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Correlating single-molecule characteristics of the yeast aquaglyceroporin 
Fps1 with environmental perturbations directly in living cells 
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A B S T R A C T   

Membrane proteins play key roles at the interface between the cell and its environment by mediating selective 
import and export of molecules via plasma membrane channels. Despite a multitude of studies on trans-
membrane channels, understanding of their dynamics directly within living systems is limited. To address this, 
we correlated molecular scale information from living cells with real time changes to their microenvironment. 
We employed super-resolved millisecond fluorescence microscopy with a single-molecule sensitivity, to track 
labelled molecules of interest in real time. We use as example the aquaglyceroporin Fps1 in the yeast Saccha-
romyces cerevisiae to dissect and correlate its stoichiometry and molecular turnover kinetics with various 
extracellular conditions. We show that Fps1 resides in multi tetrameric clusters while hyperosmotic and 
oxidative stress conditions cause Fps1 reorganization. Moreover, we demonstrate that rapid exposure to 
hydrogen peroxide causes Fps1 degradation. In this way we shed new light on aspects of architecture and dy-
namics of glycerol-permeable plasma membrane channels.   

1. Introduction 

Traditional techniques in biochemistry and molecular biology are 
usually performed on a population ensemble average level. Such ap-
proaches “smooth” the noise by averaging the observations from 
anomalous outlying units. Every population under investigation, 
whether it is a cell culture or a protein bulk within a unicellular or-
ganism, is a heterogeneous system. Therefore, ensemble averaging 
masks important effects of subpopulations [1–3], such as drug resistant 
bacteria or cancer cells [4–6]. Single-molecule optical biophysics 
methods permit real-time visualization of key cellular processes [7], the 
action of so-called biological ‘nanomachines’ [8], such as signal trans-
duction, gene expression, immune response, mapping cellular genome, 
etc., providing direct insights into molecular mobility, stoichiometry, 

copy numbers [9,10]. Novel localization-based super-resolved micro-
scopy techniques allow tracking individual molecules of the same type 
(e.g. FliM protein of Escherichia coli [8]) or different types (e.g. corre-
lating separate motions of proteins and lipids in the same bacteria cell 
[11]) to uncover “hidden” subpopulations, thus, determining precise 
biological functions [9]. 

An important part in understanding the regulation of a membrane 
protein is revealing its dynamics of within the membrane, interaction 
with other proteins, re-localization and turnover [9]. One of the most 
frequently used super-resolution methods for plasma membrane protein 
studies is total internal reflection fluorescence (TIRF) due to its relative 
simplicity to setup to enable selective illumination and excitation of 
fluorophores positioned close to the cover slip. Photoactivated locali-
zation microscopy (PALM) and stochastic optical reconstruction 
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microscopy (STORM) have a wide range of applications including 
membrane protein investigations too [4]. Conventional PALM and 
STORM utilize a photoconversion process of the fluorophore and involve 
reconstruction over normally thousands of consecutive image frames. 
These techniques have a typical effective temporal resolution of 0.5–1 s 
which provides limitations in studying fast dynamic processes in living 
cells [12,13]. However, more rapid sptPALM approaches have recently 
been employed to monitor dynamics with a time resolution of a few tens 
of ms per frame [14]. 

The plasma membrane is a selectively-permeable natural barrier that 
ensures cell homeostasis via controlling among others nutrient sensing 
and uptake as well as flux of metabolites [15–17]. The Fps1 protein of 
the budding yeast Saccharomyces cerevisiae is a gated aquaglyceroporin, 
a member of the major intrinsic protein (MIP) family of plasma mem-
brane channel proteins. The primary purpose of Fps1 is to mediate the 
efflux of glycerol to regulate cellular turgor pressure [18]. Fps1 is 
actively regulated in response to hyper and hypo-osmotic stress, or 
presence of compounds in the environment to which Fps1 is permeable 
[18–21]. 

Studies on Fps1 channel stoichiometry via co-immunoprecipitation 
followed by SDS-PAGE separation and immunoblot analysis suggest 
that Fps1 exists as a monomer but may also self-associate into multi-
meric complexes with up to four Fps1 molecules [22]. Structural ana-
lyses on other MIP members, canonically water permeable aquaporins 
[23], indicate a tetrameric organization where each monomer defines a 
pore with a possible fifth pore formed in the center of the tetramer [24]. 
However, the aspects of MIP channels assembly, architecture and de-
pendencies of their regulation in living cells on the microenvironment, 
remain to be elucidated. 

Here, we employ single-molecule Slimfield super-resolved fluores-
cence microscopy on GFP-tagged yeast Fps1 to reveal new aspects of the 
MIP proteins organization and regulation which links directly to their 
function and, importantly, correlate our observations to changes in the 
extracellular microenvironment. Slimfield is a powerful optical micro-
scopy tool that uses spatially delimited illumination confined to vicinity 
of approximately a single cell and enables millisecond imaging of fluo-
rescent protein fusions directly in living cells [25–27]. We have also 
combined this technique with deconvolution analysis to calculate Fps1 
copy numbers. Our study provides novel insights into understanding of 
cellular adaptation to the microenvironment through characterization of 
the plasma membrane channels. 

2. Materials and methods 

2.1. Growth conditions and media 

Cells from frozen stocks were pre-grown on standard YPD medium 
(20 g/L Bacto Peptone, 10 g/L Yeast Extract) supplemented with 2% 
glucose (w/v) at 30 ◦C overnight. For liquid cultures, cells were grown in 
Yeast Nitrogen Base (YNB) medium (1× Difco™ YNB base, 1× For-
medium™ complete amino acid Supplement Mixture, 5.0 g/L ammo-
nium sulfate, pH 5.8–6.0) supplemented with 2% glucose (w/v) and 1 M 
sorbitol if required, at 30 ◦C, 180 rpm. 

For microscopy experiments, cells were pre-grown overnight in YNB 
media with 20 g/L glucose and grown until mid-logarithmic phase, 
OD600 0.4–0.7. For sorbitol experiments, all media were supplemented 
with 1 M sorbitol throughout the whole process to reach full osmoa-
daptation to the high osmolarity. For oxidative stress experiments, cul-
tures were treated with 0.4 mM H2O2 immediately prior to imaging. 
Cells were then immobilized by placing 5 µL of the cell culture onto a 1% 
agarose pad perfused with YNB supplemented with 2% glucose (w/v) 
and 1 M sorbitol or 0.4 mM H2O2. The pad with cells was sealed with a 
plasma-cleaned BK7 glass microscope coverslip (22 × 50 mm). 

2.2. Strain construction 

To prevent artificial aggregation of GFP, we used a variant (further 
denoted as mGFP) containing a A206K mutation to discourage self- 
oligomerization, as well as S65T and S72A mutations to improve pro-
tein photostability and fluorescence output [4,28,29]. Although within 
protein fusions, large fluorescent proteins may disturb physiological 
behavior of a protein under investigation, functionality of fluorescently 
labelled Fps1 has been previously confirmed [19,30–32]. 

mGFP-HIS3 fragment from pmGFP-S plasmid [33], flanked with 50 
bp up- and downstream the STOP codon of the FPS1 gene on 5′ and 3′

ends, respectively, was amplified by PCR using 200 µM of each dNTP, 
forward and reverse primers 0.5 µM each, 1x Phusion HF buffer (Thermo 
Scientific), 0.02 U/µL Phusion™ High-Fidelity DNA Polymerase 
(Thermo Scientific) reaction mix (for PCR program details see Supple-
mentary Table 1) and purified with QIAquick PCR Purification Kit 
(QIAGEN). The Fps1-mGFP strain was created by transforming the 
BY4741 background strain with 100 µL of the purified mGFP-HIS3 
fragment with standard LiAc protocol to allow for homologous recom-
bination [34]. Successful clones were verified by the confirmation PCR 
and standard epifluorescence microscopy. PCR primers used in this 
study are listed in Supplementary Table 2. 

2.3. 4 Single-molecule Slimfield microscopy 

Slimfield excitation was implemented via 50mW 473 nm wavelength 
laser (Vortran Laser Technology, Inc.) de-expanded to direct a beam 
onto the sample at 15mW excitation intensity to observe single GFP in 
living yeast cells [33]. Fluorescence emission was captured by a 1.49 NA 
oil immersion objective lens (Nikon) followed by 300 mm focal length 
tube lens (Thorlabs) [10]. Images were collected at 5 ms exposure time 
every 10 ms by Photometrics Evolve 512 Delta EMCCD camera using 93 
nm/pixel magnification. 

The focal plane was set to mid-cell height using the brightfield 
appearance of cells. As photobleaching of mGFP proceeded during 
Slimfield excitation distinct fluorescent foci could be observed of half 
width at half maximum 250–300 nm, consistent with the diffraction- 
limited point spread function of our microscope system, which were 
tracked and characterized in terms of their stoichiometry and apparent 
microscopic diffusion coefficient. Distinct fluorescent foci that were 
detected within the microscope’s depth of field could be tracked for up 
to several hundred ms, to a super-resolved lateral precision ~40 nm [35] 
using a bespoke single particle tracking software written in MATLAB 
(MATHWORKS) and adapted from similar live cell single-molecule 
studies [10,35–37]. 

The molecular stoichiometry for each track was determined by 
dividing the summed pixel intensity values associated with the initial 
unbleached brightness of each foci by the brightness corresponding to 
that calculated for a single fluorescent protein molecule (mGFP for 473 
nm wavelength excitation) measured using a step-wise photobleaching 
technique described elsewhere [33,38]. The apparent microscopic 
diffusion coefficient D was determined for each track by calculating the 
initial gradient of the relation between the mean square displacement 
with respect to tracking time interval using the first 10 time intervals 
values while constraining the linear fit to pass through 4σ2 on the ver-
tical axis corresponding to a time interval value of zero. Maturation 
effects of fluorescent protein fusions withing living cells were charac-
terized on similar yeast cell lines previously, indicating typically 
10–15% immature ‘dark’ fluorescent protein [39]. 

Similar to molecular stoichiometry calculations, total numbers of 
Fps1-mGFP were estimated based on the background- and auto-
fluorescence corrected integrated density values of each cell as well as 
fluorescence intensity of a single fluorophore obtained through ImageJ 
Fiji Software. 
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3. Protein extracts preparation and immunoblotting 

Cells were grown in 100 mL of YNB medium supplemented with 4% 
glucose at 30 ◦C, 180 rpm. When OD600 reached 0.8, 50 mL was trans-
ferred to a new flask and subjected to 0.4 mM H2O2 for 1 h while the 
remaining 50 mL were kept untreated as a control. Cells were harvested 
by centrifugation (2000g, 10 min) and washed in 10 mL of a wash buffer 
(10 mM TrisHCl pH 7.5, 0.5 M sucrose, 2.5 mM EDTA), and in 20 mL of 
ice cold homogenization buffer (50 mM TrisHCl pH 7.5, 0.3 M sucrose, 5 
mM EDTA, 1 mM EGTA, 2 mM DTT, 1× protease inhibitor (cOmplete 
EDTA free, Roche)). To obtain lysates, cells were resuspended in 0.5 mL 
of ice cold homogenization buffer with an addition of 0.5 mL of acid 
washed glass beads, and disrupted at 4 ◦C with a FastPrep-24™ instru-
ment (MP-Biomedicals) in 3 × 20 s cycles (speed 6.0 m/s, 5 min rest on 
ice between each cycle). Lysates were cleared via centrifugation (10 
000g, 10 min, 4 ◦C), and the supernatant was centrifuged again (100 
000g, 1 h, 4 ◦C). Pellets were washed with a membrane wash buffer (10 
mM TrisHCl pH 7.0, 1 mM EGTA, 1 mM DTT, 1x protease inhibitor), 
repelleted via centrifugation (40 000g, 1 h, 4 ◦C) and dissolved in 100 µL 
of ice-cold membrane wash buffer. The total protein concentration was 
determined via UV–Vis (Nanodrop 1000, Thermo Fisher Scientific). 
Prior to SDS-page, protein extracts were mixed with Laemmli buffer [40] 
and heated at 95 ◦C for 5 min. Separation was done via SDS-page 
(4–15% Criterion™ TGX™ Precast Midi Protein Gel, Bio-Rad Labora-
tories) with equal amounts of total protein per well for all sample pairs. 
Resolved proteins were transferred onto a nitrocellulose membrane (0.2 
µm NC, Bio-Rad Laboratories) using a Trans-Blot Turbo (Bio-Rad Labo-
ratories). The membrane was blocked for 1 h with an Intercept PBS 
blocking buffer (LI-COR biosciences) and incubated with a primary 
antibody (mouse anti-GFP (Roche), 1:10 000 dilution in the Intercept 
PBS blocking buffer) for 15 h at 4 ◦C. The membrane was then washed 5 
× 5 min with PBSt (PBS buffer with 0.1% Tween-20) and incubated with 

the secondary antibody (IRDye 800CW goat anti-mouse, 1:20 000 
dilution in Intercept PBS blocking buffer) at the room temperature for 1 
h followed by washing with PBSt as indicated above. Prior to imaging, 
the membrane was washed 2 × 5 min with PBS. Signals were visualized 
using an Odyssey IR scanner (LI-COR Biosciences). Band intensity was 
quantified with Image-Studio Lite (LI-COR Biosciences) using local 
background normalization. 

4. Results and discussion 

4.1. Fps1 resides in multi tetrameric assemblies 

In both eukaryotes and prokaryotes, aquaglyceroporins have been 
reported to act as tetramers [41–44]. To visualize and further investigate 
previous reports on Fps1 tetramerization [22], we employed single- 
colored single-molecule fluorescence Slimfield super-resolution micro-
scopy (Fig. 1A) to determine the stoichiometry of the GFP-tagged yeast 
Fps1 under non-stressed conditions (Fig. 1B, top panel, Supplementary 
Video 1). We acquired about 500 frames per field of view at the rate of 
200 frames per second, and applied a bespoke MATLAB code [33,35] to 
identify all bright spots in each frame and link them to spots in neigh-
boring frames in order to build trajectories. The stoichiometry of each 
fluorescent spot was identified by comparing its fluorescent intensity 
with that corresponding to a single GFP molecule. Consistent with pre-
viously published data and observations of aquaporins in other eu-
karyotes, Fps1 seems to be present as tetramers, which are also 
organized in higher stoichiometry spots (Fig. 1C). Based on the previous 
estimation of the S. cerevisiae plasma membrane width [45], we 
accepted any GFP tracks found between the cell boundaries identified 
from the brightfield image and ca. 7 nm into the cell as the plasma 
membrane foci, henceforth referred to as membrane, while the spots 
found in the rest of the cell as “intracellular”. The mean apparent 
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Fig. 1. A. Single-colored Slimfield super-resolved microscopy setup. B. Examples of Slimfield images of S. cerevisiae cells expressing genomically integrated Fps1- 
mGFP fusion under non-stressed conditions (top panel, glucose), hyper-osmotic conditions (middle panel, sorbitol) and 30 min oxidative stress (bottom panel, 
H2O2): brightfield and green channel (right) are shown. White arrows point at the fluorescent foci located in the cell membrane. Scale bar 2 µm. C. Kernel Density 
Estimation plot (kernel width = 0.7) of the Fps1-mGFP stoichiometry distribution under non-stressed conditions (n = 40 cells). D. Kernel Density Estimation plots of 
the Fps1-mGFP stoichiometry distributions on the cellular membrane (magenta) and intracellular (green) spots. Inset: Jitter plots of membrane (magenta) and 
intracellular (green) Fps1-mGFP foci stoichiometry. Error bars represent standard error of mean. Student t-test, *p < 0.05. E. Jitter plots of apparent stoichiometries 
of fast moving (fast), diffusion coefficient, D > 0.8 µm2/s, and immobile, D < 0.3 µm2/s, (slow) membrane and intracellular Fps1-mGFP foci. Standard error bars are 
indicated. Student t-test, *p < 0.05. 
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stoichiometry of the membrane foci is higher compared to those found in 
the rest of the cell (14 ± 6.2 and 12 ± 6.3, respectively. Student t-test. 
Fig. 1D). Unlike membrane Fps1, intracellular spots seem to be also 
present as lower stoichiometry oligomers (Fig. 1D, inset, and 1E). Foci of 
the same stoichiometry can be both immobile (diffusion coefficient, D <
0.3 µm2/s) and fast moving (D > 0.8 µm2/s) (Fig. 1E). Other aquaporins 
are known to reside in intracellular storage vesicles or lipid rafts until 
they are required at the plasma membrane [46–48]. The abundance of 
intracellular Fps1 suggests that it could also reside in such vesicles. Key 
glycerol metabolizing enzymes are located in subcellular compartments, 
such as mitochondria, peroxisomes and lipid droplets [49–51]. Thus, 
intracellular Fps1 might be sitting on their membranes where it medi-
ates the flux for a substrate. Some aquaporins have been shown to be 
present in the secretory vesicles membranes [52]. Although Fps1 also 
seems to be present in these organelles, the amounts have been sug-
gested to be low and most likely not functional [53]. 

Interestingly, the mean apparent stoichiometry of the fast moving 
and immobile membrane foci is also similar (Fig. 1E). The limitation of 
our segmentation method is that budding cells are accepted as two 
separate cells with the “whole-cell” plasma membrane without ac-
counting for the mother-daughter cell connection through the bud neck. 
Therefore, the mobile pool might represent Fps1 located closer to the 
bud, where proteins can move between the mother and the daughter 
cells, which would be consistent with previous reports on multiple 
plasma membrane proteins are asymmetrically segregated [54]. How-
ever, further studies with bud neck labelling should be performed to 
verify that. 

4.2. Sorbitol causes a change in Fps1 organization 

Biochemical studies suggest that increased external osmolarity cau-
ses rapid Fps1 closure, whereas decreased osmolarity results in the 
channel opening [30,55,56]. To determine how hyper-osmotic condi-
tions affect Fps1 architecture, we grew the cells in 1 M sorbitol to reach 
complete osmoadaptation (Fig. 2A and Fig. 1B, middle panel, Supple-
mentary Video 2). Sorbitol growth causes the apparent stoichiometry 
shift towards higher oligomeric clusters (Fig. 2B) with the highest 

probability peak of 8 molecules/spot in the absence of sorbitol (Fig. 1B) 
and 11 molecules/cell in sorbitol (Fig. 2C). Sorbitol had been shown to 
increase molecular crowding in cells [57,58]. The Fps1 protein contains 
11 regions with intrinsic disorder making an overall proportion of 
disordered content >44%, >71% of which is within the large N- and C- 
terminal cytoplasmic domains (as predicted by PONDR software). 
Disordered motifs may undergo phase transition resulting in formation 
of higher oligomers, in this case, facilitated by increased intracellular 
crowding [33]. These cytoplasmic domains are however also shown to 
be the main facilitators of protein interaction with Fps1 [19,31,59–61]. 
Computer simulations indicate that specific protein interactions can also 
be stabilized upon an increase in molecular crowding [62]. This together 
with known interactions with of Fps1 in membrane bound signal scaf-
folding is also likely to affect Fps1 stoichiometry [59]. No clear peri-
odicity of four Fps1 molecules/spot was found in sorbitol-grown cells. 
The overall stoichiometry spread is much broader compared to that 
found in glucose (Fig. 2B, inset) regardless of the foci localization, 
indicating a range from Fps1 dimers up to 50 molecules/spot (Fig. 2C, 
inset). 

Increased crowding also results in lower mean diffusion coefficient, 
D: 0.43 ± 0.61 µm2/s in non-stress conditions as opposed to 0.36 ± 0.51 
µm2/s upon hyper-osmotic environment (Fig. 2D). However, no obvious 
linear correlation between the diffusion coefficient and foci stoichiom-
etry was observed in normal and stress conditions (Fig. 3). According 
with our expectation that molecular movement is more restricted in the 
membrane, only few of the “fast” spots (D > 0.8 µm2/s) are found on the 
membrane under both non-stress (glucose) and sorbitol conditions 
(Fig. 3 top left and bottom left). “Immobile” foci (D < 0.3 µm2/s) are 
equally present on the membrane and in the rest of the cell (Fig. 3 top 
right and bottom right). Interestingly, spots with the lowest D are not 
actually the ones of the highest stoichiometry. This suggests that Fps1 is 
trafficked, and thereby also likely regulated, as a multimer. Alterna-
tively, Fps1 trafficking and regulation might also occur as part of a 
complex with other proteins or as part of a mobile membrane 
compartment. 

Fig. 2. A. Examples of Slimfield images of 
S. cerevisiae cells expressing genomically integrated 
Fps1-mGFP fusion under hyper-osmotic stress (media 
supplemented with 1 M Sorbitol): brightfield (left) 
and green channel (right) are shown. Scale bar 2 µm. 
B. Kernel Density Estimation plot (kernel width =
0.7) of the Fps1-mGFP stoichiometry distributions 
upon normal (green, n = 40 cells) and hyper-osmotic 
stress (magenta, n = 89 cells) conditions. Inset: Jitter 
bar chart of mean apparent stoichiometry, standard 
error of mean error bars are shown. C. Kernel Density 
Estimation plots of the Fps1-mGFP stoichiometry 
distributions on the cellular membrane (magenta) 
and intracellular (green) spots. Inset: Jitter plot of 
membrane (magenta) and intracellular (green) Fps1- 
mGFP foci stoichiometry. Error bars represent stan-
dard error of mean. Student t-test, *p < 0.05. D. Jitter 
plot of the mean diffusion coefficients of Fps1-mGFP 
foci under normal (glucose, green) and hyper-osmotic 
(sorbitol, magenta) conditions. Error bars represent 
standard error of mean.   
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4.3. Oxidative stress rapidly facilitates Fps1 degradation 

MIPs have been shown to facilitate hydrogen peroxide diffusion 
through cell membranes [63–65]. To study the effect of the rapid 
exposure to the oxidative stress on Fps1 composition, we treated cells 
with 0.4 mM H2O2 for 20–40 min prior to imaging (Fig. 1B, bottom 
panel, Fig. 4A, Supplementary Video 3). No significant differences could 
be found in mean apparent stoichiometry and diffusion coefficients 
between all three conditions (Fig. 4B). Similar to that, upon sorbitol 
treatment, regardless of the cellular compartment, Fps1 exists as a dimer 
(Fig. 4C). 

We identified three times less Fps1 molecules in cells exposed to 
H2O2 compared to those incubated in non-stress conditions (Fig. 4D). 
Hydrogen peroxide can induce protein internalization or degradation in 
various organisms – in plants, aquaporins have been shown to inter-
nalize upon H2O2 and salt treatment [47,65], degradation has been 
demonstrated for hemoglobin and membrane proteins in mammals [66] 
and intracellular proteins in E. coli [67]. Fps1 has been suggested to 
undergo endocytosis in response to acetate-induced oxidative stress 
[19,68]. To investigate the effect of hydrogen peroxide-induced oxida-
tive stress on Fps1, we performed western blotting on protein extracts 
from cells exposed to H2O2 (Fig. 4E). Quantification of the signal indi-
cated that the protein band intensity from cells after the stress is only 
65% of that from untreated cells suggesting the role of hydrogen 
peroxide in Fps1 degradation. 

The presence of dimers during both sorbitol growth and H2O2 stress, 
together with lower copy numbers of Fps1 molecules (Fig. 4D), point 
towards differences in protein turnover during these conditions 
compared to the standard environment. Dimerization as an intermediate 
state has already been reported for MIPs in other organisms. For 
example, the tetramer of the E. coli aquaglyceroporin GlpF unfolds via a 
dimeric intermediate state [69]. In plants, there is also evidence of 
constitutive aquaporin cycling which has been theorized to favor the 
plasticity of the channel activity and its response to sudden environ-
mental changes [47]. The dimerization of plant aquaporins is thought to 

stabilize the channel in the membrane [70–73]. Thus, the different range 
of Fps1 stoichiometries under stress conditions indicates changes in 
protein turnover leading in the case of H2O2 to degradation. 

To determine if the Fps1 spots’ behavior changes over time, we split 
the acquired dataset into three groups representing cells being exposed 
to the oxidative stress for 20, 30 or 40 min. Consistently with our ex-
pectations, the mean apparent stoichiometry of Fps1-mGFP seems to 
decrease over time (Fig. 4F top). Interestingly, the smallest stoichiom-
etry number increases across all three groups, from two molecules/spot 
in group 1 (20 min of H2O2 treatment) to four in group 3 (40 min). While 
no difference in the mean diffusion coefficient was identified between 
three groups (Fig. 4F bottom), the number of fast moving (D > 0.8 µm2/ 
s) Fps1 foci identified in group 3 cells (40 min of hydrogen peroxide 
treatment) is significantly smaller (Fig. 4G). Together, these findings 
point towards the initial assembly of smaller foci into larger stoichi-
ometry spots which are further subjected to hydrogen peroxide-induced 
degradation. 

5. Conclusions 

In 1972 the idea that the cell membrane was a fluid two dimensional 
lipid bilayer was introduced [74]. Since then our knowledge of the 
plasma membrane and its components has increased exponentially and 
we know that it is a complex and dynamic network of lipids and proteins 
that can cluster and confer general and localized properties in both two 
and three dimensions [75,76]. These protein clusters can either be stable 
or exist more transiently [77,78] and facilitate various cellular pro-
cesses, such as signal transduction and gene regulation via recruitment 
of protein complex components to target DNA and channel activators to 
the plasma membrane [31,33]. 

Here we show that the yeast aquaglyceroporin Fps1 on the mem-
brane is organized into multimeric clusters of varying sizes. Our data 
show that the oligomerization state of Fps1 alters depending on external 
stimuli. This is consistent with previous studies showing that the E. coli 
aquaglyceroporin GlpF has different oligomerization states depending 

Fig. 3. Scatter plots of stoichiometry and diffusion of fast, D > 0.8 µm2/s (left), and immobile, D < 0.3 µm2/s (right), Fps1-mGFP spots found on the membrane 
(magenta) and the rest of the cell (green) upon non-stress (top) and hyper-osmotic (bottom) conditions. 
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on salt concentration [79]. Rapid light microscopy approaches, such as 
those employed by us here, also permit investigating regulatory features 
on a single-molecule level which is difficult to achieve with traditional 
biochemical methods or standard epifluorescence imaging techniques. 
The key importance is correlating these molecular scale observations 
with changes to the microenvironment of individual cells. In doing so, 
we provide evidence that hyper-osmotic conditions and oxidative stress 
change the rates of Fps1 turnover compared to standard non-stress 
conditions. Moreover, we suggest that one of the steps in Fps1 degra-
dation upon oxidative stress is the assembly of smaller foci into larger 
clusters. We also show, that inside the cell, Fps1 exists in an immobile 
state which might indicate its presence on membranes of intracellular 
organelles. 

Our study provides novel insights into real-time MIPs dynamics 
within plasma membrane and in the rest of the cell. Further multicolor 
super-resolution millisecond approaches can be applied to the studied 
system to determine the machinery of channel interactions with asso-
ciated proteins which regulate channel opening and closure or provide a 
binding scaffold, such as Sho1 protein scaffold for Fps1 [59,80]. 
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channel (right) are shown. Scale bar 2 µm. B. Jitter plots of Fps1-mGFP stoichiometry (left) and diffusion coefficient (right) under various conditions. Standard error 
bards are shown). C. Kernel Density plot of the Fps1-mGFP stoichiometry distributions on the cellular membrane (magenta) and intracellular (green) spots. Inset: 
Jitter bar chart of membrane (magenta) and intracellular (green) Fps1-mGFP foci stoichiometry. Error bars represent standard error of mean. D. Numbers of Fps1 
molecules per cell in yeast grown in standard (glucose, green), osmotic (sorbitol, magenta) or peroxide stress (H2O2, gray) conditions. Standard error bars are 
indicated. E. Western blot analysis of Fps1-mGFP levels in protein extracts from untreated cells or exposed to oxidative stress. Quantification of the signal was 
performed using Image-Studio Lite (LI-COR Biosciences) with local background normalization. Standard error bars are indicated. Student t-test, *p < 0.05. One 
representative image of six replicates is shown. F. Jitter plots of Fps1-mGFP foci stoichiometry (top) and diffusion coefficients (bottom) in cells treated with hydrogen 
peroxide for 20 min (magenta), 30 min (green) or 40 min (gray). Error bars represent standard error of mean. G. Scatter plots of immobile (top) and fast moving 
(bottom) Fps1 foci in cells exposed to H2O2 for 20 min (magenta), 30 min (green) or 40 min (gray). 
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plant plasma membrane cloned by immunoselection from a mammalian expression 
system, Plant J. 6 (1994) 187–199, https://doi.org/10.1046/j.1365- 
313X.1994.6020187.x. 

[71] M.J. Daniels, T.E. Mirkov, M.J. Chrispeels, The plasma membrane of Arabidopsis 
thaliana contains a mercury-insensitive aquaporin that is a homolog of the 
tonoplast water channel protein TIP, Plant Physiol. 106 (1994) 1325–1333, 
https://doi.org/10.1104/pp.106.4.1325. 

[72] L.M. Barone, H.H. Mu, C.J. Shih, K.B. Kashlan, B.P. Wasserman, Distinct 
biochemical and topological properties of the 31- and 27-kilodalton plasma 
membrane intrinsic protein subgroups from red beet, Plant Physiol. 118 (1998) 
315–322, https://doi.org/10.1104/pp.118.1.315. 

[73] G.P. Bienert, D. Cavez, A. Besserer, M.C. Berny, D. Gilis, M. Rooman, F. Chaumont, 
A conserved cysteine residue is involved in disulfide bond formation between plant 
plasma membrane aquaporin monomers, Biochem. J. 445 (2012) 101–111, 
https://doi.org/10.1042/BJ20111704. 

[74] S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell 
membranes, Science (80-) 175 (1972) 720–731, https://doi.org/10.1126/ 
science.175.4023.720. 

[75] T. Lang, S.O. Rizzoli, Membrane protein clusters at nanoscale resolution: more than 
pretty pictures, Physiology 25 (2010) 116–124, https://doi.org/10.1152/ 
physiol.00044.2009. 

[76] J.B. de la Serna, G.J. Schütz, C. Eggeling, M. Cebecauer, There is no simple model 
of the plasma membrane organization, Front. Cell Dev. Biol. 4 (2016) 106, https:// 
doi.org/10.3389/fcell.2016.00106. 

[77] T.C. Walther, J.H. Brickner, P.S. Aguilar, S. Bernales, C. Pantoja, P. Walter, 
Eisosomes mark static sites of endocytosis, Nature 439 (2006) 998–1003, https:// 
doi.org/10.1038/nature04472. 

[78] K. Choudhuri, M.L. Dustin, Signaling microdomains in T cells, FEBS Lett. 584 
(2010) 4823–4831, https://doi.org/10.1016/j.febslet.2010.10.015. 

[79] M.J. Borgnia, P. Agre, Reconstitution and functional comparison of purified GlpF 
and AqpZ, the glycerol and water channels from Escherichia coli, Proc Natl Acad 
Sci U S A. 98 (2001) 2888–2893, https://doi.org/10.1073/pnas.051628098. 

[80] K. Tatebayashi, K. Yamamoto, M. Nagoya, T. Takayama, A. Nishimura, M. Sakurai, 
T. Momma, H. Saito, Osmosensing and scaffolding functions of the oligomeric four- 
transmembrane domain osmosensor Sho1, Nat. Commun. 6 (2015) 1–15, https:// 
doi.org/10.1038/ncomms7975. 

S. Shashkova et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.tplants.2012.12.003
https://doi.org/10.1016/j.tplants.2012.12.003
https://doi.org/10.1016/j.proghi.2004.03.001
https://doi.org/10.1016/j.proghi.2004.03.001
https://doi.org/10.1074/jbc.M403310200
https://doi.org/10.1074/jbc.M403310200
https://doi.org/10.1111/1462-2920.13617
https://doi.org/10.1111/1567-1364.12141
https://doi.org/10.1111/j.1582-4934.2008.00239.x
https://doi.org/10.1128/JB.181.14.4437-4440.1999
https://doi.org/10.1128/JB.181.14.4437-4440.1999
https://doi.org/10.1073/pnas.1819715116
https://doi.org/10.1046/j.1365-2958.1999.01248.x
https://doi.org/10.1046/j.1365-2958.1999.01248.x
https://doi.org/10.1038/srep30950
https://doi.org/10.1073/pnas.1215367110
https://doi.org/10.1038/nmeth.3257
https://doi.org/10.1016/j.jmb.2015.01.016
https://doi.org/10.1016/j.jmb.2015.01.016
https://doi.org/10.7554/eLife.09336
https://doi.org/10.1002/1873-3468.12390
https://doi.org/10.1002/1873-3468.12390
https://doi.org/10.1063/1.3516589
https://doi.org/10.1063/1.3516589
https://doi.org/10.1016/j.bbagen.2013.09.017
https://doi.org/10.1016/j.abb.2015.01.005
https://doi.org/10.1111/j.1365-313X.2008.03594.x
https://doi.org/10.1111/j.1365-313X.2008.03594.x
http://refhub.elsevier.com/S1046-2023(20)30062-1/h0330
http://refhub.elsevier.com/S1046-2023(20)30062-1/h0330
https://doi.org/10.1111/j.1574-6968.1987.tb02282.x
https://doi.org/10.1179/174329211X12968219310954
https://doi.org/10.1179/174329211X12968219310954
https://doi.org/10.1021/bi201266m
https://doi.org/10.1046/j.1365-313X.1994.6020187.x
https://doi.org/10.1046/j.1365-313X.1994.6020187.x
https://doi.org/10.1104/pp.106.4.1325
https://doi.org/10.1104/pp.118.1.315
https://doi.org/10.1042/BJ20111704
https://doi.org/10.1126/science.175.4023.720
https://doi.org/10.1126/science.175.4023.720
https://doi.org/10.1152/physiol.00044.2009
https://doi.org/10.1152/physiol.00044.2009
https://doi.org/10.3389/fcell.2016.00106
https://doi.org/10.3389/fcell.2016.00106
https://doi.org/10.1038/nature04472
https://doi.org/10.1038/nature04472
https://doi.org/10.1016/j.febslet.2010.10.015
https://doi.org/10.1073/pnas.051628098
https://doi.org/10.1038/ncomms7975
https://doi.org/10.1038/ncomms7975

	Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in ...
	1 Introduction
	2 Materials and methods
	2.1 Growth conditions and media
	2.2 Strain construction
	2.3 4 Single-molecule Slimfield microscopy

	3 Protein extracts preparation and immunoblotting
	4 Results and discussion
	4.1 Fps1 resides in multi tetrameric assemblies
	4.2 Sorbitol causes a change in Fps1 organization
	4.3 Oxidative stress rapidly facilitates Fps1 degradation

	5 Conclusions
	6 Funding sources
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


