
This is a repository copy of Learning safe neural network controllers with barrier 
certificates.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176884/

Version: Accepted Version

Article:

Zhao, Hengjun, Zeng, Xia, Chen, Taolue et al. (2 more authors) (2021) Learning safe 
neural network controllers with barrier certificates. Formal Aspects of Computing. pp. 437-
455. ISSN 1433-299X 

https://doi.org/10.1007/s00165-021-00544-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Learning Safe Neural Network Controllers

with Barrier Certificates⋆

Hengjun Zhao1, Xia Zeng1, Taolue Chen2, Zhiming Liu1, and Jim Woodcock1,3

1 School of Computer and Information Science, Southwest University
{zhaohj2016, xzeng0712, zhimingliu88}@swu.edu.cn
2 Department of Computer Science, University of Surrey

taolue.chen@surrey.ac.uk
3 Department of Computer Science, University of York

jim.woodcock@york.ac.uk

Abstract. We provide a novel approach to synthesize controllers for
nonlinear continuous dynamical systems with control against safety prop-
erties. The controllers are based on neural networks (NNs). To certify the
safety property we utilize barrier functions, which are also represented by
NNs. We train controller-NN and barrier-NN simultaneously, achieving
verification-in-the-loop synthesis. We provide a prototype tool nncon-

troller with a number of case studies. Preliminary experiment results
confirm the feasibility and efficacy of our approach.
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1 Introduction

Controller design and synthesis is the most fundamental problem in control the-
ory. In recent years, especially with the boom of deep learning, there have been
considerable research activities in the use of neural networks (NNs) for control
of nonlinear systems [15, 8]. NNs feature versatile representational abilities of
nonlinear maps and fast computation, making them an ideal candidate for so-
phisticated control tasks [16]. Typical examples include self-driving cars, drones,
and smart cities. It is noteworthy that many of these applications are safety-
critical systems, where safety refers to, in a basic form, that the system cannot
reach a dangerous or unwanted state. For control systems in a multitude of
Cyber-Physical-System domains, designing safe controllers which can guarantee
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safety behaviors of the controlled system is of paramount importance [19, 2, 20,
9, 23, 4, 5, 26, 12, 24, 1, 10].

Typically, when a controller is given, formal verification is usually required
to certify its safety. In our previous work [27], we have dealt with the verification
of continuous dynamical systems by the aid of neural networks. In a nutshell,
we follow a deductive verification methodology therein by synthesizing a barrier
function, the existence of which suffices to show the safety of the controlled dy-
namical system. The crux was to use neural networks to represent the barrier
functions. In this work, we follow a correctness-by-design methodology by con-
sidering synthesizing controllers which can guarantee that the controlled system
is safe, which is considerably more challenging and perhaps more interesting. In
a nutshell, we learn two neural networks simultaneously: one is to represent the
controller (henceforth referred to as controller-NN), and the other is to represent
the barrier function (henceforth referred to as barrier-NN). The synergy of the
two neural networks, supported by an additional verification procedure to make
sure the learned barrier-NN is indeed a barrier certificate, provides the desired
safety guarantee for the application. The advantages of our approach are three-
fold: (1) the approach is data-driven, requiring considerably less control theory
expertise; (2) the approach can support non-linear control systems and safety
properties, owing to the representation power of neural networks; and (3) the ap-
proach can achieve verification-in-the-loop synthesis, owing to the co-synthesis of
controllers and barrier functions, which can be seamlessly integrated to provide
a correctness-by-design controller as well as its certification.

This short paper reports the general methodology, including the design of
the NNs, the generation of training data, the training process, as well as the as-
sociated verification. We shall also report a prototype implementation and some
preliminary experiment results. For space restriction, we will leave the discussion
of related work (e.g., [3, 25, 7]), and further improvement of the performance of
the learned controller (e.g., bounded and asymptotically stable controller), as
well as more extensive experiments, to the full version. ([ref-arxiv], Hengjun)

2 Preliminaries

A constrained continuous dynamical system (CCDS) is represented by Γ =
(f , XD, XI , XU ), where f : Ω → R

n is the vector field, XD ⊆ Ω is the system do-
main, XI ⊆ XD, and XU ⊆ XD. The system dynamics is governed by first-order
ordinary differential equations ẋ = f(x) for f(x) = (f1(x), · · · , fn(x)), where ẋ
denotes the derivative of x w.r.t the time variable t. We assume that f satisfies
the local Lipschitz condition, which ensures that given x = x0, there exists a
time T > 0 and a unique trajectory x(t) : [0, T ) → R

n such that x(0) = x0,
which is denoted by x(t,x0). In this paper, we consider controlled CCDS

{

ẋ = f(x,u)
u = g(x)

(1)

where u ∈ U ⊆ R
m are the feedback control inputs, and f : Rn+m → R

n and
g : Rn → R

m are locally Lipschitz continuous.
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The problem we considered in this paper is defined as follows.

Definition 1 (Safe Controller Synthesis). Given a controlled CCDS Γ =
(f , XD, XI , XU ) with f defined by (1), design a locally continuous feedback control
law g such that the closed-loop system Γ with f = f(x,g(x)) is safe, that is,
system trajectory from XI never reaches XU as long as it remains in XD.

Barrier Certificate. Given a system Γ , a barrier certificate is a real-valued
function B(x) over the states of the system satisfying the condition that B(x) ≤
0 for any reachable state x and B(x) > 0 for any state in the unsafe set XU .
If such a function B(x) exists, one can easily deduce that the system can not
reach a state in the unsafe set from the initial set [17, 18]. In this paper, we will
certify the safety of a synthesized controller by generating barrier certificates.

There are several different formulations of barrier certificates without explicit
reference to the solutions of the ODEs [17, 14, 6, 22]. In this paper, we will adopt
what are called strict barrier certificate [21] conditions.

Theorem 1 (Strict barrier certificate). Given a system Γ = (f , XD, XI , XU ),
if there exists a continuously differentiable function B : XD → R such that (1)
B(x) ≤ 0 for ∀x ∈ XI , (2) B(x) > 0 for ∀x ∈ XU , and (3) LfB(x) < 0 for
all x ∈ XD s.t. B(x) = 0. Then the system Γ is safe, and such B is a bar-
rier certificate. (Note that LfB is the Lie derivative of B w.r.t. f defined as
LfB(x) = f(x) · ∇B =

∑n

i=1(fi(x) · ∂B
∂xi

(x)) .)

3 Methodology

The framework of our safe controller learning approach is demonstrated in Fig. 1.
Given a controlled CCDS Γ = (f , XD, XI , XU ), the basic idea of the proposed

Fig. 1. The framework of safe neural network controller synthesis

approach is to represent the controller function g as well as the safety certificate
function B by two NNs, i.e. Nc and Nb respectively. Then we formulate the
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barrier certificate conditions w.r.t. Nb and the closed-loop dynamics f(x,Nc(x))
into a loss function, and then train the two NNs together on a generated training
data set until the loss is decreased to 0. The resulting two NNs are the controller
and barrier certificate candidates, the correctness of which is guaranteed by for-
mal verification (SMT solver in this paper). The blue (solid), red (dashed), and
green (dotted) arrows in Fig. 1 shows the information flow of forward propaga-
tion, backward propagation, and formal verification, respectively. Next, before
giving more detailed steps of our approach, we first introduce a running example.

Example 1 (Dubins’ car [25, 7]). The control objective is to steer a car with
constant velocity 1 to track a path, here the X-axis in the postive direction.
The states of the car are the x, y position and the driving direction θ, which can
be transformed to the distance error de and angle error θe between the current
position and the target path (cf. the left part of Fig. 2). The controlled CCDS
is:

f :

[

ḋe

θ̇e

]

=

[

sin(θe)
−u

]

, where u is the scalar control input

– XD: {(de, θe) ∈ R
2| − 6 ≤ de ≤ 6,−7π/10 ≤ θe ≤ 7π/10};

– XI : {(de, θe) ∈ R
2| − 1 ≤ de ≤ 1,−π/16 ≤ θe ≤ π/16};

– XU : the complement of {(de, θe) ∈ R
2| − 5 ≤ de ≤ 5,−π/2 ≤ θe ≤ π/2}.

Fig. 2. Left: the car states; Right: simulated car trajectories with learned NN controller.

The right of Fig. 2 shows simulated trajectories on the x-y plane from 50 random
initial states in XI using our learned NN controller u. The two red horizontal
lines are the safety upper and lower bounds (±5) for y (the same bounds as de).

3.1 The Structure of Nc and Nb

We first fix the structure of Nc and Nb as follows, assuming that in Γ , x and u
are of n and m dimension respectively, e.g. n = 2,m = 1 for Example 1.

– Input layer has n neurons for both Nc and Nb;
– Output layer has m neurons for Nc and one single neuron for Nb;
– Hidden layer: there is no restriction on the number of hidden layers or the

number of neurons in each hidden layer; for Example 1, Nc has one hidden
layer with 5 neurons, and Nb has one hidden layer with 10 neurons.
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– Activation function: considering both the simplicity and the inherent re-
quirement of local Lipschitz continuity [13] and differentiability, we adopt
ReLU, i.e. a(x) = max(0, x) for Nc, and Bent-ReLU [27], i.e., a(x) =
0.5 · x +

√
0.25 · x2 + 0.0001 for Nb respectively for hidden layers; the ac-

tivation of the output layer is the identity map for both Nc and Nb.

3.2 Training Data Generation

In our training algorithm, training data are generated by sampling points from
the domain, initial set, and unsafe region of the considered system. No simulation
of the continuous dynamics is needed. The simplest sampling method is to grid
the super-rectangles bounding XD, XI , XU with a fixed mesh size, and then
filter those points not satisfying the constraints of XD, XI , XU . For example,
we generate a mesh with 28 × 28 points from XD for Example 1. The obtained
three finite data sets are denoted by SD, SI , and SU .

3.3 Loss Function Encoding

Given SI , SU , and SD, the loss function can be expressed as

L(SD, SI , SU ) =
∑

x∈SI

L1(x) +
∑

x∈SU

L2(x) +
∑

x∈SD

L3(x) with (2)

L1(x) = ReLU(Nb(x) + ε1) for x ∈ SI ,
L2(x) = ReLU(−Nb(x) + ε2) for x ∈ SU ,
L3(x) = ReLU

(

LfNb(x) + ε3
)

for x ∈ {x ∈ SD : |Nb(x)| ≤ ε4}
(3)

where the sub-loss functions L1-L3 encode the three conditions of Theorem 1.
The basic idea is to give a positive (resp., zero) penalty to those sampled points
that violate (resp., satisfy) barrier certificate conditions. ε1, ε2, ε3 are three small
non-negative tolerances, and ε4 is a small positive constant approximating the
zero-level set of Nb. Note that in the expression LfNb above, f is f(x,Nc(x)).

3.4 The Training Process

We adopt a modified stochastic gradient descent (SGD) [11] optimization tech-
nique for training the two NNs. That is, we partition the training data set into
mini-batches and shuffle the list of batches, rather than the whole training set,
to gain some randomness effect. To start the training, we specify ε1 to ε4 in
the loss function, as well as hyper-parameters such as learning rate, number of
epochs, number of mini-batches, etc. The training algorithm terminates when
the loss is decreased to 0 or exceeds the maximum number of restarts.

3.5 Formal Verification

The rigorousness of the NNs resulting from 0 training loss is not guaranteed
since our approach is data-driven. Therefore we resort to formal verification to
guarantee the correctness of our synthesized controllers. To preform the verifica-
tion, we replace the f and B in the conditions of Theorem 1 by f(x,Nc(x)) and
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Nb, and the negation of the resulting constraints are sent to the interval SMT
solver iSAT31 for satisfiability checking. To reduce the degree of nonlinearity in
the constraints, we compute piece-wise linear approximations of the Bent-ReLU
function and its derivative.

Fig. 3. Learned and verified NN controller and barrier certificate for Example 1. Left:
ε1 = ε2 = 0, ε3 = ε4 = 0.01, the inner (green) and outer (red) shaded areas are
the initial and unsafe regions, black arrows in the white area are the closed-loop vector
fields f(x,Nc(x)), and the blue curve surrounding the inner shaded box is the zero-level
set of Nb; Right: ε1 = 0.02, ε2 = 0.8, ε3 = 0.01, ε4 = 0.05.

Pre-training and Fine-tuning. The success of synthesis and formal verification
heavily relies on the choices of the four constants ε1 to ε4 in (2) and (3). In
practice, we adopt a pre-training and fine-tuning combination strategy. That is,
we start with small positive ε4 and zero ε1 to ε3 to perform the training and
verification, and gradually increase the values when formal verification fails. For
Example 1, the first controller and barrier are synthesized with ε4 = 0.01 and
ε1 = ε2 = ε3 = 0, and the fine-tuned controller and barrier are successfully
verified when ε3 was increased to 0.01 (cf. the left part of Fig. 3). Further fine-
tuning gives a controller with larger safety margin (cf. the right part of Fig. 3).

4 Implementation and Experiment

We have implemented a prototype tool nncontroller2 based on PyTorch3. We
apply nncontroller to a number of case studies in the literature [25, 7, 28]. All ex-
periments are performed on a laptop running Ubuntu 18.04 with Intel i7-8550u
CPU and 32GB memory. The average time costs of pre-training for Example 1
over 5 different runs is 26.35 seconds. Formal verification of the fine-tuned con-
troller for Example 1 (cf. the left part of Fig. 3) with iSAT3 costs 8.27 seconds.
The other experiment results will be reported in the full version. [ref-arxiv]
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