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Abstract  

Simple isotherm models can fit microporous adsorption yet the molecular interactions 

underlying the successful fitting have often remained obscure. Here we demonstrate how semi-

empirical isotherm model data can be mined to reveal the reality of adsorbate-adsorbate 

molecular interactions. This was made possible by the fluctuation adsorption theory, a rigorous 

theory based only on the principles of statistical thermodynamics. For microporous carbons, 

adsorbate-adsorbate interactions quantified from the Dubinin-Radishkevich (DR) and Dubinin-

Astakhov (DA) models successfully capture the primary micropore filling mechanism and the 

subsequent layer adsorption, leading to a liquid-like behaviour of the adsorbates. The 

microscopic meanings of the DR and DA parameters and the adsorption potential have also 

been clarified via statistical thermodynamics.  
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1. Introduction  

 

Microporous materials, such as activated carbons and porous silica, are powerful adsorbents 

with many industrial applications [1–5]. The characteristics of such adsorbents have been 

quantified by adsorption isotherms. Hence, to understand the mechanism of adsorption we need 

to interpret adsorption isotherms, namely, to elucidate the molecular interactions that give rise 

to the shape of the isotherm [6,7]. However, the difficulty of this approach is at least twofold: 

(1) isotherm shapes are diverse and (2) the isotherm shapes for porous materials are often very 

complex [1–5,8].  

 

The Dubinin-Astakhov (DA) model [9] (including its special case, the Dubinin-

Radushkevich (DR) model) [9–13] has been used widely to fit the isotherms for microporous 

materials [1–5,8,14–16]. It was proposed as a semi-empirical relationship between the 

adsorbed quantity and the adsorption potential. The adsorption potential was originally 

proposed by Polanyi [17,18] founded on a thermodynamic argument. This approach fell into 

disuse [19,20] because it does not satisfy Henry’s Law at the low adsorbate activity limit. 

However, because of its effectiveness for porous materials and the adoption by Dubinin and 

coworkers in their semi-empirical adsorption models [9–13], adsorption potential became a 

much-used concept for microporous adsorbents [1,2,4,21].  

  

What is the foundation of the DA model? Even though the model claims to be based on 

micropore filling [9–13], much of its original foundation was on scaling and functional forms 

of the isotherm [12]. Indeed, “it became more and more obvious that the initial principles of 

the potential theory have no physical meaning for adsorption in micropores” [12] and the DA 

adsorption model function is semi-empirical [11–13]. Despite some attempts to give it a clearer 

molecular or statistical mechanical interpretation [4,22], revealing the molecular interactions 

underlying an isotherm of a microporous material is still an open question.  

 

To clarify what molecular mechanism the DA model captures, our recent statistical 

thermodynamic approach to interpreting adsorption isotherms [7] will be helpful. The 

fluctuation adsorption theory [7], an extension of the fluctuation solution (or solvation) theory 

[23–28] to surfaces, is a rigorous and model-free theory applicable to any surface geometry. Its 

only postulate is that the deviation from the bulk solution structure due to the presence of the 



interface is confined within a finite distance [7]. The fluctuation adsorption theory can quantify 

adsorbate-adsorbate interactions directly from an isotherm [7].  

 

Taking full advantage of rigorous statistical thermodynamics, this paper will clarify the 

microscopic mechanism of microporous adsorption based on a rigorous statistical 

thermodynamic approach. Adsorption models such as the DA model will be used as a fitting 

model, and the underlying physical meaning of the fitting parameters will be clarified. Our 

foundation is the rigorous fluctuation adsorption theory [7] which can evaluate adsorbate-

adsorbate interactions directly from isotherms and adsorption models used for data fitting.  

 

2. Quantifying adsorbate-adsorbate interactions via excess numbers  

 

Consider a phase consisting of adsorbent and adsorbate (phase 𝐼) facing in equilibrium with 

the adsorbate vapour phase (phase 𝐼𝐼). We neglect absorption into the surface interior, and the 

adsorbent and adsorbate molecules are referred to as species 1 and 2, respectively. We 

summarize our statistical thermodynamic foundation [7] using our current notations of phases 𝐼 and 𝐼𝐼. Firstly, the fluctuation adsorption theory can deal with any surface shape and porosity 

[7]. This was made possible through a rigorous statistical thermodynamic generalization of the 

Gibbs adsorption isotherm and the Gibbs dividing surface [7,27,29,30] to non-planar surfaces 

with any surface geometry [7]. Secondly, we have postulated that the effect of the interface is 

confined within an interfacial subsystem (with volume 𝑣) within a finite distance from the 

surface. Consequently, the Gibbs surface excess, 〈𝑛2𝐼 〉 − 〈𝑛2𝐼𝐼〉, is the difference in the number 

of adsorbates between the interfacial subsystem 〈𝑛2𝐼 〉 and a small part of the adsorbate vapour 

phase 〈𝑛2𝐼𝐼〉 with the same volume 𝑣 as the interfacial subsystem [7]. Note that 〈 〉 denotes an 

ensemble average. Thirdly, how the surface excess depends on adsorbate activity 𝑎2 leads to 

the difference in number fluctuations between the interface and the vapour phases [7],  (𝜕(〈𝑛2𝐼 〉 − 〈𝑛2𝐼𝐼〉)𝜕 ln 𝑎2 )𝑇 = (〈𝑛2𝐼 2〉 − 〈𝑛2𝐼 〉2) − (〈𝑛2𝐼𝐼2〉 − 〈𝑛2𝐼𝐼〉2) 
(2.1) 

Since the adsorbate number and the adsorbate fluctuation in the adsorbate vapour (phase 𝐼𝐼) 

are negligibly small compared to those in the interfacial subsystem (phase 𝐼), we obtain [7] ( 𝜕〈𝑛2〉𝜕 ln 𝑎2 )𝑇 = 〈𝑛22〉 − 〈𝑛2〉2 
(2.2) 

where we have omitted the superscript 𝐼 in Eq. (2.2), as we will do from now onwards.  



 

Eq. (2.2) will serve as the foundation for quantifying adsorbate-adsorbate interaction from 

an experimental isotherm data or an isotherm fitted to a model (such as DA and DR). To 

translate the language of statistics into that of intermolecular interactions, it is useful to rewrite 

Eq. (2.2) into the following form:  (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇 = 𝑁22 + 1 
(2.3) 

𝑁22 = 〈𝑛2(𝑛2 − 1)〉 − 〈𝑛2〉2〈𝑛2〉  
(2.4) 

where 𝑁22  is the excess number of adsorbates around an adsorbate [7]; here, “excess” is 

defined with respect to 
〈𝑛2〉2〈𝑛2〉 = 〈𝑛2〉, i.e., the number of adsorbates around an adsorbate in the 

absence of adsorbate-adsorbate correlation [7].  

 𝑁22  is a quantitative measure of adsorbate-adsorbate interaction. A stronger adsorbate-

adsorbate interaction makes 𝑁22  more positive. The concept of the excess number, which 

comes from the solvation theory [26,27], was demonstrated to be powerful in clarifying the 

mechanisms of solubilization and in controlling macromolecular conformation and aggregation 

[28,31]. We have extended this concept to adsorption [7]. Its significance in adsorption can be 

appreciated intuitively by rewriting Eq. (2.3) as  ( 𝜕 ln 𝑎2𝜕 ln〈𝑛2〉 )𝑇 = 1𝑁22 + 1 
(2.5) 

Based on Eq. (2.5), let us consider a surface with 〈𝑛2〉 adsorbates and measure its vapour 

pressure, instead of adsorption measurements. A strong adsorbate-adsorbate interaction, 𝑁22, 

suppresses the increase of activity (hence vapour pressure) that accompanies the increase of 

adsorbates 〈𝑛2〉.  
 

3. A microscopic interpretation of the Dubinin-Astakhov (DA) model 

 

Our next goal is to clarify the molecular interactions underlying adsorption to microporous 

materials. To this end, we employ the potential theory, especially the DA model and its subset, 

the DR model [11–13], due to their successful fitting. This means that they somehow have 

captured the underlying molecular interactions. However, DA and DR models are semi-

empirical, which means that there is no clear connection between molecular interactions and 



isotherms. These models are founded on the adsorption potential, whose physical basis has 

been ambiguous [12] and controversial [19,20]. Thus, we use the DA model solely as a fitting 

equation of experimental data necessary for the calculation of the excess number, 𝑁22, as a 

measure of sorbate-sorbate interaction at the surface. In Appendix A, we have presented a 

statistical thermodynamic clarification of this concept. More importantly, the fluctuation 

adsorption theory, through differentiating an isotherm model, can quantify the adsorbate-

adsorbate interactions underlying the isotherm [7].  

 

Let us first write down the DA model in a way consistent with our notation. The adsorbed 

quantity, 〈𝑛2〉 is the function of the adsorption potential 𝜖 (Appendix A), as  〈𝑛2〉𝑛20 = exp [− 𝜖𝑚𝐸 ] 
(3.1) 

𝜖 = −𝑅𝑇 ln 𝑎2 (3.2) 

where 𝑛20, the maximum adsorption capacity, is a constant. The parameter 𝐸 has often been 

decomposed into various contributions with some physical interpretation [21]. In addition, 𝑚 

is another fitting parameter; when 𝑚 = 2, the DA model is reduced to the DR model. Note that 

Eq. (3.1) can be expressed as  ln〈𝑛2〉 = − 𝜖𝑚𝐸 + ln 𝑛20 
(3.3) 

which inspires the application of Eq. (2.3).  

 

Our interest here is to attribute a rigorous molecular interpretation for 𝐸 . This can be 

achieved by substituting Eqs. (3.2) and (3.3) into Eq. (2.3), which yields  𝑁22 + 1 = 𝑚𝑅𝑇𝐸 𝜖𝑚−1 
(3.4) 

Eq. (3.4) shows that excess number increases with the adsorption potential. Moreover, it 

clarifies the meaning of the parameter 𝐸  in the DA model; the larger the parameter 𝐸  the 

smaller the excess adsorbate number at a given adsorption potential. This is the underlying 

molecular picture underlying the DA model. Rewriting Eq. (3.4) shows the driving force of the 

adsorption potential in the framework of the DA model 

𝜖 = [ 𝐸𝑚𝑅𝑇 (𝑁22 + 1)] 1𝑚−1
 

(3.5) 

 



The adsorption potential is determined by the excess adsorbate number 𝑁22  around an 

adsorbate. The larger 𝑁22  the higher the adsorption potential, because the stronger the 

adsorbate-adsorbate interaction the lower the vapour pressure (hence higher 𝜖 ). The DA 

parameter 𝐸 governs how adsorbate-adsorbate interaction 𝑁22 is related to the vapour pressure 

and the adsorbate potential. (The microscopic meaning of the parameter 𝐸  itself can be 

attributed as the adsorbate-adsorbate-adsorbate interaction for the DR model. See Appendix 

B).   

 

Now we calculate the adsorbate-adsorbate interactions from isotherms, by using the DA 

model purely as a fitting equation. From Wood’s extensive collection [14,15], we have chosen 

alkanols (methanol, ethanol, 1-propanol, 1-butanol, 1-hexanol and 2-hexanol) as adsorbates 

and BPL activated carbon for adsorbent [15], whose adsorption isotherms at 298 K are shown 

in Figure 1. Note that Wood’s DR parameters (DA model with 𝑚 = 2) were compiled in terms 

of 𝜖̃ = 𝜖𝑅𝑇 = − ln 𝑎2 and �̃� = 𝐸𝑅𝑇 [15], with which Eq. (3.4) is expressed as  𝑁22 = 2𝑅𝑇�̃� 𝜖̃ − 1 
(3.6) 

 

Figure 2 shows 𝑁22 against adsorbate activity, 𝑎2. As is well-known, the DA model exhibits 

an anomaly at the 𝑎2 → 0 limit. In principle, at this limit, 𝑛2 must be proportional to 𝑎2, or  ln 𝑛2 = ln 𝑎2 + const. This leads via Eq. (2.3) to 𝑁22 → 0. However, as is seen in Figure 2, 𝑁22 deviates from 0, which means that this limiting condition is not satisfied by the DR model. 

Attempts were made to rectify the behaviour at this limit [32–34].  

 

Indeed, according to Eq. (3.6), since 𝜖̃ → ∞ as 𝑎2 → 0,  𝑁22 → ∞ at this limit, which is 

unphysical. The physically correct limit, i.e., 𝑁22 → 0 , shows that there is no correlation 

between adsorbate molecules. From a molecular perspective, the lack of adsorbate-adsorbate 

correlation suggests that the adsorbate-adsorbent interaction is a dominant factor for adsorption 

at this limit, such as around the oxygen residues or the smaller necks within the pore.  

 

  

4.  Liquid-like adsorbate-adsorbate interactions towards the maximum adsorption 

capacity 

 



With the help of the DA/DR model as a fitting equation, we have calculated the adsorbate-

adsorbate interaction characterized by the excess number from adsorption isotherms.  Now we 

turn to the behaviour towards 𝑎2 → 1. According to DA, 𝑁22 = −1, as can be seen in Figure 

2 and from Eq. (3.4).  

 

Here we show that the limiting behaviour of the DA model, 𝑁22 = −1, is consistent with the 

previously proposed liquid-like behaviour of the condensed adsorbate molecules in a pore [4]. 

This can be seen from the Kirkwood-Buff theory for a pure solvent, i.e.,  𝑁220 + 1 = 𝑅𝑇𝑐20𝜅𝑇0 (4.1) 

where 𝑐20  is the molar concentration of adsorbate in its pure liquid phase and 𝜅𝑇0  is its 

isothermal compressibility [23]; here we use the superscript 0 to emphasize that it refers to a 

pure liquid. Table 1 shows, based on experimental data [35], that 𝑅𝑇𝑐20𝜅𝑇0  for liquids is 

negligibly small compared to 1, which is well known for liquid and solutions in general [36].   

 

Furthermore, the bulk solvent-like behaviour of 𝑁22  at 𝑎2 → 1  is consistent with the 

Gurvitsch rule, i.e., the maximum adsorption capacity measured in volume and measured in 

molar concentration can be interconverted using the liquid phase molar volume of the adsorbate 

[15,37,38], 𝑉20. Let us translate this to our theoretical framework.  The excess number 𝑁22, by 

definition, is related to the Kirkwood-Buff integral, 𝐺22, as [23,36]  𝑁22 = 𝑐2𝐺22 (4.2) 

and the Kirkwood-Buff integral is defined in terms of the adsorbate-adsorbate distribution 

function 𝑔22(𝑟), as [23,36] 𝐺22 = ∫ 𝑑𝑟[𝑔22(𝑟) − 1] (4.3) 

where 𝑟 is the position from an adsorbate molecule. Eqs. (4.2) and (4.3) hold true for pure 

liquids [23] and, following our statistical thermodynamic theory of interface [7], is applicable 

for adsorbates as well. For an incompressible pure liquid, it has been well known that the 

Kirkwood-Buff integral is related to the molar volume 𝑉20 [36], by  𝐺220 = −𝑉20 (4.4) 

with the isothermal compressibility contribution neglected. Hence, 𝑁220 = −1 comes from the 

inverse relationship between 𝑐20 and 𝑉20. Thus, the conclusion from the DA model, 𝑁22 = −1, 

is consistent with the Gurvitsch rule.  

 



Here, the negative sign of the 𝑁220 , the excess number of adsorbates around an adsorbate, can 

be rationalized from its microscopic definition, Eq. (4.3). When the distance between 

adsorbates, |𝑟|, is small, 𝑔22 − 1 = −1, contributing negatively to 𝐺22. Thus, the fluctuation 

adsorption theory, through the calculation of adsorbate-adsorbate interaction using the DA 

model as a fitting equation, clarified the liquid-like nature of condensed adsorbates at higher 𝑎2. 

 

However, when comparing adsorbates to a solution, we must bear in mind, according to the 

Gibbs phase rule, that the pure bulk solvent has 2 degrees of freedom whereas the adsorbates 

have 1 degree of freedom [27,30]. In the case of adsorbates, 𝑁22  comes from the vapour 

pressure derivative rather than the pressure itself; pressure is no longer an independent 

thermodynamic variable, and the concept of the isothermal compressibility does not exist for 

adsorbates. However, the liquid-like behaviour of adsorbates at the maximum capacity was 

captured by the fluctuation adsorption theory [7].  

 

5. Adsorbate-adsorbate interactions in micropore filling and layering 

 

Let us examine adsorbate-adsorbate interaction at lower 𝑎2. Figure 2 shows that the reduction 

of 𝑎2 leads to a drastic increase in the excess number, 𝑁22. The smaller the adsorbate the larger 

the excess number. This observation is not limited to n-alcohols. With an extensive collection 

of DA parameters, Wood [15] reported a positive correlation between �̃� (in Eq. (3.6)) and 

molar volume (in pure solvent); the larger the molar volume the larger the parameter �̃� hence 

(via Eq. (3.6)) the smaller the excess number becomes.  

 

That the excess number is larger for smaller adsorbates seems paradoxical at first sight. 

Because of a good positive correlation between polarizability and molar volume [15], the 

parameter �̃� also exhibits a good correlation with polarizability. We expect that the higher the 

polarizability the more dimerization. This expectation is supported by the second virial 

coefficient 𝐵22 , a measure of dimerization, in the gas phase [39], which is related to the 

Kirkwood-Buff integral as 𝐵22 = − 12 𝐺22  [40]. Consequently, the decreasing (i.e., more 

negative) 𝐵22 for larger alcohols [39] means the increasing (i.e., more positive) 𝐺22. However, 

in Figure 2, 𝑁22 of adsorbates decrease with the molecular size, which is contradictory to the 

expectation from the gas phase dimerization data [39]. The decrease of 𝑁22 with molecular size 



is a conclusion based only on the principles of statistical thermodynamics [7] and the accuracy 

of isotherm fitting by the DA model.  

 

This apparent paradox reflects the balance between the adsorbate-adsorbent and adsorbate-

adsorbate interactions. In the gas phase, the adsorbate-adsorbate interaction is strong enough 

to override the excluded volume effect and 𝐺22 is positive. In the pore, on the other hand, 𝐺22 

turns into negative, which must be due to the presence of the adsorbent. Indeed, adsorbate-

adsorbent interaction, relative to full coverage, is strengthened with the size of alcohol, 

according to Figure 1. Consequently, the adsorbate-adsorbate interaction for smaller alcohols 

remains stronger while the one between the larger alcohols is made weaker in the presence of 

the adsorbent, leading to the observation in Figure 2. Therefore, the balance between the 

adsorbate-adsorbent and adsorbate-adsorbate interaction is the key to understand Figures 1 and 

2 in combination. Thus, the adsorption-induced change of adsorbate-adsorbate interaction is 

important in understanding isotherms. To reveal the precise molecular details underlying this 

balance, all-atom molecular simulations are required.  

 

Note that the above discussion may not apply to some adsorbates. For example, water, which 

forms a specific interaction with the oxygenated species and with each other may exhibit a 

different isotherm type [15,41]. For formic and acetic acids, due to its tendency for self-

association [42], Wood’s correlations with polarizability and molar volume involve 

adjustments [15].   

 

Let us relate our interpretation of the DR model via the fluctuation adsorption theory [7] with 

the “primary micropore filling” model [37,43]. At low 𝑎2 chiefly the micropore filling [37,43] 

takes place. Here, the adsorbate excess number 𝑁22 cannot become positive because adsorbate-

adsorbate interaction is not strong enough to overcome the excluded volume effect. Yet 𝑁22 is 

larger (less negative) than the pure solvent phase, because the portioning of adsorbates into 

pores enhance their positional correlation and the values of 𝑔22 − 1 in Eq. (4.3). However, 

when the micropores are filled and the layer adsorption follows [37,43], the correlation between 

adsorbates decrease because they are no longer spatially confined. Thus, the DA and DR 

models do indeed capture the micropore filling and the subsequent layer adsorption via 

adsorbate-adsorbate correlation, 𝑁22. The fluctuation adsorption theory [7] has clarified the 

underlying molecular mechanism of the DA and DR models.   



 

We have chosen the adsorption of alcohols on activated carbon as examples. However, since 

our theory is general, without any assumptions made on the nature of adsorbates and 

adsorbents, it can be applied readily to more porous materials (such as zeolites) and polar and 

non-polar adsorbates alike.  

 

6. Comparison to the model-based approaches to adsorption  

 

Here we compare our rigorous statistical thermodynamic approach to the commonly adopted 

theoretical counterparts that can be classified chiefly into the following two categories: simple 

isotherm models [1–3,5,29,44] and computer simulation [45–48]. An isotherm model is built 

upon assumptions regarding the energetic and geometrical structure of the surface, such as 

microporous size and shape, including their distribution, as well as the interactions that take 

place therein [1–3,5,29,44]. Based on these model assumptions, the functional shape of an 

isotherm can be derived statistical thermodynamically, and the parameters are determined via 

fitting [7]. Likewise, molecular dynamics and Monte Carlo simulations are a numerical 

implementation of statistical thermodynamics, based on a set of model assumptions regarding 

the atomistic and molecular interactions that take place at the interface [45–48]. 

 

Our approach, however, is distinct and different from the model-based approaches [7,49]. 

Our theory is rigorous with a minimum number of assumptions involved, such as the finite-

ranged nature of the interface, but without any assumptions introduced on the geometry of the 

interface and the energetics of interactions. Such a foundation guarantees certainty, credibility, 

and clarity in the interpretation of experimental data [7,49].  

 

The two approaches are complementary in strengths and scopes. When the model 

assumptions reflect the surface structure and the behaviour of adsorbates and the experimental 

adsorption isotherm can be successfully reproduced under these assumptions, the model-based 

approach is clearly advantageous [7,49]. However, it is well-known that being able to fit 

experimental data is not a guarantee for the accuracy of the underlying assumptions [49–51]. 

Often, multiple different models can fit an experimental isotherm [52–55], and successful 

fitting can be achieved by the models whose assumptions are different from the system [56] or 

by purely empirical models without clear a molecular basis [7,49]. This is when our approach 



can be useful in its ability to probe interactions underlying adsorption directly from the 

isotherm data alone [7,49].  

 

We emphasize here that the DA (including DR) model has been used purely as a fitting 

equation of experimental sorption data. As we discussed in Section 1, the DA model is semi-

empirical at best, founded upon an ambiguous (and hence, oft-debated) physical foundation of 

Polanyi’s adsorption potential. Moreover, multiple DA equations in combination have often 

been employed to fit an isotherm [37,43]. For these reasons, we have redeployed the DA model 

simply as a standard fitting equation of experimental data, with the widely available 

compilations of fitting parameters in the literature, from which we have extracted the 

underlying interactions through our rigorous statistical thermodynamic theory. Thus, molecular 

driving forces can be extracted readily from decades-long compilations of isotherm fitting 

parameters. Such an approach has previously been demonstrated to be fruitful in clarifying, on 

a quantitative basis, the driving forces underlying solubilization into water [57,58] and 

supercritical CO2 [59,60], headspace vapour pressure [61,62] and solution-phase self-

aggregation [63] of flavour molecules, and high-performance affinity chromatography [64].    

 

Note that the “adsorbate-adsorbate interactions” evaluated in this paper are in principle 

influenced by the adsorbate-adsorbent interaction [7]. The linkage between adsorbate-

adsorbate and adsorbate-adsorbent interactions is incorporated already in our rigorous 

statistical thermodynamic theory, firstly because the ensemble averaging in phase 𝐼 (Eq. (2.1)) 

already involve the sorbate-sorbent interactions [7], secondly because adsorbate-adsorbate 

interaction is determined by the adsorption potential derivative of the adsorbed quantity (Eq. 

(2.2)), which is necessarily determined by the sorbate-sorbent interaction [7]. 

 

7. Conclusion  

 

Adsorbate-adsorbate interaction underlying adsorption isotherm has been quantified from 

rigorous statistical thermodynamics [7]. This was made possible by combining the fluctuation 

adsorption theory with the semi-empirical models, such as the Dubinin-Astakhov (DA) model 

and its special case, the Dubinin-Radushkevitch (DR) model. The adsorbate-adsorbate 

correlation calculated in this paper is consistent with the primary micropore filling model 

[37,43] and the Gurvitsch rule. Partitioning of adsorbates into micropores enhances adsorbate-

adsorbate correlation but is not strong enough to override the excluded volume effect between 



the pair. The subsequent layer adsorption [37,43] reduces the correlation eventually to the level 

of the bulk solvent, consistent with the hypothesized liquid-like behaviour of adsorbates[4] and 

the Gurvitsch rule. Thus, the fluctuation theory, fruitful in solvation and conformational 

equilibria of small and macromolecules alike [28,61,63,64], is demonstrated here to be capable 

of clarifying interfacial phenomena [7] as well.  

 

From a perspective of the semi-empirical models, like DA and DR models, their physical 

interpretation and the microscopic meaning of their parameters have been established via the 

fluctuation adsorption theory [7]. The present approach is applicable to other adsorption models 

that contain more molecular details, such as the enthalpy of adsorption and the effect of pore 

size distribution [4–6,65–69]. Also, the fluctuation adsorption theory is applicable even when 

no known model can fit an isotherm.  

 

Appendix A: The adsorption potential  

 

What is confusing about the adsorption potential is the multiplicity of its definition. Firstly, we 

classify the definitions into the following two categories.  

a) The adsorbate activity-based 𝜖 

b) The adsorbate transfer free energy-based 𝜖′ 
Definition (a) was adopted in the DA and DR models. Consider an adsorbent phase in 

equilibrium with the vapour phase of adsorbates. Following the standard chemical 

thermodynamics, the activity of adsorbates, 𝑎2, is defined using the vapour pressure of the 

adsorbate. The adsorption potential, 𝜖, is defined as  𝜖 = −𝑅𝑇 ln 𝑎2 (A1) 

Note also that there is a variant of Eq. (A1), 𝜖′′ = 𝑅𝑇 ln (1 + 1𝑐2𝐼𝐼), used mainly in adsorption 

from a solution phase, which was already discussed in Ref  [70] and will not be analyzed here.  

 

Secondly, we aim here to clarify the molecular basis of definition (b), 𝜖′, as the work required 

to move an adsorbate molecule from the interface (phase 𝐼)  to the vapour phase (𝐼𝐼). If we 

simply used the adsorbate chemical potentials in phases 𝐼 and 𝐼𝐼,  𝜇2𝐼  and 𝜇2𝐼𝐼, the adsorption 

potential would be simply zero, because of the equilibrium condition, 𝜇2𝐼 = 𝜇2𝐼𝐼, which leads to 𝜇2𝐼𝐼 − 𝜇2𝐼 = 0. This is different from Polanyi’s conclusion, necessitating a careful, microscopic 

approach to defining the adsorption potential.  



 

Let us start from the foundation of the fluctuation adsorption theory [7]. Following Gibbs, 

we have introduced the interface as the difference between the entire system (adsorbate and 

adsorbent phases in equilibrium) and the reference systems (adsorbate and adsorbent phases 

separately) [7,29]. Generalizing Gibbs’ approach to arbitrary interfacial shapes and geometries, 

we then have postulated that the effect of the interface is confined within a finite distance and 

introduced the volume of the local interfacial subsystem, 𝑣 [7]. Considering that the number of 

adsorbate molecules in the local interfacial subsystem 〈𝑛2𝐼 〉 (denoted as 〈𝑛2∗ 〉 in Ref [7]) is much 

larger than that in the bulk vapour phase [7], we can introduce the density of adsorbates in the 

interfacial subsystem, 𝑐2𝐼 = 〈𝑛2𝐼 〉/𝑣. The adsorbate chemical potentials both phases (𝛼 = 𝐼, 𝐼𝐼) 

can be expressed as  𝜇2𝛼 = 𝜇2∗𝛼 + 𝑘𝑇 ln 𝑐2𝛼Λ23  (A2) 

where 𝜇2∗𝛼 is the chemical potential of adsorbate in phase 𝛼 with its centre of mass position 

fixed [36]. Eq. (A2) is valid not only in canonical but also in grand canonical, isobaric, and 

partially open ensembles as well [40,71]. Since the momentum partition function, Λ2 , is 

common in both phases, the equilibrium condition, 𝜇2𝐼 = 𝜇2𝐼𝐼 , leads to the following 

relationship:  𝜇2∗𝐼 + 𝑘𝑇 ln 𝑐2𝐼 = 𝜇2∗𝐼𝐼 + 𝑘𝑇 ln 𝑐2𝐼𝐼 (A3) 

Eq. (A3) leads to a statistical thermodynamic interpretation of the adsorption potential 𝜖′ as the 

work required to move an adsorbate molecule from a fixed centre-of-mass position in the 

vapour phase (phase 𝐼𝐼) to a fixed centre-of-mass position in the interphase phase (phase I). 

This definition, under the equilibrium condition (Eq. (A3)), yields   𝜖′ = 𝜇2∗𝐼 − 𝜇2∗𝐼𝐼 = 𝑘𝑇 ln 𝑐2𝐼𝐼𝑐2𝐼  
(A4) 

which is just like the general statistical thermodynamic expression for the transfer free energy 

between two phases in equilibrium [36]. If we use the ideal gas equation of state to convert 𝑐2𝐼  

in Eq. (A4) to the pressure for phase 𝐼, 𝑃𝐼, or what Polanyi called the “vapour tension” [18], 

we obtain   𝜖′ = 𝜇2∗𝐼 − 𝜇2∗𝐼𝐼 = 𝑘𝑇 ln 𝑃𝑃𝐼 (A5) 

where 𝑃𝐼𝐼 = 𝑃 is the pressure of the vapour phase. Eq. (A5) is identical in form with the 

adsorption potential.  

 



Thus, we have established a statistical thermodynamic foundation of the adsorption potential 𝜖′, which is the work of transferring a fixed adsorbate molecule from the vapour phase to the 

interface. Note that the two definitions (Eqs. (A1) and (A5)) have fundamentally different 

physical meanings. In both cases, the adsorption isotherm is the function of the adsorption 

potential would be obvious. For the definition 𝜖′, which is a function of 𝑐2𝐼 , is a function of the 

surface excess, 〈𝑛2〉 = 𝑐2𝐼 𝑣 (because 𝑐2𝐼 ≫ 𝑐2𝐼𝐼), hence the surface excess 〈𝑛2〉 is the function of 

the surface potential 𝜖′. For the definition 𝜖, the adsorption isotherm (〈𝑛2〉 as a function of 𝑎2) 

means 〈𝑛2〉  is a function of 𝜖 . Either way, the adsorption isotherm is a function of the 

adsorption potential. Plotting isotherms against the adsorption potential is beneficial because 

isotherms measured at different temperatures frequently fall onto a single characteristic curve 

[1,2,4,17–21]. The statistical thermodynamic mechanism underlying such common 

observation requires the extension of the fluctuation theory and will be discussed in a 

forthcoming paper.   

 

 

Appendix B:  Triplet correlation in the Dubinin-Radushkevich model  

 

For simplicity, here we deal with the DR model, expressed in the logarithmic form (Eq. (3.3) 

with 𝑚 = 2). Differentiating it twice, we obtain  (𝜕2 ln〈𝑛2〉𝜕(ln 𝑎2)2)𝑇 = − 2(𝑅𝑇)2𝐸  
(B1) 

Based on Eq. (B1), can we give a clear physical interpretation of the parameter 𝐸? To do so, 

let us start from  (𝜕2 ln〈𝑛2〉𝜕(ln 𝑎2)2)𝑇 = 𝜕𝜕 ln 𝑎2 [ 1〈𝑛2〉 ( 𝜕〈𝑛2〉𝜕 ln 𝑎2)𝑇]
= 1〈𝑛2〉 ( 𝜕2〈𝑛2〉𝜕(ln 𝑎2)2)𝑇 − 1〈𝑛2〉2 [( 𝜕〈𝑛2〉𝜕 ln 𝑎2)𝑇]2

 

(B2) 

The first term can be evaluated by further differentiation of Eq. (2.2) as  ( 𝜕2〈𝑛2〉𝜕(ln 𝑎2)2 )𝑇 = 〈𝑛23〉 − 〈𝑛22〉〈𝑛2〉 − 2〈𝑛2〉(〈𝑛22〉 − 〈𝑛2〉2) = 〈(𝑛2 − 〈𝑛2〉)3〉 (B3) 

Eq. (B3) signifies the triplet correlation minus doublet correlation. The second term is the 

square of Eq. (2.2). We finally obtain  



− 2(𝑅𝑇)2𝐸 = 〈(𝑛2 − 〈𝑛2〉)3〉〈𝑛2〉 − 〈(𝑛2 − 〈𝑛2〉)2〉2〈𝑛2〉2  
(B4) 

Thus, the parameter 𝐸 in the DR model can be expressed in terms of the triplet and doublet 

correlation functions between adsorbates.  

 

To generalize Eq. (B4) to the parameter 𝐸 in the DA theory, we need to evaluate the mth 

derivative of Eq. (3.3). This will lead to the presence of correlations up to (𝑚 + 1)-body, which 

is quite complicated.   
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Table 1. The negligibility of 𝑅𝑇𝑐20𝜅𝑇0 in Eq. (4.1) compared to 1 in pure liquids. Experimental 

data at 298 K from Ref [35].  
 

Density 

kg dm-3 

𝑐20  

mol m-3 

𝜅𝑇0 (TPa)-1 𝑅𝑇𝑐20𝜅𝑇0  

Methanol 0.78686 2455.86 1248 7.594×10-3 

Ethanol 0.76540 1661.39 1153 4.746×10-3 

1-Propanol 0.79991 1330.97 1006 3.317×10-3 

1-Butanol 0.80854 1090.85 942 2.546×10-3 

1-Hexanol 0.81565 798.092 836 1.653×10-3 

 

  



 

Figure 1. The adsorption isotherm of alcohols on microporous carbons. The fitting 

parameters for the DA model have been taken from Table 3 of Ref [15] (for BPL activated 

carbon).  

  



 

Figure 2. The excess adsorbate number around an adsorbate, 𝑁22, calculated from the 

adsorption isotherm fitting in Figure 1 via Eq. (3.6).  

 

 


