (25)

where S⋆ is a threshold defining the level of novelty in the

knowledge acquired by each expert. The parameter set of

the new expert is {εS , ε
′
K+1, θS , θ

′
K+1} and where only the

parameters ε′K+1, θ
′
K+1 are trained according to the objective

defined in (1). If (25) is not fulfilled then the most suitable

component is chosen :

L = arg
K

min
k=1

K(Xj ,X
′
k) (26)

and its encoder and decoder parameters {θ′L, ε
′
L} are updated.

We call the proposed expansion mechanism with the mixture

model as L-MVAE dynamic (L-MVAE-Dyn). By considering

a fixed component of the model, made up of the sub-decoder

and sub-encoder of parameters {εS , θS} we ensure a common

heritage knowledge for all tasks, corresponding to a set of

features shared by the data from several databases. When

learning each task, we add an additional set of parameters

corresponding to characteristic information for each database.

This procedure ensures a fast and efficient learning procedure,

while maintaining the required set of parameters to a mini-

mum, when learning a sequence of tasks.

VII. EXPERIMENTS

We evaluate the performance of the proposed L-MVAE

system when learning several tasks, and in several applica-

tions including classification, reconstruction and disentangled

representation learning. Afterwards, we assess how L-MVAE

is used for semi-supervised and unsupervised learning tasks

in the context of lifelong learning. The implementations are

done using the TensorFlow framework.

A. Supervised learning

We select four datasets for the lifelong supervised training

of L-MVAE: MNIST [49], Fashion [50], SVHN [51] and

CIFAR10 [52]), called MFSC sequence. We estimate the

average classification accuracy on all testing data samples

across different domains during the lifelong training, and the

results are provided in Fig. 3, where each task is trained for

10 epochs using Stochastic Gradient Descent (SGD). From

these results we observe that each time when training with a

new dataset, L-MVAE maintains almost its full performance

on the previously learned tasks. For comparison in the same

plot we show the results obtained by Deep Generative Replay

(DGR) [14] which has a significant performance drop on the

previously learnt tasks, when training with a new dataset, as

it can be observed from Fig. 3.

In Table I we provide the classification accuracy for the

lifelong learning of the MFSC sequence of databases. When

all these databases are used jointly for training, within an

approach named “JVAE”, we achieve good accuracy results on

simple datasets such as MNIST and Fashion, but the perfor-

mance drops on the datasets containing more complex images.

“Transfer” represents training a single classifier on a sequence

of tasks without using the generative replay mechanism. We

can observe that the “Transfer” approach only achieves good

results on the latest task and completely forgets any previously

learnt knowledge. L-MVAE-S is the mixture model sharing
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Methods MNIST Fashion SVHN Cifar10

L-MVAE 97.97 90.02 87.00 69.32

L-MVAE-S 96.18 91.64 86.20 66.94
JVAEs 97.72 88.47 61.87 52.69
Transfer 5.28 5.23 13.82 68.67
DGR [14] 90.20 72.64 62.44 56.43
LGM [15] 61.06 63.57 64.21 56.84
CURL [17] 91.46 74.29 66.78 59.46

TABLE I
CLASSIFICATION ACCURACY WHEN CONSIDERING THE LIFELONG

LEARNING OF MNIST, FASHION, SVHN AND CIFAR10 DATABASES.
MFSC AND CSFM DENOTE THE ORDER OF THE DATABASES USED FOR

THE LIFELONG TRAINING.
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Classification accuracy during the training

L-MVAE CIFAR10 accuracy
DGR CIFAR10 accuracy
L-MVAE SVHN accuracy
DGR SVHN accuracy
L-MVAE Fashion accuracy
DGR Fashion accuracy
L-MVAE MNIST accuracy
DGR MNIST accuracy

Fig. 3. Classification accuracy on all testing data samples across several
domains during the lifelong learning.

the parameters of the decoder with all experts. Although L-

MVAE-S uses fewer parameters than L-MVAE, it still pro-

vides very good results. The generative replay based methods

used for comparison, Lifelong generative modeling (LGM)

[15], DGR [14] and Continual Unsupervised Representation

Learning (CURL) [17] display a performance fall on all tasks,

which is mainly caused by the quality of generative replay

samples. Since we evaluate a sequence of different domains,

the generative replay based methods tend to forget the initial

learnt tasks.

B. Semi-supervised learning

We investigate the performance of the L-MVAE system

in semi-supervised tasks. We randomly select 1,000 training

images from the MNIST as the labelled dataset, and 10,000

labelled images from each of the datasets: Fashion, SVHN

and Cifar10. The remaining unlabelled samples are used as the

training set. We train the L-MVAE system on both the labelled

and unlabelled samples under the MNIST, Fashion, SVHN and

Cifar10 lifelong learning, according to Eq. (23) where we set

β= 0.5. The results are shown in Table II, where we use ‘*’

to denote the model to be learned under the lifelong setting.

It can be observed that the proposed model almost achieves

better results than CURL [17] in each task learning and even

achieves competitive results when comparing with the current

state of the art semi-supervised methods trained only on a

single dataset, such as CAE [53], M1 [53], M1+M2 [53] and

Semi-VAE [48].

C. Unsupervised lifelong reconstruction and interpolation

In the following, L-MVAE model is used in unsupervised

applications, where there are no data labels. We train the

proposed mixture system with four components (K = 4)

under the MNIST, Fashion, SVHN and Cifar10 (MFSC) as

well as when using CelebA, CACD, 3D-chairs and Omniglot

(CCDO) lifelong learning settings. The original images for

MFSC and for CCDO databases are provided in Figures 4

a-d and 5 a-d, respectively. The image reconstruction results

corresponding to these images, following the lifelong learning,

are shown in Figures 4 e-h, and Figures 5 e-h, respectively.

These results show that the proposed L-MVAE mixture system

is able to make accurate inference across several different

domains. We also explore performing interpolations in the

latent space of multiple domains. When interpolating between

two latent vectors, we initially select the most relevant expert,

according to the selection strategy from Section III-C, and

then infer the latent variables using the selected inference

model. The selected decoder will then recover images from the

interpolated latent variable space. We present the interpolation

results in Figures 6 a-d, for images from CelebA, CACD, 3D-

chairs and Omniglot databases. The proposed model achieves

continuity in the latent space as reflected in the generated

images derived by each expert, according to these results.

D. Disentangled representation learning

We train L-MVAE system under the CelebA, CACD, 3D-

chairs and Omniglot lifelong learning by using the disentan-

gled loss function from Eq. (17) where C is increased from a

very small value to 25.0 during the training and we set γ= 4.

After the training, the L-MVAE system firstly chooses the most

relevant expert and then a single latent variable inferred by the

selected expert is changed from -3 to 3 while fixing the other

latent variables. The results are shown in Figures 7 and 8.

From Figures 7 a-d we observe that the proposed L-MVAE

approach can discover four disentangled representations for

CelebA by changing: age, hair style, illumination and face

orientation. From Figures 8 a-c we can observe that we can

change chair size, style and orientation.

E. Visual quality evaluation for the generated images

For assessing the representation learning ability under the

lifelong setting, we evaluate the negative log-likelihood (NLL),

representing the reconstruction error plus the KL divergence

term, as well as the inception score (IS) [54] for the recon-

structed images from the testing set. First, we train various

models under the MNIST, Fashion, SVHN and CIFAR10

(MFSC) lifelong learning setting, by considering 100 epochs

for learning each task. The results for MFSC and when

considering the learning of the databases in reversed order

as CSFM, are provided in Tables III and IV for the average

NLL and the average reconstruction error, respectively, when

comparing against CURL [17], LGM [15] and with JVAE
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Dataset L-MVAE* CURL* [17] CAE [53] M1 [53] M1+M2 [53] Semi-VAE [48]

MNIST 4.95 14.67 4.77 4.24 2.40 2.88
Fashion 16.93 64.28 / / / /
SVHN 23.00 66.39 / / / /
CIFAR10 48.32 43.57 / / / /

TABLE II
SEMI-SUPERVISED CLASSIFICATION ERRORS ON MNIST UNDER THE LIFELONG LEARNING FOR MNIST, FASHION, SVHN, AND CIFAR10 DATABASES.

(a) Mnist testing samples (b) Fashion testing samples (c) SVHN testing samples (d) CIFAR10 testing samples

(e) MNIST reconstructions (f) Fashion reconstructions (g) SVHN reconstructions (h) CIFAR10 reconstructions

Fig. 4. Reconstruction results by L-MVAE after the lifelong learning of MNIST, Fashion, SVHN and CIFAR10 (MFSC).

(a) CelebA images. (b) CACD images. (c) 3D-chairs images. (d) Omniglot images.

(e) CelebA reconstructions. (f) CACD reconstructions. (g) 3D-chairs reconstructions. (h) Omniglot reconstructions

Fig. 5. Reconstruction results by L-MVAE after the lifelong learning of the CelebA, CACD, 3D-chairs and Omniglot (CCDO).

(a) CelebA interpolation.

(b) CACD interpolation.

(c) 3D-chairs interpolation.

(d) Omniglot interpolation.

Fig. 6. Interpolation results after the lifelong learning of CelebA, CACD,
3D-chairs and Omniglot databases. The extreme images on each row are real,
while those in between are generated by L-MVAE as interpolations exploring
the latent space.

Dataset L-MVAE CURL [17] JVAE Lifelong

MNIST 48.66 272.95 195.79 MFSC
Fashion 53.02 190.36 173.64 MFSC
SVHN 40.39 127.64 208.19 MFSC
Cifar10 752.91 1409.74 1840.40 MFSC
MNIST 43.26 64.99 / CSFM
Fashion 44.15 131.13 / CSFM
SVHN 39.46 278.01 / CSFM
Cifar10 778.17 2406.13 / CSFM

TABLE III
NEGATIVE LOG-LIKELIHOOD (NLL) ESTIMATION FOR ALL TESTING

IMAGES FOR THE LIFELONG LEARNING OF THE PROBABILISTIC

REPRESENTATIONS FOR MNIST, FASHION, SVHN AND CIFAR10
DATABASES.

Dataset L-MVAE CURL [17] JVAE Lifelong

MNIST 25.83 167.09 68.59 MFSC
Fashion 34.09 139.91 141.16 MFSC
SVHN 27.20 84.45 295.94 MFSC
Cifar10 631.14 1225.41 1792.08 MFSC
MNIST 20.09 33.55 / CSFM
Fashion 26.46 252.53 / CSFM
SVHN 25.81 110.21 / CSFM
Cifar10 653.39 2340.37 / CSFM

TABLE IV
IMAGE AVERAGE RECONSTRUCTION ERROR FOR AFTER THE LIFELONG

LEARNING OF MNIST, FASHION, SVHN AND CIFAR10 DATABASES.
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(a) Age change

(b) Hair style

(c) Illumination

(d) Orientation

Fig. 7. Disentangled results after the Lifelong training with CelebA, CACD,
3D-chairs and Omniglot databases.

(a) Chair size

(b) Chair style

(c) Chair orientation

Fig. 8. Disentangled results after the Lifelong training with CelebA, CACD,
3D-chairs and Omniglot databases.
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Fig. 9. Reconstruction errors when changing the number of experts.

Dataset L-MVAE CURL [17] LGM [15]

CIFAR10 4.82 3.85 3.23
CIFAR100 4.78 3.56 3.64
ImageNet 5.01 3.72 3.47

TABLE V
THE IS SCORE FOR 5,000 TESTING IMAGES UNDER THE LIFELONG

LEARNING OF IMAGENET, CIFAR100, CIFAR10 AND MNIST
DATABASES.

Dataset L-MVAE CURL [17]

CIFAR10 4.73 3.59
CIFAR100 4.13 3.47
ImageNet 5.52 3.56

TABLE VI
THE IS SCORE FOR GENERATED IMAGES AFTER THE LIFELONG LEARNING

OF CIFAR100, CIFAR10 AND IMAGENET DATABASES.

(when training with all databases at once). These results show

that the proposed approach achieves the best results.

We also consider the lifelong training for ImageNet, CI-

FAR100, CIFAR10 and MNIST. After the training, we choose

5,000 images for testing from CIFAR10, CIFAR100 and Im-

ageNet, respectively, and we the IS score of the reconstructed

images is provided in Table V when comparing with CURL

[17] and LGM [15]. Then we train various models under the

CIFAR100, CIFAR10 and ImageNet lifelong learning and we

provide the results in Table VI. These results show that the

proposed model still provide the best performance even when

learning a sequence of several databases containing complex

and diverse images.

F. Ablation study

We perform an ablation study to investigate the performance

when we change the configuration of the mixture model. We

train L-MVAE with 4, 6, 8, 10 components under the MNIST,

Fashion, SVHN and Fashion lifelong learning setting. We plot

the average reconstruction errors on all MNIST testing samples

in Figure 9. The results show that the number of components

does not affect the performance too much and this is why we

use K = 4 components in the experiments.

We also investigate the performance of the proposed model

when not properly estimating the Dirichlet parameters, where

the weights wi, i = 1, . . . , 4 are sampled from the same

distribution. We call the model that does not have a component

selection as ”L-MVAE without dropout”. We train this model

under the same lifelong task learning as above and then we plot

the NLL results on the first task (MNIST) in Fig. 10 a, where

it can be observed that this model would lose its performance

during the following tasks when not following the proposed

dropout approach described in Section III-C. The reason for

such results is that all experts are activated during the learning

of the following tasks if the Dirichlet parameters are not

changed accordingly.

In the following experiments we provide empirical evidence

for the theory analysis results. We train the L-MVAE model

under the lifelong learning of MNIST, Fashion, SVHN and

CIFAR10 where we evaluate MELBO, from Eq. (2), for each
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(b) MELBO and ELBO estimation.

Fig. 10. Analysis results for the L-MVAE framework.
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Fig. 11. The risks evaluated at each epoch under the MNIST, Fashion, SVHN
and CIFAR10 lifelong learning.
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Fig. 12. The transfer learning ability s(θk, j), defined in Eq. (27), for the
proposed model under the MNIST, Fashion, SVHN and CIFAR10 lifelong
learning.

training step in the first task and the results are shown in

Fig. 10 b where we also consider a single VAE model with

optimal ELBO when training on MNIST (MELBO and ELBO

are estimated by using the negative reconstruction errors and

the KL divergence). From these results, MELBO is always

bounded by this optimal ELBO and still represents a lower

bound on the sample log-likelihood since log p(x) ≥ ELBO,

according to Theorem 2 from Section IV. In addition, we also

train a single expert with GRM and a mixture model with 4

experts under MNIST, Fashion, SVHN and CIFAR10 lifelong

learning. We consider the classification error rate as the risk

of a model evaluated on the testing set and the accumulated

errors are calculated by summing up the risk on the testing

sets of all learnt tasks. We consider 10 epochs for each task

training and plot the results in Fig. 11. We observe that when

considering a single model tends to have a large risk while

increasing the learning of additional tasks. The proposed L-

MVAE mixture model always has a lower risk than a single

VAE.

Model Lifelong IS

MIX+Wasserstein GAN in [55] No 4.04
DCGAN [56] in [57] No 4.89
ALI [58] in [57] No 4.97
PixelCNN++ [59] in [60] No 5.51
WGAN in [55] No 3.82
L-MVAE-MFSC Yes 5.77
L-MVAE-CSFM Yes 5.322

TABLE VII
INCEPTION SCORE (IS) EVALUATED ON CIFAR10.

G. Transfer metric and transfer learning

In this section, we evaluate how quickly the proposed L-

MVAE approach learns a new task when presented with a

new database for training. We can interpret the learning of the

probabilistic representation of a new dataset by L-MVAE, as q

knowledge transfer process from one domain to another. This



12

0 20 40 60 80 100
Batches

0

250

500

750

1000

1250

1500

1750

Av
er
ag

e 
re
co

ns
tru

ct
io
n 
er
ro
rs
 o
n 
Fa

sh
io
n

Transfer ability during the lifelong learning
The proposed
Baseline

(a) Fashion

0 20 40 60 80 100
Batches

0

200

400

600

800

1000

1200

1400

Av
er
ag

e 
re
co
ns
tru

ct
io
n 
er
ro
rs
 o
n 
SV

HN

Transfer ability during the lifelong learning
The proposed
Baseline

(b) SVHN

0 20 40 60 80 100
Batches

1000

1500

2000

2500

3000

3500

4000

4500

Av
er
ag
e 
re
co
ns
tru

ct
io
n 
er
ro
rs
 o
n 
CI
FA
R1

0

Transfer ability during the lifelong learning
The proposed
Baseline

(c) Cifar10

Fig. 13. Average reconstructions errors during the lifelong learning.

MSE SSMI PSNR

Datasets L-MVAE-Dynamic BatchEnsemble [61] L-MVAE-Dynamic BatchEnsemble [61] L-MVAE-Dynamic BatchEnsemble [61]

MNIST 20.45 19.06 0.91 0.92 22.24 22.64
Fashion 35.55 179.72 0.74 0.27 19.45 12.23
SVHN 31.78 130.63 0.63 0.35 15.37 9.05
CIFAR10 853.42 846.52 0.34 0.36 17.28 17.34

Average 235.30 293.98 0.66 0.47 18.59 15.31

TABLE VIII
THE RECONSTRUCTION PERFORMANCE OF VARIOUS MODELS UNDER THE MFSC LIFELONG LEARNING.
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Fig. 14. The negative log-likelihood (NLL) evaluated when learning the
second task.

Dataset L-MVAE-Dynamic BatchEnsemble [61]

MNIST 99.18 99.34
Fashion 90.46 88.52
SVHN 78.63 74.85
CIFAR10 63.71 54.80

Average 82.99 79.38

TABLE IX
THE CLASSIFICATION ACCURACY OF VARIOUS MODELS UNDER MFSC

LIFELONG LEARNING.

Dataset L-MVAE-Dynamic BatchEnsemble [61]

MNIST 89.40 99.17
SVHN 86.54 70.59
Fashion 90.44 85.72
IFashion 89.35 85.47
IMNIST 99.27 98.84
RFashion 91.74 87.39
CIFAR10 67.91 54.69

Average 87.81 83.13

TABLE X
THE CLASSIFICATION ACCURACY OF VARIOUS MODELS UNDER MSFIIRC

LIFELONG LEARNING.

results in mixing the information being learnt by the expert

from the new database with the information already stored

in the networks’ parameters, corresponding to the previously

learnt tasks. In this paper, we propose a new metric, assessing

the ability for transferring information during the lifelong

learning when learning each new task. Considering a batch of

Nj images from the given j-th database, we have the following

measure:

s(θk, j) =
1

Nj

Nj
∑

i=1

δ(xi,j , fθk(xi,j)) (27)

where s(θk, j) is the performance score of the k-th mixture

component of parameters θk for the j-th task, and {xi,j ∈
Xj |i = 1, . . . , Nj} represents a given batch of images sampled

from the j-th database, and δ(·, ·) is the performance metric,

considered as either the Mean Square Error (MSE), or it can

be the classification accuracy, depending on the application

of each task. fθk(xi,j) represents the image reconstructed by

the L-MVAE model considering the given batch of images
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xi,j corresponding to the j-th task. The proposed metric can

measure the training efficiency when a model is trained with

a new task, representing the information transfer ability of the

model when learning new tasks.

We train the L-MVAE model under the MNIST, Fashion,

SVHN and CIFAR10 lifelong learning setting. The transfer

ability during the lifelong learning is evaluated in Fig. 12, by

considering the MSE as δ(·, ·) in equation (27). These results

show that the proposed approach converges quickly when

learning the probabilistic representation of a new database.

The baseline is considered to be our model trained on a single

dataset, MNIST. The average reconstruction errors, calculated

using equation (27) are provided in Figures 13 a-c for Fashion,

SVHN and CIFAR10 databases, respectively. We observe that

the proposed approach adapts quickly to a new task when

compared to the baseline. We further investigate the difference

of the transfer ability when considering learning the tasks in a

different order. We train our model under the CelebA to CACD

and CelebA to Omniglot, respectively. Then we measure the

negative log-likelihood of the model for the second task and

the results are presented in Fig. 14. It can be observed that

learning CACD as the prior task can significantly accelerate

the convergence when the future task shares similar visual

concepts to the prior task.

H. Studying the over-regularization factors during training

In this section, we discuss the over-regularization problem in

the proposed L-MVAE mixture model. A strong penalty on the

KL divergence term in the VAE framework [28] can allow the

variational distribution to match the prior distributions exactly,

so DKL(q(z|x)||p(z)) = 0. However, this may lead to a poor

representation of the underlying data structure for q(z|x) =
p(z). To solve this problem, we implement each expert by

using β-VAE [29], which includes a penalty term β⋆ on KL

divergence, expressed as :

log p(x) ≥ Ez∼qε(z|x)[log pθ(x|z)]− β⋆DKL[qε(z|x)||p(z)].
(28)

In the beginning of the training, we use a small β⋆ which we

then gradually increase β⋆ up to 1.0, during each task training,

in the mixture objective function LL−MVAE from Eq. (2),

after replacing Li
V AE(x) by using Eq. (28). We train the

mixture model L-MVAE under the MNIST, Fashion, SVHN

and CIFAR10 lifelong setting (MFSC sequence) as well as

when considering learning these databases in reversed order,

denoted as CSFM. We evaluate the Inception Score (IS) on

5000 testing samples from CIFAR10 and the corresponding

reconstructions obtained by L-MVAE-MFSC and L-MVAE-

CSFM, respectively. L-MVAE-MFSC and L-MVAE-CSFM

represent L-MVAE to be trained on the order “MFSC” and

“CSFM”, respectively. The reconstruction results measured by

Mean Squared Error (MSE), the structural similarity index

measure (SSIM) [62] and Peak-Signal-to-Noise Ratio (PSNR)

[62] are provided in Table VII show that L-MVAE achieves

competitive results when comparing with other generative

models, such as BatchEnsemble [61], that are only trained on

CIFAR10. Additionally, the results also show that the order of

learning the four databases does not have a significant impact

on the L-MVAE training.

I. The results for the expandable mixture model

In this section, we evaluate the performance of the proposed

expansion mechanism. We also compare to a state of the

art ensemble model, called BatchEnsemble [61]. In order to

allow BatchEnsemble to do unsupervised learning tasks, we

implement each ensemble member as a VAE. We use the MSE,

SSIM PSNR for the evaluation of reconstruction quality. We

train L-MVAE and BatchEnsemble under MNIST, Fashion,

SVHN and CIFAR10 lifelong learning. We set threshold

S⋆ = 600. After the training, L-MVAE has added three new

components in the mixture model. We report the performance

of the reconstruction in Table VIII where L-MVAE-Dynamic

outperforms BatchEnsemble on three criteria. In the following,

we perform the classification tasks under MNIST, Fashion,

SVHN, and CIFAR10 lifelong learning. After the training,

L-MVAE-Dynamic has four components. We report the re-

sults in Table IX. It observes that L-MVAE-Dynamic outper-

forms BatchEnsemble. We also perform a long sequence of

tasks : MNIST, SVHN, Fashion, InverseFashion (IFashion), In-

verseMNIST (IMNIST), RatedFashion (RFashion), CIFAR10

(MSFIIRC). We set the threshold S⋆ = 400 in Eq.(25) for

MSFIIRC and provide the results in Tabel X where L-MVAE-

Dynamic has five components after the lifelong learning. The

first component is reused to learn RMNIST and the third

component is reused to learn RFashion. This demonstrates

that the proposed selection process can choose an appropriate

expert that shares similar knowledge with a future task. Under

this challenging learning setting, L-MVAE-Dynamic almost

achieves the best results in each task when compared to

BatchEnsemble.

VIII. CONCLUSION

This paper proposes a novel mixture system, called Lifelong

Mixtures of VAEs (L-MVAE) model which is enabled for

lifelong representation learning. Each time when a new task

is available, the L-MVAE model adapts its weights in order

to learn its corresponding probabilistic representation, without

forgetting the information learnt from the previous tasks. A

mixing-coefficient is used to determine which experts are

activated or inactivated during the lifelong learning, prevent-

ing catastrophic forgetting. The proposed lifelong learning

framework is applied for supervised, unsupervised and in

semi-supervised learning. The L-MVAE model is also enabled

with an expanding component mechanism. When presented

with learning a completely new database, the mixture adds a

component, while otherwise it updates the most suitable ex-

isting component. Experiments on various databases show the

abilities of the proposed model in representing latent spaces

inferred from learning sequentially from various databases.

The representation capabilities of the model are shown by its

ability to infer disentangled representations and interpolations

in multiple domains learnt during the lifelong learning.
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