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Abstract: 2,2,5,5-tetramethyloxolane (TMO) has recently been identified and demonstrated as a safer
solvent to replace toluene, THF, and hydrocarbons in a handful of applications. Herein, several
bio-based routes to TMO are presented and assessed for greenness, assisted by the CHEM21 Metrics
Toolkit and BioLogicTool plots. Using glucose as a common starting point, two chemocatalytic
routes and two biochemical routes to TMO were identified and the pathways compared using the
aforementioned tools. In addition, bio-based TMO was synthesised via one of these routes; from
methyl levulinate supplied by Avantium, a by-product of the sugar dehydration step during the
production of 2,5-furandicarboxylic acid. First, methyl levulinate underwent triple methylation
using methyl magnesium chloride (MeMgCl) to yield 2,5-dimethylhexane-2,5-diol (DHL) in high
yields of 89.7%. Then DHL was converted to high purity TMO (>98.5%) by cyclodehydration using
H-BEA zeolites based on the previously reported approach. Bio-based content of this TMO was
confirmed by ASTM D6866-20 Method B and found to have 64% bio-based carbon, well above the
threshold of 25% set by CEN/TC 411 standards and matching the anticipated content. This study
represents the first demonstration of a bio-based synthesis of TMO and confirmation of bio-content
by accepted standards.

Keywords: bio-based solvents; safer solvent; green metrics; platform molecules; solvent substitution

1. Introduction

In 2017, the synthesis and testing of 2,2,5,5-tetramethyloxolane (TMO) from 2,5-
dimethylhexane-2,5-diol (DHL) was published, alongside rationale for its selection as
a new non-polar solvent [1]. TMO is a cyclic ether but has properties and performance
remarkably similar to toluene in many applications. Importantly, unlike traditional ethers
such as diethyl ether, cyclopentylmethylether (CPME) and tetrahydrofuran (THF), TMO
does not form peroxides, even when exposed to bubbling air, UV light, and heat [1]. TMO
been shown to behave more like toluene than other traditional ethers, 1,4-dioxane, THF and
2-methyltetrahydrofuran (2-MeTHF), in radically-initiated polymerisations [1], Grignard
reactions [1], amidation reactions [1], enzyme-catalysed esterification [2] and polycon-
densation reactions [3]. Solute partitioning experiments showed a stronger affinity for
lipophilic protic solutes (fatty acids, fatty alcohols, and phenols) compared to toluene [4,5].
A summary of TMO’s properties, as reported in the 2017 article are shown in Table 1.

TMO was initially synthesised from petroleum-derived DHL using H-BEA zeolites,
achieving very high yield and selectivity of >98.5% in a reactive distillation set-up [1]. The
key DHL precursor is currently produced industrially by the reaction of acetylene and
acetone, catalysed by potassium isobutoxide (KOiBu, Scheme 1), in a process patented by
BASF [6].
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Table 1. Properties of TMO compared to toluene and THF.

Property TMO Toluene THF

Mw/g mol−1 128.25 92.14 72.11
Boiling point/◦C 112 a 111 b 66 b

Melting point/◦C <−90 a
−95 b

−108 b

Density/g mL−1 0.802 a 0.867 b 0.883 b

Mol. Vol./cm−3 mol−1 151.1 c 106.6 c 81.9 c

Autoignition temperature/◦C 417 a 522 a 321 a

Lower explosion limit/v/v% 0.9 a 1.1 a 2.0 a

δD
d 15.6 c 18.0 c 16.8 c

δP
e 2.3 c 1.4 c 5.7 c

δH
f 2.4 c 2.0 c 8.0 c

α
g 0.00 j 0.00 j 0.00 j

B h 0.77 a 0.10 a 0.58 a

π* i 0.35 a 0.51 a 0.59 a

logP(o/w) 1.92 a 2.73 a 0.46 a

a Byrne et al., 2017, previously named 2,2,5,5-tetramethyltetrahydrofuran and abbreviated to TMTHF [1].
b PubChem database. c HSPiP (5th Edition 5.1.08). d Hansen solubility parameter for dispersion forces. e Hansen
solubility parameter for permanent dipole. f Hansen solubility parameter for hydrogen-bonding. g Kamlet-
Abboud-Taft parameter for hydrogen-bond donating ability. h Kamlet-Abboud-Taft parameter for hydrogen-bond
accepting ability. i Kamlet-Abboud-Taft parameter for polarity/polarizability. j Assumed value.
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Scheme 1. Synthesis of 2,2,5,5-tetramethyloxolane (TMO) starting from acetone and acetylene.

The bio-based synthesis of TMO was one of the goals of the BBI-JU funded project,
ReSolve [7]. Herein, alternative routes to bio-based TMO to the one described above
are proposed and compared in terms of greenness with the aid of the CHEM21 Metrics
Toolkit [8], and the recently presented BioLogicTool plots [9]. Literature data have been
used for many reaction steps, while the authors have carried out certain synthetic steps
experimentally in an effort to close any data gaps in the proposed routes (Scheme 2). Finally,
bio-based TMO was synthesised using one of the suggested routes, via methyl levulinate,
and carbon-14 quantification subsequently confirmed the bio-based content of the DHL and
TMO samples (ASTM D6866-20 Method B). Avantium is in the progress of building a global
first FDCA plant in Delfzijl, the Netherlands, and therefore industrially relevant quantities
of methyl levulinate will become available 2024 onwards. Many potential applications
have been identified for levulinic acid and its corresponding methyl ester, but the presented
research in this paper is novel to the best of our knowledge [10].
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Scheme 2. Four proposed bio-based synthetic routes to DHL, the precursor to TMO, and all routes from a common glucose
feedstock. S3* = two possible reactions (using either MeMgCl or MeLi) were investigated for this step as part of Route 1;
AD = anaerobic digestion; ABE ferm. = acetones, butanol and ethanol fermentation.
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2. Materials and Methods

2.1. Materials

2,5-dimethylhexa-2,4-diene (DHN), was purchased from Santa Cruz Biotechnology.
Methyl levulinate was supplied by Avantium. Methyllithium solution (1.6 M in diethyl
ether), 3 Å molecular sieves, methylmagnesium bromide (3 M solution in tetrahydrofuran),
ammonium chloride, diethyl ether, 2,5-hexanedione and 10% Pd/C were purchased from
Sigma Aldrich. Sodium chloride and magnesium sulfate and hydrochloric acid were
purchased from Fischer Scientific. H-BEA zeolite catalyst (Si/Al ratio 30:1) was supplied
by Clariant.

2.2. Synthesis of 2,5-Dimethylhexane-2,5-Diol from Methyl Levulinate by the Grignard
Reaction–Route 1

Bio-based methyl levulinate (6.83 mL, 50 mmol), which had been dried using 3 Å
molecular sieves, was added to a 100 mL round-bottomed flask along with dry tetrahy-
drofuran (10 mL) and a magnetic stirring bar. The flask was fitted with a Suba-Seal rubber
septum and the mixture was degassed. A balloon was fitted to the rubber septum and
the temperature of the mixture was reduced to 0 ◦C, at which point methylmagnesium
bromide (3 M solution in tetrahydrofuran, 53.3 mL, 3.2 equivalents) was added drop-
wise using a syringe. The reaction mixture was stirred for 2 h at room temperature, after
which the reaction was quenched using ammonium chloride solution. The mixture was
transferred to a 250 mL separating funnel along with 25 mL diethyl ether. The organic
layer was collected and washed twice with brine (10 mL). The aqueous layer was then
back-extracted twice using diethyl ether (10 mL). The organic fractions were combined,
dried with magnesium sulfate, and the solvent was removed in vacuo to yield crude 2,5-
dimethyl-2,5-hexandiol (DHL) as an off-white powder. The powder could be recrystallised
in diethyl ether to produce clear needles of 2,5-dimethyl-2,5-hexandiol with a yield of
89%. 1H NMR (400 MHz, CDCl3): δ = 1.18 (s, 12 H, 4x(-CH3)), 1.53 (s, 4 H, 2x(-CH2-)); 13C
NMR (400 MHz, CDCl3): δ = 29.35, 39.17, 71.37; MS (ESI): m/z 147.14 [1+], 169.12 [Na+],;
Bio-based carbon content: 64%.

2.3. Synthesis of 2,5-Dimethylhexane-2,5-Diol from 2,5-Hexanedione Using Methyllithium–Route 2

To a flame-dried, argon-filled round-bottomed flask was added 2,5-hexanedione
(1 mL, 9 mmol) and 20 mL dry and degassed diethyl ether. The mixture was further purged
with argon using the freeze-thaw method. The temperature was reduced to −78 ◦C and
methyllithium solution (1.6 M in diethyl ether, 10 mL, 16 mmol methyllithium) was added
dropwise. The reaction mixture was allowed to stir for 2 h at −78 ◦C before being brought to
room temperature and stirred overnight. The reaction was then quenched by slowly adding
water at 0 ◦C, before 10 mL of 2 M hydrochloric acid was added dropwise. The mixture
was transferred to a separating funnel where the organic layer was collected and washed
with brine (2 × 10 mL) and the combined aqueous fractions were back-extracted using
diethyl ether (2 × 10 mL). The combined organic fractions were dried using magnesium
sulphate and concentrated in vacuo to yield crude 2,5-dimethyl-2,5-hexandiol as an off-
white powder. The powder could be recrystallised in diethyl ether to produce clear needles
of 2,5-dimethyl-2,5-hexandiol with a yield of 71%. 1H NMR (400 MHz, CDCl3): δ = 1.24 (s,
12 H, 4x(-CH3)), 1.58 (s, 4 H, 2x(-CH2-)); 13C NMR (400 MHz, CDCl3): δ = 29.54, 37.99, 70.81.

2.4. Oxidation of 2,5-Dimethylhexa-2,4-Diene (DHN)–Route 4

DHN (5 g, 45.4 mmol), assumed petrochemical derived, was added to a 25 mL round-
bottomed flask along with 2,2,5,5-tetramethyloxolane (TMO, 10 mL) and a magnetic stirring
bead. The flask was sealed with a rubber septum which was pierced with a long syringe
needle connected to a compressed air source (air inlet). This syringe needle was submerged
in the reaction mixture. A second and third syringe needle were then inserted into the
rubber septum (air outlet) but kept above the reaction mixture level. The mixture was
stirred and an air flow of 60 mL min−1 was passed through the air. As solvent may be
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lost by evaporation out the air outlet during the reaction, fresh solvent can be added as
required to maintain a viscosity that can be stirred by the magnetic stirring bead. Reaction
progress was monitored by 1H NMR spectroscopy. Upon completion of the reaction, the
solvent was removed in vacuo to yield DHN polyperoxide with a yield of 97.5%. 1H NMR
(400 MHz, CDCl3): δ 5.66 (s, 2H, 2x(-CH = )), 1.26 (s, 12H, 4x(-CH3)).

2.5. Hydrogenation of DHN Polyperoxide–Route 4

DHN polyperoxide (1 g), 2,2,5,5-tetramethyloxolane (10 mL) and 10% Pd/C (500 mg)
were added to a 20 mL Hastelloy steel autoclave. The autoclave was purged with hydrogen
and then pressurised with hydrogen (10 bar). The reaction mixture was stirred for 18 h at
18 ◦C before being depressurised, filtered, and analysed by NMR spectroscopy.

2.6. Synthesis of 2,2,5,5-Tetramethyloxolane (TMO) from 2,5-Dimethylhexane-2,5-Diol (DHL)

2,5-dimethylhexane-2,5-diol (DHL, 10 g, 68.4 mmol) was added to a 25 mL round-
bottomed flask fitted with Vigreaux distillation apparatus along with H-BEA zeolite catalyst
(Si/Al ratio 30:1) and a magnetic stirring bead. The reaction mixture was heated to
140 ◦C, at which point the 2,5-dimethylhexane-2,5-diol melted and began to react. Upon
the formation of 2,2,5,5-tetramethyloxolane and water, the mixture began to reflux. The
distillate was collected as two phases. The organic phase was further purified by distillation
to yield 2,2,5,5-tetramethyloxolane with a purity of 99% as confirmed by GC-FID. 1H NMR
(400 MHz, CDCl3): δ 1.81 (s, 4H, 2x(-CH2-)), 1.21 (s, 12H, 4x(-CH3)); 13C NMR (400 MHz,
CDCl3): δ 29.75, 38.75, 80.75; MS (ESI): m/z 129.13 [1+]; Bp: 112 ◦C; bio-based carbon
content: 64%.

2.7. Bio-Based Carbon Content Testing

2,5-dimethylhexane-2,5-diol (DHL) and 2,2,5,5-tetramethyloxolane (TMO) from Route
1 above were tested according to ASTM D6866-20 Method B at the laboratory of BETA
Analytics in Florida.

3. Results

Several synthetic routes to DHL, the precursor to TMO, from biomass were identified
and can be seen in Scheme 2. A high yielding, essentially quantitative, synthesis of TMO
from DHL has previously been reported [1], so no further comments are made about
that final step of the synthesis in this work. Glucose is illustrated as the starting point
for simplicity, but fructose, starch, cellulose or lignocellulosic biomass could also have
been shown [11,12]. Indeed, lignocellulosic biomass would be the ideal source of glucose
as it is a second-generation biomass source, although an additional pre-treatment step
to what is shown in Scheme 2 would be required [13]. Two routes (Routes 1 and 2)
proceed chemocatalytically via 5-(hydroxymethyl)furfural (HMF) and two routes (Routes
3 and 4) proceed predominately biochemically. The biochemical conversion of glucose to
platform molecules methane, acetone and isobutanol in Routes 3 and 4 will not be assessed
for greenness in this report due to insufficient data being available, but they will be
included in the step count in Table 2. Table 2 shows the yield, conversion, selectivity, atom
economy (AE), reaction mass efficiency (RME) and process mass intensity (PMI). Below is
a detailed description of each Route 1-4 followed by a discussion of their accompanying
BioLogicTool [9] and metric assessments. Metric assessment was performed using the
CHEM21 Metric Toolkit [8]. The BioLogicTool is a new graphical tool that plots pathways
from feedstock through to products against axis of % heteroatom content by mass versus
molar mass [9]. The BioLogicTool allows for comparisons of potential routes prior to
synthesis (Figure 1) and specifically looks at how rational each route is in terms of optimum
use of the abundant heteroatoms in the biomass feedstock.
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Table 2. Reaction metrics of each step (SX) of each Route (1 to 4) to DHL and subsequently to TMO
as set out in Scheme 2.

Yield/% Conversion/% Selectivity/% AE */% RME */% PMI *

Route 1

S1 n/a n/a n/a n/a n/a n/a
S2 n/a n/a n/a n/a n/a n/a
S3 n/a n/a n/a 97 1 78
S4 90 100 90 41 37 23

Route 2

S1 56 88 64 70 39 36
S2 71 100 71 75 53 69
S3 99 100 99 100 99 12
S4 71 100 71 92 63 110

Route 3

S1 n/a n/a n/a n/a n/a n/a
S2 n/a n/a n/a n/a n/a n/a
S3 63 70 90 81 51 2
S4 92 98 94 100 94 8
S5 96 100 99 100 99 3

Route 4

S1 n/a n/a n/a n/a n/a n/a
S2 50 50 100 97 49 2
S3 96 99 97 76 73 1

S4 @ 95 (33) @ 100 (35) @ 95 (95) @ 86 (86) @ 82 (26) @ 1 (3.5) @

S5 98 98 100 100 98 2
S6 87 100 87 100 84 8

DHL to
TMO

99 100 99 88 87 1
* Metrics calculated using the CHEM21 Metrics Toolkit, the spreadsheet used for these calculations is available as
a separate supplementary information file titled “CHEM21 Metrics–All Routes”. AE = atom economy; RME =
reaction mass efficiency; PMI = process mass intensity. @ The numbers outside the brackets are for a hypothetical
multi-pass through the quoted flow reactor of Route 4 S4, the number inside the brackets are for a single pass
through the flow reactor.

3.1. Route 1–Via Levulinic Acid or Methyl Levulinate

Route 1 can start both from levulinic acid as well as from methyl levulinate (ML). Lev-
ulinic acid is a desired platform molecule on its own [10,14], while ML is produced by Avan-
tium as a by-product from their proprietary YXY® process to produce 2,5-furandicarboxylic
acid (FDCA) from fructose [15]. Triple methylation of the carbonyl groups of levulinic
acid yields DHL. In addition, levulinic acid can be esterified prior to methylation, which
helps to maintain dry conditions during the reaction. Route 1 requires few steps, but the
methylation of carbonyl groups raises an issue from a green perspective, as outlined below.

Levulinic acid is produced easily from biomass and there are many reports of its
synthesis in the literature, either from saccharides and polysaccharides, HMF or as a
by-product in the production of other chemicals [14]. However, sufficient data for the
metrics calculation of its synthesis from glucose are unavailable in the literature, as only
conversions based on HPLC analysis are presented [14]. In the current work, ML was
supplied by Avantium, this produced as a by-product in the sugar dehydration step in
their YXY process for FDCA production. Again, this makes traditional green metrics more
complicated to apply, but benefits can clearly be seen [16]. Most obvious, an underutilized
potential side-stream is valorised, reducing the waste of the YXY process. Furthermore, the
inputs (catalysts, solvents, etc.) can be divided by the relative masses of the products for
the calculation of RME and PMI for each product.
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Figure 1. Plots generated by the BioLogicTool, showing the pathways of each route 1–4 to TMO from a common glucose
feedstock for each of the four routes. The colour of the arrow is determined by the yield of that step (see Table 2); green
being the highest, red being the lowest, and black where no or insufficient data was available. The BioLogicTool does not
consider the possibility that a synthetic pathway requires the merging of two routes at any point in the synthesis. As such,
the larger numerical value (ignoring minus sign) for the BioLogicTool score and Total Length for any convergent pathway has
been presented, this deemed more representative where a convergent synthesis is used. BioLogicTool plots were prepared
using the spreadsheet available as supplementary information accompanying the original 2019 article by Lie et al. [9].

In aqueous conditions, levulinic acid is formed instead of ML. Levulinic acid can
react with alcohols to produce levulinate esters such as ML [17]. However, compared
with levulinic acid, ML is easier to isolate and purify due to its significantly lower boiling
point. ML is therefore the preferred starting material because it is easier to maintain dry
conditions compared to levulinic acid in the subsequent moisture sensitive steps. Metrics
for the esterification process are given in Table 2 based on the work of Pan et al. [18].

There are many methods of methylation of carbonyl groups, with the Grignard re-
action being among the most commonly used at lab-scale. Complete conversion of the
starting material was observed by the Grignard reaction and a DHL yield of 90% was
achieved (Scheme 3). Subsequent ring closure of DHL to produce TMO was performed
without further purification. A selectivity to TMO of >98.5% was obtained in a contin-
uous reactive distillation, catalysed by H-BEA zeolites as previously described [1], this
resulted in the isolation of the partially bio-based TMO of high purity as confirmed by
NMR spectroscopy (ESI, Figure S1)

Even if the methide anion was petroleum-derived, the bio-based content of DHL
produced by this route would be 62.5% (five out of eight carbons in the final structure are
bio-based as can be seen in Scheme 3), well above the 25% bio-based carbon required by
the CEN/TC 411 (Bio-based products). Bio-based carbon content was measured by ASTM
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D6866-20 Method B and showed 64% bio-based carbon content in both the DHL and TMO
subsequently produced, consistent with theoretical calculations.

 

 Scheme 3. Synthesis of bio-based TMO via DHL from methyl levulinate. Bio-based carbon is shown
in green, petroleum-derived carbon is shown in red.

While the Grignard reaction allows the production of bio-based DHL in high yields
and high purity (by NMR spectroscopy, ESI Figures S2 and S3), the AE and RME are
quite low at 41% and 37% respectively (ESI, CHEM21 Metrics spreadsheet, tab R1 S4). In
particular, large amounts of hazardous solvent were required and stoichiometric amounts
of magnesium salts produced which are difficult to recover and reuse. Furthermore, dry
conditions were required, adding to the complexity of this reaction, but partially overcome
through the use of ML that it is easier to dry than levulinic acid. Ultimately, Route 1 will
only become suitable for efficient large-scale production of bio-based TMO when more
efficient and preferably bio-based methylation routes are developed.

3.2. Route 2–Via 2,5-Dimethylfuran

Route 2 is a chemocatalytic route in which glucose is first dehydrated to HMF, which
in turn is hydrogenated to 2,5-dimethylfuran. 2,5-Dimethylfuran can be easily converted
via hydrolysis to 2,5-hexanedione (HDO) by treatment with acid and water. Methylation of
HDO forms DHL which can be ring-closed to generate TMO.

The first step of this route required the production of HMF from a hexose carbohydrate
source, such as glucose, cellulose or starch. The production of HMF is not trivial due to
its instability in air and light, but AVA BioChem has begun production on a 20 tonne per
annum scale [19]. The reaction is carried out at 220 ◦C and 22 bar in acidic conditions,
and an in situ biomass power plant is proposed to provide energy for the chemistry [19].
The exact metrics of AVA’s process cannot be calculated due to lack of data, but literature
values are used to give approximate metrics in supplementary CHEM21 spreadsheet, tab
R2 S1 [20]. In any case, the large-scale production of HMF represents a major breakthrough
in bio-based commodity production and should be viewed positively overall due to the
opportunities it will open [12].

2,5-Dimethylfuran can be easily converted to HDO in excellent isolated yields in acidic
aqueous conditions. Yang et al. reported 99% yields using a biphasic system of methyl
isobutyl ketone (MIBK) and acidic water [21]. Sulfuric acid was found to be the best catalyst
and MIBK could extract HDO from the acidic aqueous phase prior to self-aldol reactions
occurring [21]. This step is highly efficient, achieving an atom economy of 100% and
RME of 99% (supplementary CHEM21 spreadsheet, tab R2 S3), meaning no purification is
required prior to the next step (Table 2).

HDO can be converted to DHL in a similar manner to methyl levulinate–by methy-
lation at the carbonyl groups (Scheme 4). HDO has the benefit of requiring only two
equivalents of methylating agent, which can be sourced from methylating agents such as
Grignard reagents or methyllithium. This results in an AE of 92.4% and RME of 62.5%
(supplementary CHEM21 spreadsheet, tab R2 S4). The AE is significantly better than
when a Grignard reagent is used, but more controlled conditions complicate the process
significantly compared to the Grignard reaction.
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Scheme 4. Synthesis of 2,5-dimethyl-2,5-hexanediol (DHL) via 2,5-dimethylfuran and 2,5-hexanedione.

When performing this route in the lab we selected methyllithium as the methide ion
source to compare the process to that of the aforementioned Grignard reaction chosen for
Route 1. HDO was used in a slight excess as we observed that methyllithium would act
like a base and deprotonate HDO, causing aldol-type reactions to occur. It was found that
the conditions required for methyllithium were much more sensitive than for the Grignard
reaction. Dry glassware was required, reagents needed to be carefully dried and degassed,
and low reaction temperatures of −78 ◦C were required to obtain high selectivity (~90%).
If the stringency of the conditions was eased even slightly, by not flame drying glassware
or increasing temperature (−20 ◦C), then selectivity dramatically suffered as shown by
NMR spectroscopy (ESI, Figures S4 and S5). In addition, like the Grignard reaction, a
stoichiometric amount of lithium containing waste is produced. As such, this route is
unlikely to be suitable for commercial production of TMO. Although HDO is readily bio-
derivable, large amounts of hydrogen gas are required to form the 2,5-dimethylfuran from
HMF, and the source of HDO from chemical suppliers is unknown so the DHL and TMO
produced by this route was not tested for bio-based content.

3.3. Route 3–Via Bio-Acetylene and Bio-Acetone

Route 3 is a bio-based equivalent to the established petroleum derived synthesis of
DHL (Scheme 2). Acetone (likely sourced from the cumene process) [22,23] and methane
(likely sourced from natural gas) [24] are the current starting materials for this process.
Conveniently, both of these compounds are two of the most established bio-based plat-
form chemicals–acetone is one product of the ABE (acetone-butanol-ethanol) fermentation
process [25,26] (this was the primary source of acetone prior to the first world war) while
methane is a product of anaerobic digestion (AD) [27,28]. A slight increase in cost between
petroleum-derived and bio-based versions of acetone and methane can be expected initially,
but increasing legislation, economies of scale, carbon tax and improving technology will
likely make the bio-based production of acetone and methane competitive over time.

In this hypothetical bio-based route, methane is first produced by AD and then
partially oxidised, generating acetylene (and syngas) [29,30]. Acetylene is reacted with two
equivalents of ABE fermentation-sourced acetone using xylene as a solvent and potassium
isobutoxide (KOiBu) as a recoverable base to yield an alkyne hexanediol (AHD, Scheme 5).
AHD is hydrogenated to produce 100% bio-based DHL. The benefit of this route is that the
processes are all established, and a simple switch to bio-based methane and acetylene is all
that is required.

The first reactions in this route involve the biochemical production of methane and
acetone from glucose. Biochemical processes will not be assessed in this work as other
publications with assessments of biochemical production of chemicals are available in the
literature [31–33]. The oxidation of methane is a well-established process for the production
of acetylene (Route 3 S1) [34]. Although acetylene yields are modest (~25%), work continues
on the improvement of oxidative coupling of methane today using new reactor technology.
For example, Khoe Dinh et al. reported methane conversions of over 70% with over 90%
selectivity for acetylene using a novel rotating arc driven by AC electrical power [29].

The production of DHL from acetylene and acetone was patented by BASF in 2005
(Route 3 S2) [6]. This involved the coupling of acetylene and two equivalents of acetone to
produce an alkyne, AHD (2,5-dimethylhex-3-yne-2,5-diol), followed by hydrogenation of
AHD to yield DHL [6]. The yield and RME of the coupling step are excellent at 92% and
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93%, respectively, and AE is 100% (Table 2). KOiBu in a suspension of xylene is used as the
base in the reaction. Although stoichiometric amounts of base are required to deprotonate
the acetylene, a simple process for the recovery and reuse of KOiBu is also covered in
the patent [6]. This means that the potential production of huge amounts of waste is
eliminated. It appears that xylene is selected as a solvent due to its polarity and relative
inertness under reaction conditions. If this is the case, there are many greener solvents with
similar solubility properties that could be used instead, the most obvious being TMO itself.
The hydrogenation of AHD was reported as being done in flow in solventless conditions
and used Pd/Al2O3 as the catalyst [6]. A yield of 99% was achieved with 100% atom
economy (Table 2). Finally, the ring closure of DHL to produce TMO is completed as
previously reported.

 

Scheme 5. Synthesis of DHL from acetone and acetylene via AHD.

Route 3 to TMO involves six steps, with the first two being the biochemical con-
version of glucose to methane and acetone in well-established processes. Once acetone
and acetylene are produced, the coupling reaction, hydrogenation reaction, and final ring
closure to produce TMO can all be carried out in series, without the need for purification
in between. All steps are either catalytic or use recoverable and reusable reagents (KOiBu)
which significantly increases the likelihood of commercial viability of the overall process.
However, an inability to source bio-based acetone and methane meant we were unable to
perform this reaction and isolate bio-based TMO from this route.

3.4. Route 4–Via Isobutanol

Route 4 also relies on a key biochemical step, but one which now uses the platform
molecule isobutanol produced via fermentation (Scheme 2). Gevo and Butamax have
been developing the biosynthetic pathway to isobutanol for the past 10 years for use as
a transport fuel. Furthermore, isobutanol can be used as a platform molecule to produce
a wide range of other chemicals such as isobutene [35], isobutyraldehyde [36], isobutyric
acid [37], isooctane [38] and para-xylene [39].

Route 4 requires both the partial oxidation of isobutanol to isobutyraldehyde and the
dehydration of isobutanol to isobutene (Scheme 2) [40]. Isobutyraldehyde and isobutene
can then be coupled to produce a fully bio-based diene, 2,5-dimethylhexa-2,4-diene
(DHN) [40]. DHN is then oxidised to produce peroxide oligomers that can be hydro-
genated to yield DHL precursor of TMO (this work).

Underpinning the proposed Route 4 is a Gevo patent from 2014 reporting the synthesis
of DHN in a series of high yielding flow processes [40]. In the first set of flow reactions,
isobutanol is partially oxidised to isobutyraldehyde using a supported CuO catalytic system
and leaving some residual unreacted isobutanol (Route 4 S1). Only partial conversion is
required and complete selectivity for the desired product is achieved, with a high AE of
97.3% (Table 2). The small loss of AE is due to the elimination of hydrogen during the
oxidation process. However, it will be seen that this hydrogen can in theory be recovered
and reused in a later step.

The isobutanol/isobutyraldehyde mixture is then passed over a solid dehydration
catalyst generating a highly pure mixture of isobutene and isobutyraldehyde (Route 4 S2).
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Again, almost complete conversion and selectivity for isobutene is achieved, with the AE
only being affected by the loss of water.

Isobutene and isobutyraldehyde are coupled using niobic acid to produce DHN [Route
4 S3]. Reported conversion is low at 35%, but as selectivity is high (95%) (Table 2 and
CHEM21 spreadsheet, tab “R4 S3–one pass”). If unreacted starting material is simply
recycled back via a flow system then a high atom economy and RME of 82% (Table 2 and
CHEM21 spreadsheet, tab “R4 S3–multi-pass”). However, it does not appear that Gevo
are currently pursuing this synthesis as DHN is not listed in their catalogue of commercial
products at the time of writing.

DHN is an interesting molecule in that it can oxidise in air at room temperature to
form oligomers of a stable polyperoxide (DHN polyperoxide, Scheme 6) [S4]. No solvent
was used in the oxidation step as reported by Griesbaum et al. [41], but an extraction using
methanol was required to remove unreacted diene. As TMO does not easily oxidise (unlike
other common ethers such as THF and diethyl ether) [1], we successfully used TMO itself
as the polymerisation solvent in the current work, usually commercially available and
assumed petrochemical-derived DHN (NMR spectra in ESI, Figure S6. Our approach using
TMO as solvent maintained a low viscosity of the mixture and eliminated the need of a
methanol extraction. The process involved the slow bubbling of air through the mixture
slowly overnight, obtaining almost complete conversion of DHN (97.5%) and minimal
TMO losses. The atom economy of this step is 100%, and the polyperoxide was isolated in
high purity as shown by NMR spectroscopy (ESI, Figure S7)

 

Scheme 6. Oxidation of 2,5-dimethylhexane-2,4-diene (DHN) and subsequent hydrogenation to
produce DHL.

Hydrogenation of the DHN polyperoxide yields DHL at almost complete conversion,
as described by Griesbaum et al. [41]. In that work, THF was used as the solvent for the
hydrogenation step with yields of 90%. However, TMO could be a suitable solvent for the
hydrogenation in a neat system where the final product is used as the solvent in several
reaction steps. However, when this mixture was transferred to an autoclave along with
Pd/C (10%) catalyst and pressurised with hydrogen gas (10 bar) in similar conditions to
those reported by Griesbaum et al. [41], no reaction was observed. The reasons for this
are unclear as there is no obvious barrier to the reaction occurring, but further research is
clearly required to develop this pathway to DHL. It is also possible that hydrogen produced
from the first step of this route (oxidation of isobutanol) can be recovered and used directly
in this hydrogenation step. Finally, the DHL/TMO mixture can be exposed to H-BEA
catalysts without the need for DHL isolation and still produce more TMO, completing a
neat system where TMO is the solvent for its own production in several steps.

Overall, despite requiring a greater number of steps than the other routes, all steps are
catalytic and many of the steps are carried out in flow without the need for any purification
in between. When combined with the general benignity of each step, this route has many
green aspects, as can be seen in Table 2.

4. Discussion

The greenness of any synthetic route to any product should be viewed holistically, i.e.,
no one metric is enough to rate the greenness of a process. In this section we assess the
greenness using all relevant tools available. Table 2 shows the CHEM21 metrics for each
step of the four routes to TMO, while the BioLogicTool shows that the BioLogic score and
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Total BioLogic Length in Figure 1. Further questions should be asked however, which are
not measurable by a score:

• Are toxic reagents used?
• Is the synthesis moisture- or air-sensitive?
• Are critical elements required?
• How quickly does the reaction proceed?
• Can it be carried out in flow?

Some of these questions are answered in the CHEM21 Metrics Toolkit spreadsheet,
and can be seen viewed as a supplementary file with a separate tab for each step of each
route. The total yield of final product as a percentage of biomass would be another highly
informative metric for the mass efficiency of the processes, but unfortunately values for the
yield is not available for each step of all routes, so a comparative overall route yield could
not be calculated.

From the four routes to TMO proposed in this work, two proceeded chemocatalytically
and two involved biochemical transformations. The two chemocatalytic routes require
fewer steps from glucose, which is usually a good indicator of greenness as each additional
unit operation likely carries greater energy and material demands. The BioLogicTool shows
that the BioLogic score (the tortuosity of a route) and Total BioLogic Length (summation of
the path lengths) of the chemocatalytic routes are better (i.e., lower values, noting that the
minus symbol describes the vector direction, not length) than the biochemical routes. These
conclusions from the BioLogicTool are roughly consistent with the fewer steps required from
the shared glucose feedstock (Figure 1). Despite the better appearance of the chemocatalytic
routes at this point, the synthesis as a whole must be considered, including the metrics
shown on Table 2.

The two chemocatalytic routes rely on wasteful methylation steps which impact the
greenness and efficiency of the synthesis to the point where it would not be commer-
cialisable (Step 4 (S4) in Routes 1 and 2, Table 2). While AE and RME are better when
methyllithium is used (92% and 63%, respectively) compared to when a Grignard reagent
is used (41% and 37% respectively), the former requires more stringent dry and air-free con-
ditions.

This leaves Routes 3 and 4 as the favoured synthetic routes to TMO. Route 3 has
the benefits of being an already established process for the production of DHL, albeit
with petroleum-derived starting materials. It is also analogous to the early steps of the
synthesis of NMP, suggesting that the economics of the process will not be an issue. Route
4 is uncommercialised to the best of our knowledge and requires extra steps. However,
little or no purification is required at any stage of Route 4, benign conditions are required
throughout, and yields are high. One difficulty with Route 4 is the synthesis of 2,5-
dimethylhexa-2,4-diene (DHN), Step 4, as the producer, Gevo, no longer advertise it on
their product catalogue.

Overall, Route 3 is likely to be the best route to TMO due to it being an established
process, requiring five steps from glucose, and having relatively good CHEM21 metrics
(Table 2 and the supplementary CHEM21 spreadsheet) and BioLogic scores (Figure 1). In
addition, the bio-based platform molecules used in the synthesis are acetone and methane;
two of the most established bio-based molecules. Despite this assessment, it was only from
Routes 1 and 2 that a sample of partially bio-based TMO could be prepared at this moment
in time. Samples gathered from Route 1 were assessed via ASTM D6866-20 Method B and
showed 64% bio-based carbon content in both the DHL and TMO subsequently produced.

5. Conclusions

Several routes to bio-based 2,2,5,5-tetramethyloxolane (TMO) have been proposed
and assessed for greenness using the CHEM21 Metrics Toolkit and BioLogicTool. Two
routes proceed chemocatalytically and two routes proceed predominately biochemically.
TMO with a bio-based content of 64% was obtained by the methylation of bio-based
methyl levulinate, surpassing the 25% required by the CEN/TC 411 bio-based content



Sustain. Chem. 2021, 2 404

standard. However, despite high yields (90%), atom economy, and process mass efficiency,
stoichiometric amounts of magnesium salts are produced as a waste stream, meaning the
coupling of acetone and acetylene is currently likely to be the greenest synthesis option,
assuming bio-based acetone and acetylene are used. This study not only highlights the
most logical pathway to bio-based TMO but also acts as an exemplar for the utility of the
CHEM21 Metrics Toolkit and the BioLogicTool in comparing differing pathways to target
bio-based compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/suschem2030023/s1, Figure S1: 1H NMR spectrum of partially bio-based 2,2,5,5- tetram-
ethyloxolane (TMO) produced by Route 1. CDCl3 solvent, Figure S2. 1H NMR spectrum of partially
bio-based 2,5-dimethyl-2,5-hexandiol (DHL) produced by Route 1, d-MeOD solvent, Figure S3. 13C
NMR spectrum of partially bio-based 2,5-dimethyl-2,5-hexandiol (DHL) produced by Route 1, d-
MeOD solvent, Figure S4. 1H NMR of 2,5-dimethyl-2,5-hexanediol as produced by Route 2. CDCl3
solvent, Figure S5. 13C NMR of 2,5-dimethyl-2,5-hexanediol as produced by Route 2, CDCl3 solvent,
Figure S6. 1H NMR spectrum of 2,5-dimethylhexane-2,4-diene, d-MeOD solvent, Figure S7. 1H
NMR spectrum of the polyperoxide of 2,5-dimethylhexane-2,4-diene (DHN polyperoxide). CDCl3
solvent, Figure S8. ASTM D6866-20 Method B for bio-based carbon testing results for 2,5-dimethyl-
2,4-hexanediol, Figure S9. ASTM D6866-20 Method B for bio-based carbon testing results for TMO.
A supplementary spreadsheet titled “CHEM21 Metrics–All Routes” is the CHEM21 Metric Toolkit
populated with available data to access the metrics for each proposed route with a separate tab for
each step of each route, this was used to compiled the data given in Table 2 of the main manuscript. A
supplementary spreadsheet titled “BioLogicTool–All Routes” is the BioLogicTool spreadsheet available
from the original 2019 article by Lie et al. [9] and has been populated with data for each route, this
was used to compile Figure 1 of the main manuscript.
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