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Abstract

Tridiagonal matrix inversion is an important operation with many applications. It arises frequently in solving discretized

one-dimensional elliptic partial differential equations, and forms the basis for many algorithms for block tridiagonal

matrix inversion for discretized PDEs in higher-dimensions. In such systems, this operation is often the scaling bottleneck

in parallel computation. In this paper, we derive a hybrid multigrid–Thomas algorithm designed to efficiently invert

tridiagonal matrix equations in a highly-scalable fashion in the context of time evolving partial differential equation

systems. We decompose the domain between processors, using multigrid to solve on a grid consisting of the boundary

points of each processor’s local domain. We then reconstruct the solution on each processor using a direct solve with the

Thomas algorithm. This algorithm has the same theoretical optimal scaling as cyclic reduction and recursive doubling.

We use our algorithm to solve Poisson’s equation as part of the spatial discretization of a time-evolving PDE system.

Our algorithm is faster than cyclic reduction per inversion and retains good scaling efficiency to twice as many cores.

Keywords: tridiagonal matrix inversion, multigrid, parallel computing
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1. Introduction

Tridiagonal matrix inversion is an important operation with many applications, including in computational fluid

dynamics [1], plasma physics [2], Poisson solvers [3], preconditioning of iterative solvers [4], cubic spline interpolation

[5], and computer graphics [6]. It arises frequently in the discretization of partial differential equation systems on

structured grids, particularly those involving the solution of elliptic equations, like Laplace’s or Poisson’s equation. The5

discretization of operators in one dimension using centred second-order finite differences leads to tridiagonal systems, while

the discretization in two or more dimensions leads to block tridiagonal systems. Developing efficient solvers for tridiagonal

matrix inversion is useful beyond one-dimensional systems however, as methods for equations in multiple dimensions are

often based on one-dimensional approaches. For example, the Alternating Direction Implicit (ADI) method for implicit

time advance inverts a tridiagonal system for each dimension independently. Similarly, Naulin’s method [7] for inverting10

elliptic operators in two or three dimensions is based on iterative corrections to a one-dimensional solver.

Tridiagonal systems may be inverted optimally in serial using the Thomas algorithm, a special case of Gaussian

elimination that requires only O(Nx) operations, for Nx the dimension size. The Thomas algorithm is inherently

sequential: it consists of two passes – forwards and backwards through the matrix rows – where each step depends on the
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previous step. Elimination of unknowns is only possible because the passes reach the boundaries of the global domain,15

with the boundary rows coupling two unknowns, rather than three unknowns as in the rest of the domain.

Many solvers exist for parallel tridiagonal matrix inversion [see for example 8, §5.5 for a review]. A fast, approximate

solution is given by the Parallel Diagonal Dominant (PDD) method [9, 10]. This decomposes the tridiagonal system as

a series of subsystems, one for each processor, and treats the coupling between subsystems as small corrections. While

this scales ideally, the approximation is not valid unless the coupling terms are indeed negligible.20

Exact parallel solutions have a theoretical minimum run time of O(logNx) [8]. The first solvers to achieve this were

cyclic reduction [3] and recursive doubling [11, 12]. These are direct solvers based on computing the LU factorization

of the tridiagonal system from independent, and therefore parallelizable, components. In these solvers, the O(logNx)

scaling arises from the tree-like movement of data.

The SPIKE algorithm [13, 14] is a recursive method for solving tridiagonal, and more general banded and block25

tridiagonal, systems. It is motivated by using a factorization based on a domain decomposition method which is more

amenable to parallelization than the LU factorization used in cyclic reduction and recursive doubling. The SPIKE

algorithm has two layers of solvers: an inner and an outer solver. The inner solver reconstructs the solution on local

subdomains, given the solution from the outer solver, which solves a reduced system for the coupling of the subdomains.

Since the reduced system takes the same form as the original system (in our case, the reduced system for a tridiagonal30

matrix is also tridiagonal), the inner solver is applied recursively.

In this paper, we introduce an algorithm with the same domain-decomposition factorization as the SPIKE and PDD

algorithms. As our local subdomain systems are tridiagonal, we use the Thomas algorithm as an inner direct solver.

However, rather than use a recursive direct solve as described in [13], we use multigrid, an iterative method, for the

reduced system. The motivation for this is two-fold. Firstly, we wish to minimize data movement, and therefore consider35

an iterative method that only requires local guard cell swaps, rather than global communications. Secondly, we are

interested in inverting tridiagonal systems as part of a larger initial value problem. We therefore have a good initial

estimate for the solution – namely, the solution from the previous timestep – and wish to take advantage of this by using

an iterative method. Iterative methods also allow control of convergence tolerances, while multigrid in particular has

many parameters that can be tuned to optimize a specific simulation, such as number of levels, number of smoothing40

cycles, and different options for the smoothing, prolongation and refinement methods. Finally, as the operator to be

inverted is often constant or slowly-varying throughout a simulation, many quantities in our algorithm can be cached,

reducing the overall work. Where not strictly constant, corrections can be applied using an outer solver.

The local Thomas algorithm inversions require O(Nx/Np) operations, where Nx and Np is the total number of grid

points and processors respectively. The multigrid method converges to a given tolerance in a fixed number of cycles,45

so (as we shall see in Sec. 2) the number of operations per processor is O(1) independent of problem size, while the

number of guard cell communications grows slowly as O(logNp). In addition, the cost of convergence checking scales

empirically as O
(

N
5/4
p

)

. Thus the overall runtime of our algorithm is T = O(Nx/Np) + O(logNp) + O
(

N
5/4
p

)

. We

find experimentally that the ideal scaling region persists across most core counts, with performance only degrading once

there are ∼ 8 points per processor.50

This paper is structured as follows. In Sec. 2 we derive our hybrid method and discuss complexity and communication

requirements. In Sec. 3 we present numerical experiments using different solvers in a plasma filament simulation using the

BOUT++ package [15]: we compare our hybrid multigrid-Thomas method to parallel cyclic reduction, a pure multigrid
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implementation, and a direct solver that replaces the multigrid component of our algorithm with a direct solve on a

single core (requiring an additional gather/scatter communication). In Sec. 4 we summarize and discuss future work.55

2. Hybrid multigrid–Thomas algorithm method

In this section we derive our hybrid algorithm. We begin by discussing the solution of local tridiagonal systems on

subdomains in Sec. 2.1, and then derive the reduced system which couples the subdomains in Sec. 2.2. We describe our

implementation of multigrid for the reduced system in Sec. 2.3 and the calculation of error tolerances in Sec. 2.4. In Sec.

2.5 we derive the theoretical runtime of our algorithm. Finally in Sec. 2.6 we discuss techniques for reducing the amount60

of communication in the algorithm.

2.1. Local solves with the Thomas algorithm

We solve the n× n tridiagonal linear system Mx = f ,
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We divide the domain x using p processors such that n = mp and there are m points per processor, and the rows qm to

(q + 1)m− 1 are local to the qth processor,
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(2)

The terms outside the block diagonal, aqm and c(q+1)m−1, contribute to the equations in processor q’s rows, but depend

on terms local to the neighbouring processors, and therefore require communication. To emphasise this, we introduce
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halo cells (denoted with superscript h),
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Focussing on the equations local to the qth processor, we have
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We may solve for x by inverting Mq, which is local to processor q, to obtain
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This may also be written

x = M−1
q f + αxqm−1 + βx(q+1)m, (6)

where x = (xh
qm−1, xqm, . . . , x(q+1)m−1, x

h
(q+1)m), f = (0, fqm, . . . , f(q+1)m−1, 0), and α and β are the first and final

columns of M−1
q respectively. Note also that M−1

q f , α and β are all calculated using only data that is local to processor

q. Moreover M−1
q , α and β only change when the original operator M changes, and f only changes when the right-hand65

side changes. That is, (M−1
q f), α, β and f are always constant within a timestep, and, when M is time-independent,

M−1
q , α and β are constant throughout the whole simulation.

Given vectors (M−1
q f), α and β, equation (6) allows us to construct the full solution on processor q from the values

xqm−1 and x(q+1)m. These values are respectively the final interior point on the processor below and the first interior

point on the processor above. We also note from (5) that processor q’s first and last interior points xqm and x(q+1)m−1

depend on the neighbouring points xqm−1 and x(q+1)m only. Other interior points, shown by ellipses in (5), are never

required. We may therefore construct the solution on every processor using a reduced grid that contains only the points

either side of processor boundaries, the 2(p − 1) variables {. . ., xqm−1, xqm, x(q+1)m−1, x(q+1)m, . . . }. Moreover, it is
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only necessary to solve for the first interior points in each domain, as we can reconstruct the last interior points using

(5). For example, if processor q knows its first interior point xqm and its up-neighbour’s first interior point x(q+1)m, we

may calculate xqm−1 from the first (interior) row of (5). We thus solve on the reduced grid

X = (X0, X1, . . . , Xq, . . . , Xp−1, Xp)
T ≡ (x0, xm, . . . , xqm, . . . , x(p−1)m, xmp−1)

T . (7)

This is a grid of (p + 1) points: the p first interior points, plus the final interior point on the final processor. Including

the final point on this grid means we do not need to modify the boundary conditions from the original problem, since

both x0 and xmp−1 are on both the full and the reduced grid. Moreover, multigrid requires grids of size 2k + 1, so this70

choice allows us to use processor counts of 2k (rather than the more awkward 2k − 1).

2.2. Equations for the reduced system.

To derive equations for the reduced grid X, we consider the first and last interior rows of (5),
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where l and u denote the lower and upper interface respectively, rlq = (M−1
q f)qm, ruq = (M−1

q f)(q+1)m−1, α
l
q = αqm,

αu
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l
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q = β(q+1)m−1. We may substitute the lower interface variables in favour of X elements,
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To obtain an equation solely for Xq it is sufficient to eliminate xqm−1 from (9a). To do this, we consider the corresponding

equations on processor q − 1,
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Eliminating x(q−1)m−1 between these, we obtain an expression for xqm−1,
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(12)

which is simply Xq as a linear combination of Xq−1, Xq+1 and a constant, i.e., it is a tridiagonal system which we write

AX = g. In (12), terms with subscript q − 1 are not local to processor q and must be communicated from processor

q − 1. The terms containing α and β depend on the system matrix M , so may be calculated and communicated once75

by processor q − 1, and then stored on processor q. Terms containing r depend on f and so must be calculated and

communicated every timestep.
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Algorithm 1: A sketch of 2-level multigrid

while residual ‖g −AX̂‖ is too large do

smooth, i.e., perform a few iterations of a method like Jacobi or Gauss–Seidel to improve X̂, the approximate

solution to AX = g;

calculate the residual r = ‖g −AX̂‖ = ‖A(X − X̂)‖;

restrict the residual r by approximating it onto a coarser grid;

obtain an approximation solution to Ace = rc, where e = X − X̂, and Ac and rc are approximations to the

original operator and the residual on the coarser grid;

prolong the solution e by interpolating it onto the original grid;

update the approximate solution X̂ to X̂ + e ≈ X;

end

Note also that αl is an element from the inverse of a tridiagonal matrix, and is only zero if αu is also zero. If

αl
q−1 = αu

q−1 = 0, we use (10b) directly to eliminate xqm−1 from (9a). This yields the same expression (12), but with

the ratio αu
q−1/α

l
q−1 = 0.80

Equation (12) defines a tridiagonal system for Xq. The size of the system is (p + 1) × (p + 1), so grows with the

number of processors, even though the underlying system for xi has fixed size n×n. This means that the reduced system

and its properties change as we vary the number of processors. For example, if we were to solve for Xq using an iterative

method, we would expect the number of iterations required to reach a tolerance to change as we change the number of

processors. This is in contrast to more conventional approach of parallelizing serial algorithms where system properties85

should not depend on processor count.

2.3. Multigrid

We now consider solving system (12) for X for a fixed problem size n × n. We consider iterative methods as these

typically require nearest neighbour halo cell communications, rather than global collectives. At high core counts, we

expect the algorithm to be latency-bound – the limit to performance is the rate of passing small amounts of data, rather90

than the rate at which work is performed. In this regime, the total number of iterations is a better measure of the

algorithm’s overall cost than complexity.

Let us first consider using a simple iterative method, like Jacobi or Gauss–Seidel. The rate of convergence of these

methods depends on the largest eigenvalue of the system matrix A, but the number of iterations required to reach a

tolerance typically increases with increasing problem size. Although our original problem is of fixed size, as we increase95

the number of processors, the size of the reduced problem for X increases. We find the increased number of iterations

required for convergence offsets the speed-up from increased parallelism, and the algorithm does not scale with simple

iterative approaches. We therefore consider multigrid methods, which typically require many fewer iterations than simple

iterative methods for large problem sizes.

Multigrid originated in the 1960’s and 1970’s with the theoretical work of Fedorenko [16], Bakhvalov [17] and Hack-

busch [18], and the numerical work of Brandt [19, 20] (see [21] for a brief overview of multigrid development). Multigrid

has since grown into a widely-developed subject [22, 23, 24]. The multigrid method is motivated by the observation that

when solving AX = g by iterative methods, the long wavelength contributions to the residual r = g − AX̂ (where X̂ is
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the approximate solution) decay much more slowly than short, grid-scale contributions. We can write r as the right-hand

side of an equation for the error e = X − X̂,

Ae = AX −AX̂ = g −AX̂ = r. (13)

If we solve Ae = r on a grid that is coarser than the original grid, then errors that are long wavelength on the original grid100

are now shorter wavelength relative to the coarse grid, and therefore decay more quickly. Taking the solution e to (13)

for the coarse grid and projecting back onto the original grid, we obtain an updated approximation for X̂ → X̂ + e ≈ X

which is much improved at long wavelengths. An outline of multigrid with two levels is given in Algorithm 1. Iterating

this idea, we may solve Ae = r on a hierarchy of nested grids of varying coarseness to obtain an approximation that

converges quickly at all wavelengths. The standard grid has 2kl +1 points on each level with grid spacing doubling with105

each coarsening.

There are many variants of a multigrid method, as one can use different algorithms for each component part. There

are three main components: (1) smoothing, iterations of a solver like Jacobi or Gauss–Seidel to improve the approximate

solution on a given grid; (2) restriction, approximating the residual from a fine grid onto a coarser grid; and (3)

prolongation, interpolating a solution from a coarse grid onto a finer grid. In addition to these, there are different choices110

of cycles, i.e., when to traverse between different grid levels. In the simplest of these, the V cycle, the algorithm starts

on the finest grid, smooths and coarsens on each level in turn. On reaching the coarsest grid, the algorithm reverses

direction, in turn smoothing and refining on each level. Other common choices are the W cycle and the F cycle [22].

The important property shared by all multigrid variants is that the norm of the residual ‖r‖ = ‖g − AX̂‖ decreases

by a fixed factor every cycle (excepting cases where the algorithm has failed). This ensures that the solution converges115

to a fixed tolerance in a finite number of cycles. We show later that this ensures that multigrid requires total work that

increases linearly with problem size ∼ O(n), and the number of halo cell communications grows slowly as ∼ O(log2 p).

Owing to these properties, any multigrid variant should perform well. We now give details of the implementation

we benchmark in Sec. 3, namely smoothing with red-black Gauss–Seidel, restriction with the “full-weighting” operator,

and prolongation with linear interpolation. With these choices, the norm of the residual reduces from ‖r‖ to 0.06‖r‖ for120

every V cycle [22, Table 4.2], a convergence rate we observe in our implementation.

2.3.1. Red-black Gauss–Seidel

Red-black Gauss–Seidel is a parallelizable variant of the Gauss–Seidel method for obtaining an approximate solution

to AX = g. Alternate grid points are labelled red and black, and the approximate solution X̂ is updated in two passes,

first for red points,

X̂+
2k =

1

b2k

(

r2k − a2kX̂2k−1 − c2kX̂2k+1

)

, (14a)

for k = 0, . . . , (n+ 1)/2, and then for black points,

X̂+
2k+1 =

1

b2k+1

(

r2k+1 − a2k+1X̂
+
2k − c2k+1X̂

+
2k+2

)

, (14b)

for k = 0, . . . , (n− 1)/2. Here X̂+ denotes the updated approximation to X̂. Importantly, each red update depends only

on black points, and vice versa, meaning that each update in a pass is independent and can be performed in parallel.

This is unlike the original Gauss–Seidel method

X̂+
k =

1

bk

(

rk − akX̂
+
k−1 − ckX̂k+1

)

, (15)
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for k = 0, . . . , n, where each update has a serial dependence on the previous update X̂+
k−1. In both (14) and (15) half

the grid points used in the update are from the current approximation X̂ and half are from the update X̂+. In red-black

Gauss–Seidel, these are grouped so that all red points are updated using X̂, and all black points are updated using X̂+.125

This means that the residual r2k+1 − AX̂+
2k+1 = 0 by construction for all black points. This allows us to omit some

communication when constructing the residual on the coarse grid.

2.3.2. Prolongation

Prolongation, or interpolation, is the procedure for approximating a coarse grid solution on a finer grid. We use linear

interpolation; this may be represented by the matrix I in

IXc =
1

2























2

1 1

2

1 1

2

































Xc
0

Xc
1

Xc
2











=























Xc
0

(Xc
0 +Xc

1)/2

Xc
1

(Xc
1 +Xc

2)/2

Xc
2























= Xf , (16)

where Xc and Xf represent matrices on coarse and fine grids respectively.

2.3.3. Restriction130

Restriction is the opposite operation to prolongation, namely approximating a finer grid vector on a coarser grid. As

multigrid grids are nested, it is tempting to simply take values from corresponding grid points. However, the coarse grid

problems better retain the properties of the full problem if the restriction operation R is proportional to the transpose

of the interpolation operation, R = IT [22]. In the case of the linear interpolation, the restriction operator is called the

full weighting operator, and is

RXf =
1

4











2 1

1 2 1

1 2

































Xf
0

Xf
1

Xf
2

Xf
3

Xf
4























=











(2Xf
0 +Xf

1 )/4

(Xf
1 + 2Xf

2 +Xf
3 )/4

(Xf
3 + 2Xf

4 )/4











= Xc. (17)

2.3.4. Coarse grid problems

Whatever choice is made for restriction R and prolongation I, the matrix of the problem to solve on the coarse

grid is found from the following consideration. Writing the coarse and fine grid problems AcXc = gc and AfXf = gf

respectively, we have

AfXf = gf

AfIXc = Igc

RAfIXc = RIgc ≈ gf

=⇒ Ac ≡ RAfI.

(18)

For each level of multigrid, we therefore construct the system matrix Ac for the system matrix of the level above Af .

When A is fixed throughout a simulation, each of the coarse grid matrices may be calculated once during initialization.

Note that the coarse grids on every level are tridiagonal.
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Coarse grid coefficients. With linear interpolation (16) and full weighting (17), the elements of the coarse matrix Ac are

ac =
1

4
af
−
+

1

8
bf
−
+

1

4
af (19a)

bc =
1

8
bf
−
+

1

4
cf
−
+

1

4
af +

1

2
bf +

1

4
cf +

1

4
af+ +

1

8
bf+ (19b)

cc =
1

4
cf +

1

8
bf+ +

1

4
cf+, (19c)

where a, b and c are the sub-, on-, and super-diagonal elements of either Ac or Af , depending on superscript. Terms135

on the right-hand side with no subscript are evaluated at the same grid point as the left-hand side term – the point is

shared between the grids. Terms with subscript plus or minus are evaluated at the point above or below respectively on

the finer grid. These points do not exist on the coarser grid.

2.4. Convergence checking and residual calculation.

To check for convergence, we adopt the weighted error measure used in the ODE solver PVODE [25],

‖E‖ ≡

[

Nx−1
∑

i=0

1

Nx
(wiEi)

2

]1/2

, (20)

where Ei is the elementwise residual for the original (not reduced) problem,

Ei = |(f −Mx)i|, (21)

and wi is a weight accounting for both absolute and relative error,

wi =
1

rtol|xi|+ atol
, (22)

with rtol and atol user inputs for the required relative and absolute tolerances respectively. The method is converged140

when ‖E‖ < 1.

This choice of error measure has a number of advantages. Firstly, it allows direct comparison between the errors in

our inversion algorithm and the errors in the iterative PVODE time advance algorithm.

Secondly, by combining relative and absolute tolerances in a single weight, it allows the algorithm to converge when

each point is converged in either the absolute or the relative error. This is in contrast to the other commonly-used error

conditions

EA ≡ ‖f −Mx‖ < atol, ER ≡ ‖f −Mx‖/‖x‖ < rtol, (23)

where ‖ · ‖ is the Euclidean norm. The latter requires all points to converge in one of the absolute or relative measures,

rather than allowing some points to converge in one and some in the other. This means that the algorithm is more robust145

when using the PVODE error measure (20).

Finally, we note that the errors (20) and (23) are written in terms of the original problem Mx = f , not the reduced

problem AX = g that is solved by our algorithm. This is potentially a problem, as reconstructing x from X for every

convergence check would represent a large amount of work relative to the other operations in an iteration – reconstructing

the solution is O(Nx/Np) operations per processor, while the multigrid work for a processor’s single X grid point is O(1).

However, we may write (20) in terms of the reduced problem. Given any boundary values Xq and Xq+1 for processor
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q, our algorithm constructs a solution which satisfies Mx = f on the interior points of q. Thus by construction, the

residuals of interior points are zero. Moreover, the values of x in boundary cells correspond to the values on the reduced

X grid. Therefore we may write (20) as

‖E‖ ≡





Np−1
∑

q=0

1

Nx

(

ŵqÊq

)2





1/2

, (24)

where the elementwise error Êq is now

Êq = |(g −AX)q|, (25)

and the weight ŵq is now

ŵq =
1

rtol|Xq|+ atol
. (26)

Thus ‖E‖ may be computed without knowing the full solution x; this is not possible with the error (23), as the relative

error ‖ER‖ cannot be computed without knowing all of x.

2.5. Complexity and communication

An outline of the full algorithm is given in Algorithm 2. As there is little opportunity for computation/communication150

overlap, the total runtime is proportional to the runtime for the different components.

The cost of solving the local subsystems with the Thomas algorithm is O(Nx/Np). As these are local to processor,

there is no communication cost.

The scaling for multigrid component of our algorithm is slightly different from usual multigrid scaling, as the size of

the multigrid system varies with processor count. The complexity of a multigrid system of size Nx is calculated as follows155

(see for example [24], §§2.4.3 and 6.2.1). Consider solving in serial. The error reduction per V cycle is independent of the

finest grid size, so reducing the residual from O(1) to a given tolerance takes a constant number of V cycles. Therefore

the total work is proportional to the work in one V cycle. The work on level k of a V cycle is proportional to the grid

size Wk = CNk. Summing all levels and noting that the ratio of neighbouring grid sizes is approximately constant (in

our case ρ = Nk−1/Nk = (2k−1 + 1)/(2k + 1) ≈ 1/2), we find the total work is W =
∑l

k=1 Wk = CNl

∑l−1
k=0 ρ

k, where l160

is the number of multigrid levels and Nl = Nx is the resolution of the finest grid. Thus work is O(Nx), as ρ < 1.

In parallel, the work can be distributed over all processors, so the runtime is O(Nx/Np). There are however now two

sources of communication cost: nearest neighbour communications in smoothing, refining and prolongation, and a global

all reduce to synchronize the summed residual for convergence checking.

The nearest neighbour communications are performed a fixed number of times per iteration. While the number of V165

cycles is independent of Nx and Np, the number of iterations per V cycle increases with the number of multigrid levels,

and therefore increases with Nx according to Nx = 2l + 1. With two visits to each level per V cycle, this implies the

number of iterations is Ni = 2l = 2 log2(Nx − 1) so the nearest neighbour communication time scales as O(log2 Nx).

The all reduce to synchronize summed residuals in the convergence check is performed once per V cycle, i.e. O(1)

calls. The cost of the all reduce depends on the implementation, machine (and machine state!) but we observe it to170

be around O
(

N
5/4
p

)

. The total cost of multigrid is therefore O(Nx/Np) +O(log2 Nx) +O
(

N
5/4
p

)

.
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Algorithm 2: Iterative tridiagonal solver

Initialize left-hand side. Invert local matrix to calculate coefficients for constructing the solution from halo cells. Use

these coefficients to calculate coefficients of the matrix of the reduced problem. Calculate coarsened versions of this

matrix for each multigrid level. When M is constant, cache these values;

Initialize right-hand side. Invert local problem to calculate coefficient for constructing the solution arising from M−1f .

Calculate this term’s contribution to the reduced system’s equations. These terms cannot be cached, as f changes every

timestep;

Set initial guess to solution from previous timestep;

while true do

smooth solution using Gauss–Seidel with red-black colouring;

if done enough smoothings at this level then

calculate the residual;

if not enough subiterations then

continue;

else if residual tolerance met then

exit;

else if refining then

refine the grid;

update solution using residual calculated on previous level;

reset smoothing count;

if now on finest grid then

stop refining, start coarsening;

else

coarsen the grid;

reset smoothing count;

if now on coarsest grid then

stop coarsening, start refining;

Cache reduced solution for use on next timestep;

Construct full solution from halo cell values;
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Now considering our implementation, our grid size is Np +1, so that the amount of multigrid work on each processor

is O((Np + 1)/Np) ∼ O(1) and the number of nearest neighbour communications is O(log2 Np). The global all reduce

still scales as O
(

N
5/4
p

)

. Our expected runtime is therefore

T = A
Nx

Np
+B log2(Np) + C +DN5/4

p . (27)

While this theoretical runtime has the same scaling as parallel cyclic reduction, we see in Sec. 3 that our method yields

better scaling for an initial value problem.

2.6. Minimizing communication

As communication dominates our algorithm’s cost at scale, we consider some methods for reducing communication.175

2.6.1. Simultaneous solution of subsystems

We often need to invert many independent tridiagonal systems with different coefficients. This arises for example

in inverting a two-dimensional Laplacian with a Fourier transform in one of the dimensions, ∇2 = ∂2/∂x2 + ∂2/∂z2 7→

∂2/∂x2−k2z , where the x dimension is distributed, but the z direction is local to processor. We then have Nz independent

tridiagonal systems in x, parameterized by kz. Each processor holds the data for its x-subdomain for each of the Nz180

systems. We could invert these systems one at a time. However, doing so requires O(
∑

kz
Ni(kz)) ∼ O(NzN̄i) halo cell

communications of a single number, where Ni and N̄i are the number of iterations as a function of kz and its average

over kz. This is inefficient due to the overheads of sending many small messages.

Instead, we perform the inversion for each system simultaneously, and communicate vectors of length Nz. While this

does not significantly increase the cost of each send, it decreases the number of sends to O(maxNi), which is smaller by185

around a factor of Nz. To prevent unnecessary work, we skip loop iterations for the kz modes that have converged.

2.6.2. Predicting convergence

At large core counts, the dominant communication cost is from the all reduce needed to synchronize the summed

error E (24) to ensure all processors exit on the same iteration. To minimize all reduce calls we take advantage of

the fact that the error reduction per V cycle, R = E+/E, is constant when the algorithm is proceeding normally. The190

constant R depends on the smoothing, prolongation and refinement methods, and are tabulated in [22, Table 4.2]. We

compute R using the errors from the second and third V cycle (the first cycle is often atypical) and use it to predict the

number of further V cycles needed for the slowest converging kz to meet the error tolerance. We then do not calculate

the global summed error – thus skipping the all reduce – until all modes are expected to have converged.

In our experiments, this reduced the number of all reduce calls from ∼ O(7) to 3. Unfortunately, the decrease195

in communication time is offset by an increased amount of work required: since we no longer know which modes have

converged, we can no longer skip the corresponding work. Whether this yields a performance improvement appears to

be problem-dependent. We have therefore left this as an option in our implementation, but have not used this method

in our results presented in Sec.3.

3. Numerical experiments200

We now assess the performance of our algorithm by using it to invert a discretized Laplacian in a time-evolving

partial differential equation system. We consider a simple model for plasma filament propagation, the “blob2d” example
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in BOUT++ [15],

∂n

∂t
= −{φ, n}+ 2

∂n

∂z
+Dn∇

2n, (28a)

∂Ω

∂t
= −{φ,Ω}+ 2

∂n

∂z
+DΩ(∇

2Ω)/n, (28b)

∇2φ = Ω, (28c)

in a two-dimensional box (x, z) with Dirichlet boundary conditions in x and periodic boundary conditions in z. In

(28), n is plasma density, Ω is vorticity, φ is electrostatic potential, t is time, Dn and DΩ are dissipation parameters,

and {A,B} = (∂A/∂x)(∂B/∂z) − (∂A/∂z)(∂B/∂x) is a Poisson bracket. We use the two-dimensional Laplacian ∇2 ≡

∂2/∂x2 + ∂2/∂z2. Between each timestep, the vorticity equation (28c) must be solved for φ so its value can be used in

(28a) and (28b) to advance n and Ω. We use φ at the current timestep as an initial guess for the iterative method (and205

φ = 0 as the guess for the first time step). We parallelize only in the x direction, with the z direction remaining local to

processor. As the domain is periodic in z, we Fourier decompose in that direction and solve (28c) as a one-dimensional

problem in x, solving independent kz-modes simultaneously as described in Sec. 2.6.1.

This model is implemented in BOUT++ [15], a modular framework for writing fluid and plasma simulations. We

implemented our tridiagonal matrix inversion algorithm as a module in BOUT++, and now compare it to BOUT++’s210

implementations of parallel cyclic reduction, of pure multigrid, and of a domain-partitioned direct solver. The parallel

cyclic reduction is based on the implementation by Kang [26]. The multigrid implementation is the same as described

in Section 2.3; for fairness it is implemented using the same data structures and communication patterns as the hybrid

multigrid-Thomas algorithm. The pure multigrid algorithm is applied on the full system rather than the reduced system.

This means there is no longer the need to reconstruct the full solution from the solution on the reduced grid, saving215

O(Nx/Np) work; but instead we must perform more levels of multigrid, requring O(Nx/Np) more work from performing

Gauss–Seidel iterations on the finer grids, and O(log(Nx/Np)) additional communications from the corresponding halo

swaps. The partitioned direct solver we use was derived by Austin et al. [27]. It is similar to our algorithm in that it

uses local solves on each processor to derive the same reduced system. However, instead of using multigrid, it gathers the

reduced system onto a single processor, solves directly with the Thomas algorithm, and scatters the results back. That220

is, it replaces the O(logNp) halo swap communications from multigrid’s iterations, with single all-to-one and one-to-all

gather/scatter communications of size Np.

The code is run on the Archer2 HPC system (two 64 core AMD Zen2 7742 processors per node, 2.25 GHz, with HPE

Cray Slingshot 2x100 Gbps bi-directional interconnect per node). Timings are taken from BOUT++ internal timers, and

are for the evolution of equations (28) including the initialization of our algorithm, but excluding other code initialization225

and I/O. To aid reproducibility, we have made available an archive containing BOUT++ input and output files, Archer2

job submission scripts, and our scripts for processing and plotting the results [28]. This archive also contains a script to

automatically download and build BOUT++ with the same git commit, Archer2 modules and runtime environment as

we used to generate the results presented here.

We present run times for evolving (28) with two time advance algorithms, the explicit non-adaptive fourth-order230

Runge–Kutta (RK4) scheme, and the implicit, adaptive timestep and adaptive order PVODE solver [25]. As RK4 is

non-adaptive, it performs a specified number of time steps regardless of the state of physical system (28). Therefore RK4

gives a simple measure of speed of the Laplacian inversion algorithm, in the context of the evolution of a full system.

We show results of this numerical study in Sec. 3.1. In contrast, PVODE uses an implicit linear multistep method which
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adapts the size of the timestep and the order of method depending on the stiffness of the problem (i.e. the current235

physical state). Rather than specifying a timestep, the user specifies relative and absolute tolerances for the error in

the time advance, using the error expression (20). This time advance method is preferred in BOUT++, as it requires

minimal user input, and usually provides faster wall-time-to-solution than RK4. However, as the timestep is adaptive,

the number of times that the Laplacian inversion is called varies depending on the state of the physical system, and in

particular varies between the different algorithms, and the input parameters to these. In Sec. 3.2 we plot run times for240

the same set of solvers, but now also vary the number of multigrid levels in our multigrid-Thomas solver, and show that

this and the number of Laplacian inversion calls strongly influences the overall run time.

3.1. Fourth-order Runge–Kutta

We advance the system (28) with fourth-order Runge–Kutta for two sets of resolutions, (Nx, Nz) = (1024, 1024) and

(Nx, Nz) = (8192, 1024). We evolve the smaller case for 2000 timesteps, which requires 8000 inversions of equation (28c),245

and the larger case for 1000 timesteps, which requires 4000 inversions. We plot run time against processor count for

these resolutions for our algorithm (solid blue), cyclic reduction (dashed red), pure multigrid (dot-dashed green) and the

direct partitioned algorithm (dotted magenta) in Fig. 1(a) and (b), and corresponding parallel efficiencies in Fig. 1(c)

and (d). In both multigrid algorithms, we use the tolerances rtol = 10−7 and atol = 10−6, and set the number of

multigrid levels to the maximum number possible. For our algorithm, this varies with core count, log2(Np)− 1. For pure250

multigrid, this is constant for fixed problem size, log2(Nx)− 1.

For the smaller problem, all algorithms scale ideally to 64 cores, before dropping to around 60% to 70% efficiency at

128 cores. This is due to increased contention for memory on one Archer2 node (128 cores): at smaller core counts we

have spread ranks even across a single node, so that each doubling in core count halves the available memory to each

core. Above 128 cores, efficiency degrades in all algorithms, though our multigrid-Thomas algorithm scales the best, with255

run time continuing to reduce until reaching the maximum core count, 512 cores (BOUT++ is constrained to require at

least 2 x-points per core). For the larger problem, we again see near-ideal scaling for all algorithms at small core counts,

with performance degradation due to resource contention as we approach 1 node (128 cores). Above 128 cores, parallel

cyclic reduction and the multigrid algorithms scale super-ideally. Again our multigrid-Thomas algorithm scales best,

retaining ideal scaling relative to a single node up to 16 nodes (2048 cores), and performing with 70% efficiency at the260

maximum 32 nodes (4096 cores, 2 x-points per core).

In Fig. 1(e) and (f) we plot the percentage speed up of our algorithm, relative to parallel cyclic reduction (red), pure

multigrid (green) and the direct partitioned algorithm (magenta). This shows that our algorithm is around 15% faster

than cyclic reduction, around 10% faster than the direct partitioned algorithm and around 5% faster than pure multigrid

for low and medium processor counts (except two small processor counts at the lower resolution where pure multigrid265

is faster). It also shows that our algorithm is significantly faster than all other algorithms at high processor counts as

expected from the improved scaling.

3.2. PVODE time advance

We now show results for the PVODE timestepping algorithm. To use PVODE, we provide that library with a

function evaluating the right-hand sides of (28)(a,b) for each iteration of n and Ω; this function call includes inverting270

(28c) to find φ, i.e. one call of the Laplacian inversion algorithm. As PVODE continues to iterate for n and Ω until

the specified tolerances are met, the number of times the right-hand side is called varies depending on the Laplacian
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Figure 1: Plots for the blob2d filament simulation with resolution (left column) Nx = 1024 and (right column) Nx = 8192. (a,b) Scaling plots

for cyclic reduction (dashed red), pure multigrid (dot-dashed green), the direct partitioned algorithm (dotted magenta) and our algorithm

(solid blue). We mark the run time for serial Thomas in the smaller case with a star. (c,d) The parallel efficiencies for timings shown in (a,b).

In (d) we plot the same data using both 8 cores (solid) and 128 cores = 1 node (dashed) as the reference case. (e,f) The relative performance

improvement of our algorithm compared to the other algorithms, expressed as a percentage for the timings shown in (a) and (b) respectively.
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inversion algorithm used, and each Laplacian inversion algorithm’s parameters. This means that the run time now not

only depends on the time per Laplacian inversion, but also the number of Laplacian inversions that are required.

We consider a simulation following a filament for 400 cyclotron times with (Nx, Nz) = (8192, 1024), and with the275

tolerances (atol, rtol) = (10−7, 10−6) for our algorithm and the multigrid algorithm, and (atol, rtol) = (10−6, 10−5)

for the PVODE time advance. This corresponds to the larger problem in Sec. 3.1, though run for a longer physical time,

so that unnormalized run times are not comparable.

In Figure 2(a) we plot the total run time against core count for simulations using the PVODE time advance with the

Laplacian inversion performed using parallel cyclic reduction (dashed red), pure multigrid (dot-dashed green), the direct280

partitioned algorithm (dotted magenta), and the multigrid-Thomas algorithm (solid colours). We also plot the parallel

efficiency relative to 128 cores (one Archer2 node) in Figure 2(b) and the speed-up of the multigrid-Thomas algorithm

relative to the other algorithms in Figure 2(c). Different line colours correspond to the maximum number of multigrid

levels used in the multigrid-Thomas algorithm. Recall that as each core represents a grid point, the maximum possible

number of multigrid levels increases with core count as log2(Np)− 1. In contrast, the maximum number of levels in pure285

multigrid is set by the problem size as log2(Nx)−1, so in this case is 12. While the overall scaling behaviour is independent

of max level, the maximum number of multigrid levels, at a fixed core count there can be significant differences in the run

time depending on max level. Moreover, the fastest run times do not correspond to setting max level to the maximum

possible number of levels; rather the optimal value is problem-dependent and requires user tuning. In this particular

case, setting max level = 4 results in ideal scaling up to 1024 cores (8 nodes, 8 x-points per core). The parallel efficiency290

in Figure 2(b) confirms that our algorithm scales with at least 90% efficiency for all values of max level up to 1024

cores, before dropping to around 60% and 30% efficiency at 2048 and 4096 cores respectively (except for max level = 6

which has 80% at 2084 cores). While this is reasonably good scaling efficiency, it is somewhat worse than the efficiency

seen in Figure 1(b) for the large RK4 test case (for parallel efficiency relative to a single node, the dashed lines). Indeed

both algorithms with a multigrid component have a worse parallel efficiency with PVODE; in contrast, parallel cyclic295

reduction has an almost identical parallel efficiency for the two time advance methods. Consequently, parallel cyclic

reduction is now more competitive with multigrid-Thomas with the two algorithms having similar parallel efficiencies.

However, the relative speed-up graph in Figure 2(c) shows that multigrid-Thomas is still 10% to 20% faster in the good

scaling region (except at 512 cores), similiar to the speed-up in the good scaling region of the larger RK4 case, Figure

1(f). When the multigrid-Thomas algorithm stops scaling ideally at 1024 cores (with max level = 4), it is ∼ 20% faster300

than parallel cyclic reduction, ∼ 30% than pure multigrid, and ∼ 80% faster than the direct partitioned algorithm. As

before, the multigrid-Thomas algorithm attains its fastest run time at the maximum 32 nodes (4096 cores, 2 x-points

per core).

We can understand the spread in run times for different values of max level in the multigrid-Thomas algorithm by

considering the number of times the Laplacian inversion is called, which we plot in Figure 2(d) against core count. These305

values are noisy and with no discernible dependence on core count, but typically parallel cyclic reduction requires a

similar number of Laplacian inversions or fewer when compared to the multigrid-Thomas algorithm. In Figure 2(e) we

plot the run times from Figure 2(a) normalized to the number of Laplacian inversions. This shows that multigrid-Thomas

is the fastest algorithm per single inversion. This essentially replicates the result shown in Figure 1(b). Moreover, after

normalization the lines for different max level largely coincide, showing that the variation in the run time is accounted310

for by variation in the number of Laplacian inversions required.
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Figure 2: Metrics for PVODE time advance with Laplacian inversion performed by cyclic reduction (dashed red), pure multigrid (dot-dashed

green), the direct partitioned algorithm (dotted magenta) and our algorithm varying the maximum number of multigrid levels (solid colours),

plotted against core count: (a) total run time; (b) parallel efficiency relative to 128 cores (one Archer2 node); (c) relative performance

improvement of multigrid-Thomas compared to other algorithms; (d) number of Laplacian inversions; (e) total run time divided by number

of Laplacian inversions; and (f) percentage of total time spent inverting the Laplacian.
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Finally in Figure 2(f) we plot the percentage of total run time spent in the Laplacian inversion measured by BOUT++

internal timers. This shows that at a fixed core count, the multigrid-Thomas algorithm spends the smallest proportion

of time in Laplacian inversion. For all algorithms, the proportion increases with core count, and dominates the run time

at the highest core counts showing that inversion is indeed the scaling bottleneck.315

4. Summary

In this paper we have introduced a hybrid multigrid–Thomas algorithm designed to efficiently invert one-dimensional

tridiagonal matrix equations in a highly-scalable fashion. We implemented this algorithm as a module in the plasma code

BOUT++ [15] and measured its performance in a model problem for plasma filament propagation using our algorithm

to solve Poisson’s equation as part of the spatial discretization of a time-evolving PDE system. We compared its320

performance to that of cyclic reduction, pure multigrid and a direct partitioned solver in two cases using different time-

advance algorithms, non-adaptive fourth-order Runge–Kutta and an adaptive solver from the PVODE library. While

both parallel cyclic reduction and pure multigrid also have the minimum theoretical complexity for parallel algorithms,

log(Nx), the multigrid-Thomas algorithm is fastest per Laplacian inversion and scales best. Thus it is the fastest and

most-scalable when using non-adaptive timestepping schemes, like fourth-order Runge–Kutta. When using the adaptive325

PVODE timestepping scheme, we found that the multigrid-Thomas algorithm required more internal timesteps to achieve

a given tolerance which reduces its performance advantage over the other algorithms. However, the multigrid-Thomas

algorithm’s better scaling performance means that it still outperforms the other algorithms while still retaining good

parallel efficiency.

4.1. Further work330

There are two areas of further work which may extend the scalability of the hybrid multigrid algorithm.

Firstly, we could consider changes to the multigrid algorithm to reduce the amount of communication required. In

this paper, we have used linear interpolation in the multigrid prolongation step. We could replace this with a higher

order scheme, which would be more expensive to compute but which would converge at a faster rate. Faster convergence

means fewer iterations and thus less communication; at high core counts, this might lead to faster run times, even335

after accounting for the increased work. As a concrete example, Briggs et al. [22, Table 4.2] studied convergence rates

and costs for different smoothing, interpolation and prolongation methods. Our scheme (red-black Gauss–Seidel, linear

interpolation, full weighting, and one pre- and post-smoothing, ν1 = 1, ν2 = 1) has a computational cost of 1.63 (relative

to some baseline) and a convergence factor of 0.06 (i.e. one multigrid cycle reduces the residual from r to 0.06r). For

Briggs et al.’s model problem, replacing linear interpolation with cubic interpolation and increasing the number of pre-340

smoothings to ν1 = 2 roughly doubles the cost to 3.37 but also halves the convergence factor to 0.03 (i.e. doubles the

rate). In a communication-bound computing regime, this may well yield reduced run times.

Finally, we could extend the scalability by exploiting the non-uniform memory access (NUMA) region of modern

processor architecture [29]. Each each core has fast access to shared memory in the NUMA region, usually a socket or a

node. In this paper, we have performed the direct solver on a core and the multigrid solve on a grid of cores. However,345

shared memory would allows us to perform the direct solve on a NUMA region, and multigrid across NUMA regions.

This would extend the good scaling performance of our algorithm by a factor of the number of cores per NUMA region,
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which on Archer2 is 8. This approach as been used to extend the scalability of the Fast Fourier Transform in the plasma

code GS2 [30] on the original Archer system (which had 12 cores per NUMA region) by a factor of ∼ 10 [31].
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Elsevier Science, 2001. URL: https://books.google.co.uk/books?id=-og1wD-Nx_wC.

[25] G. D. Byrne, A. C. Hindmarsh, PVODE, an ODE solver for parallel computers, The International Journal of High

Performance Computing Applications 13 (1999) 354–365. URL: https://doi.org/10.1177/109434209901300405.410

doi:10.1177/109434209901300405. arXiv:https://doi.org/10.1177/109434209901300405.

20



[26] J.-H. Kang, Parallel tri-diagonal matrix solver using cyclic reduction (CR), parallel CR (PCR), and thomas+PCR

hybrid algorithm, 2019. URL: https://github.com/jihoonakang/parallel_tdma_cpp.

[27] T. M. Austin, M. Berndt, J. D. Moulton, A memory efficient parallel tridiagonal solver, Preprint LA-VR-03-4149

(2004).415

[28] J. T. Parker, P. A. Hill, D. Dickinson, B. D. Dudson, Files and plotting scripts for “Parallel tridiagonal matrix

inversion with a hybrid multigrid–Thomas algorithm method”, 2020. URL: https://zenodo.org/record/4292047.

doi:10.5281/zenodo.4292047.

[29] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur, MPI + MPI:

a new hybrid approach to parallel programming with MPI plus shared memory, Computing 95 (2013) 1121–1136.420

[30] M. Barnes, D. Dickinson, W. Dorland, P. A. Hill, J. T. Parker, C. M. Roach, S. Biggs-Fox, N. Christen, R. Numata,

G. Wilkie, L. Anton, J. Ball, J. Baumgaertel, G. Colyer, M. Hardman, J. Hein, E. Highcock, G. Howes, A. Jackson,

M. T. Kotschenreuther, J. Lee, H. Leggate, N. Mandell, A. Mauriya, T. Tatsuno, F. Van Wyk, GS2 gyrokinetics

software, 2020. URL: https://doi.org/10.5281/zenodo.2551066. doi:10.5281/zenodo.2551066.

[31] L. Anton, F. van Wyk, E. Highcock, C. Roach, J. T. Parker, Enhancing scalability of the gyrokinetic code GS2425

by using MPI shared memory for FFTs, Proceedings of the Cray User Group (2016). URL: https://cug.org/

proceedings/cug2016_proceedings/includes/files/pap124s2-file1.pdf.

21


	Introduction
	Hybrid multigrid–Thomas algorithm method
	Local solves with the Thomas algorithm
	Equations for the reduced system.
	Multigrid
	Red-black Gauss–Seidel
	Prolongation
	Restriction
	Coarse grid problems

	Convergence checking and residual calculation.
	Complexity and communication
	Minimizing communication
	Simultaneous solution of subsystems
	Predicting convergence


	Numerical experiments
	Fourth-order Runge–Kutta
	PVODE time advance

	Summary
	Further work


