
This is a repository copy of Domain-specific languages for the design, deployment and
manipulation of heterogeneous databases.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175555/

Version: Accepted Version

Proceedings Paper:
Kolovos, Dimitrios orcid.org/0000-0002-1724-6563, Medhat, Fady orcid.org/0000-0003-
2827-4487, Paige, Richard orcid.org/0000-0002-1978-9852 et al. (4 more authors) (2019)
Domain-specific languages for the design, deployment and manipulation of heterogeneous
databases. In: Proceedings - 2019 IEEE/ACM 11th International Workshop on Modelling in
Software Engineering, MiSE 2019. 11th IEEE/ACM International Workshop on Modelling in
Software Engineering, MiSE 2019, 26-27 May 2019 Proceedings - 2019 IEEE/ACM 11th
International Workshop on Modelling in Software Engineering, MiSE 2019 . IEEE , CAN ,
pp. 89-92.

https://doi.org/10.1109/MiSE.2019.00021

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Domain-specific Languages for the Design,
Deployment and Manipulation of Heterogeneous

Databases

Dimitris S. Kolovos∗, Fady Medhat∗, Richard F. Paige†, Davide Di Ruscio‡,
Tijs van der Storm§, Sebastian Scholze¶ and Athanasios Zolotas∗

∗Department of Computer Science, University of York, York, United Kingdom,

Email: {dimitris.kolovos, fady.medhat, thanos.zolotas}@york.ac.uk
†Department of Computer Science, University of York & McMaster University,

York, United Kingdom & Hamilton, Canada, Email: richard.paige@york.ac.uk
‡Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,

L’Aquila, Italy, Email: davide.diruscio@univaq.it
§Centrum Wiskunde & Informatica, Amsterdam, Netherlands, Email: storm@cwi.nl

¶ATB Institut für angewandte Systemtechnik Bremen, Bremen, Germany, Email: scholze@atb-bremen.de

Abstract—The need for levels of availability and scalability
beyond those supported by relational databases has led to the
emergence of a new generation of purpose-specific databases
grouped under the term NoSQL. In general, NoSQL databases
are designed with horizontal scalability as a primary concern
and deliver increased availability and fault tolerance at a cost
of temporary inconsistency and reduced durability of data. To
balance the requirements for data consistency and availability, or-
ganisations increasingly migrate towards hybrid data persistence
architectures comprising both relational and NoSQL databases.
The consensus is that this trend will only become stronger in the
future; critical data will continue to be stored in ACID (largely
relational) databases while non-critical data will be progressively
migrated to high-availability NoSQL databases.

Designing and deploying a hybrid data persistence architecture
that involves a combination of relational and NoSQL databases is
a complex, technically challenging and error-prone task. In this
paper we outline a model-based methodology developed in the
context of the EC-funded H2020 TYPHON project for designing,
developing, querying and evolving such scalable architectures for
persistence, analytics and monitoring of large volumes of hybrid
(relational, graph-based, document-based, natural language, etc.)
data, in a systematic and disciplined manner.

Index Terms—hybrid persistence, relational databases, non-
relational databases, domain-specific languages, model-driven
engineering

I. INTRODUCTION AND MOTIVATION

Up until recently, relational databases were considered as

the de facto technology for persisting and managing large

volumes of data. This changed with the emergence of en-

terprises such as Google, Twitter, Facebook, Amazon, etc.

which were faced with extremely large datasets and unprece-

dentedly high availability requirements. The need for levels

of availability beyond those supported by relational databases

This work is funded by the European Union Horizon 2020 research
and innovation programme through the Polyglot and Hybrid Persistence
Architectures for Big Data Analytics (TYPHON) project (#780251).

and the challenges involved in scaling such databases hor-

izontally led to the emergence of a new generation of

purpose-specific databases grouped under the term NoSQL [1].

NoSQL databases deviate from the long-established relational

paradigm in order to address scenarios where very large

datasets need to be managed under almost perfect availability.

While NoSQL databases have been shown to be powerful

enough to support the load of massive social networks such

as Facebook and Twitter, high performance and availability

typically come at the cost of durability and consistency.

Data managed within an organisation may have significantly

variable consistency and availability requirements. For exam-

ple, in the case of an e-commerce system, data used to provide

recommendations of products that a user may be interested in

needs to be highly available as they are constantly retrieved

and updated as users browse through the system. As the

consistency of such data is not critical, a small probability

of loss of its integrity can be reasonably exchanged for a

significant improvement in availability. By contrast, for other

subsets of data in the same system, such as data recording

customer orders and payments, compromising data consistency

to improve availability is not acceptable.

As a result, organisations increasingly need to use both

types of databases in parallel – with an unavoidable overlap

between the data stored in these – using ad-hoc architectures.

This introduces a number of challenges including ensuring

the coherency of the overall design, the assembly and con-

figuration of the different components of the architecture,

and the consistency of the overlapping data. Designing and

deploying a hybrid data persistence architecture that involves

a combination of relational and NoSQL databases, and which

can manage different types of structured and textual data (in

the remainder of this paper we refer to such hybrid data

stores as polystores for conciseness), is a complex, technically

challenging and error-prone task. Also, in order to access

data stored in such architectures, developers need to write

application code against different types of persistence back-

ends. Unlike relational databases which provide support for

SQL and standard APIs such as JDBC/ODBC, and are gen-

erally substitutable, each NoSQL database provides its own

proprietary application programming interface (API) and query

language. As such, exposing application developers directly to

the API of a particular NoSQL database can result to high cou-

pling between the application code and that database, which

can hinder migration to a different database in the future.

Ad-hoc development of such data persistence architectures

also introduces data evolution and migration challenges and

complicates the development of uniform monitoring and real-

time analytics capabilities.

In this paper we outline a model-based methodology and

integrated technical offering for designing, developing, query-

ing, evolving, analysing and monitoring scalable hybrid data

persistence architectures that will meet the growing scalability

and heterogeneity requirements of organisations, which is

currently being developed as part of the TYPHON EU-funded

Horizon 2020 project. We focus on the model-driven aspects

of the project and more specifically the three Domain-specific

Languages (DSLs) proposed, namely TyphonML, TyphonDL

and TyphonQL which help in designing, deploying and query-

ing hybrid datastores, respectively. We will also present an

architecture that uses these languages to facilitate the evolution

of polystores and the extraction of various forms of analytics

to provide to the reader the whole picture of the project,

but we will not discuss details of the evolution and analytics

components as these are outside of the scope of this paper.

The paper is structured as followed. Section II provides a

high-level overview of the proposed methodology and archi-

tecture. Section III presents the three DSLs while Section IV

concludes the work and outlines plans for future work.

II. ARCHITECTURE OVERVIEW

Figure 1 shows an overview of the proposed architecture.

The process starts with the creation of a model of the poly-

store. Developers, using a textual DSL called TyphonML,

create models that include information regarding the con-

cepts appearing in the polystore, their attributes and their

relationships. These models, labelled as TyphonML models in

Figure 1, also include information about the databases that are

involved in the system. As a result, they represent the high-

level infrastructure of a hybrid polystore.

Arguably, the abstraction gap between high-level Ty-

phonML models and ready-to-use polystores is not negligible.

To bridge this gap, an intermediate polystore deployment

modelling language (TyphonDL) is used. TyphonDL pro-

vides concepts that lie at an abstraction level between that

of TyphonML, and that of specific data stores and virtual

machine configuration technologies. TyphonML models are

transformed to TyphonDL models and are enhanced with

more fine-grained database-specific options. TyphonDL mod-

els represent the deployment infrastructure of that polystore

Fig. 1. An overview of the architecture of TYPHON.

in terms of the specific cloud platform and deployment tools

employed and are used to generate the necessary installation

and configuration facilities that, when executed, can assemble

the polystore in an automated manner.

As data will be distributed across a number of heteroge-

neous databases a common data manipulation language is

used. TyphonQL is developed for perfoming data manipulation

commands (e.g., insert, delete, etc). Since TyphonQL queries

are only executable on polystores precisely specified using

TyphonML and TyphonDL, dedicated compilers/interpreters

exploit this rich structural and semantical information to type-

check and transform TyphonQL queries to high-performance

native queries, and APIs that support advanced features such as

prefetching and lazy loading to accommodate different usage

scenarios. More details about the three DSLs are given in

Section III.

The execution of TyphonQL queries will lead to the gen-

eration of events (also referred as triggers in the databases

domain). These events are consumed by a high-performance

framework for processing data access/update events to facili-

tate orthogonal real-time monitoring and predictive analytics.

Finally, information gathered from TyphonML, TyphonDL

and the analytics components are used as input to the evolution

engine which is responsible for evolving the organisation and

distribution of data in hybrid polystores, as well as providing

tools for monitoring the use of polystores to inform the

evolution process.

III. DOMAIN-SPECIFIC LANGUAGES

A. TyphonML

TyphonML is a modelling language that supports the design

of hybrid polystores. Using TyphonML, engineers are able to

model the data that needs to be persisted in a homogeneous

manner, abstracting over the specificities of the underlying

technologies. Most NoSQL data stores are schemaless, i.e.,

there is no explicit schema specifying the internal structure of

the data they manage [2]. Instead the schema is implicit. Sup-

port for schemaless data is particularly useful for systems that

involve non-uniform data or whose structure changes often. On

the other hand, the lack of an explicit schema can introduce

challenges in data integration scenarios, where at least a partial

understanding of the data structure is required. TyphonML

supports the modelling of the implicit schema of schemaless

Fig. 2. High level architecture of TyphonML.

Fig. 3. An example of TyphonML syntax for an e-commerce scenario.

datasets and therefore it enables the integration of open and

closed datasets (i.e. datasets, which conform to an open or

strict schema respectively) in a seamless manner. Moreover,

TyphonML provides facilities for capturing availability, con-

sistency and partitioning requirements for different subsets of

the modelled data, as well as the available infrastructure on

top of which the hybrid polystore will be deployed.

A high-level overview of TyphonML is shown in Figure 2.

TyphonML models include the conceptual entities and the

different types of databases appearing in the polystore. To

specify the attributes of the concepts in TyphonML, one

can use primitive types, natural language processing (NLP)

enabler types (which enable the application of natural language

analysis) or define custom data types. Finally, modelers are

provided with change operators that can be used to specify how

already deployed TyphonML models have to be evolved and

how the already stored data have to be consistently migrated.

B. TyphonDL

Models captured with TyphonML can be used to automate

the process of assembling virtual machine (VM) images which

contain configured installations of the required relational and

NoSQL data stores on top of an operating system and other

standard facilities, and which are ready for deployment on

diverse cloud computing infrastructures. To bridge the abstrac-

tion gap between high-level TyphonML models and ready-to-

use polystores an intermediate polystore deployment language

(TyphonDL) is proposed. TyphonDL provides concepts lying

at an abstraction level between that of TyphonML, and that of

specific data stores and VM configuration technologies.

Fig. 4. Overview of the automated polystore assembly process.

The overall process is illustrated in Figure 4. A TyphonDL

model takes two sources of input; The TyphonML model

which includes database specific information (e.g., which are

the database systems that are used to manage the modeled data

entities and relationships) and deployment specific configura-

tion parameters. There are different cofigurations parameters

need to be set by developers. These include the cloud platform

provider (e.g., Amazon Web Services (AWS), etc.), the con-

tainer format (e.g., Docker, etc.), the specific database system

for the type provided in the TyphonML model (e.g., MySQL,

etc.), the storage space for each cluster, other platform de-

pendent configuration options (e.g., amount of memory, etc.)

and database specific variables (e.g., username/password for

the administrator, etc.). The configuration parameters can be

supplied by the developers by editing manually the TyphonDL

model itself, via a textual editor that has been developed in

Xtext [3] or a GUI editor.

Figure 5 shows an example for the definition of the con-

figuration parameters using TyphonDL textual syntax. This

TyphonDL model uses AWS as the platform provider, Docker

as the containerization technology and a relational database.

The AWS platform is then specified. It consists of a clus-

ter named myAWSCluster, which consists of an application

named myApplication. Inside the application a Docker con-

tainer is modelled which consists of a relational database.

Configuration parameters for the database and the container

are also provided. A TyphonDL editor with graphical user

interface (GUI) facilitates the definition of TyphonDL models

by retrieving a list of needed uniquely named databases and

their types (e.g., relational, etc.) from the TyphonML model.

In a wizard, the specific DBMSs can be chosen from a list of

supported systems for each required type. The technology for

deployment (e.g., Docker) has to be selected from a list while

other required configuration parameters can be provided from

a configuration-file that is readable by the editor, a GUI with

DBMS- and technology-specific text fields and/or by directly

editing the generated TyphonDL model.

A model-to-text generator written in Xtend parses the

created TyphonDL model and produces the appropriate in-

stallation and configuration scripts needed for each type of

platform/container (e.g., a docker-compose.yml file).

Fig. 5. An example of the TyphonDL syntax.

Fig. 6. Overview of the TyphonQL query execution process.

C. TyphonQL

TyphonQL is a language for querying heterogeneous data

distributed across diverse databases. As a motivating exam-

ple, consider the following scenario with reference to an e-

commerce system, which uses a relational database to store

orders and a document store to persist reviews and comments

from customers. In this scenario, the merchant would like to

hand out loyalty vouchers to customers who 1) have spent

over $1000 in the e-shop and 2) have contributed high-quality

reviews to the system (e.g. reviews that attracted at least

20 comments). Using TyphonQL, an engineer could write

this query and the TyphonQL compiler/interpreter will then

be responsible for breaking it down in two parts, executing

these natively on the two different back-ends and returning

the results in a uniform representation. An overview of the

TyphonQL execution process in presented in Figure 6.

TyphonQL’s concrete syntax is created using the syntax

definition formalism of the Rascal language workbench [4]

which automatically generates a parser from such declarative

grammars. For reasons of brevity the grammar of TyphonQL is

not presented in this paper - instead we present the basic Data

Manipulation Language (DML) operators of the language.

The attributes of each conceptual entity are known to the

TyphonQL compiler as they are provided in the TyphonML

model. The querying mechanism breaks down the query (if

needed), executes each part against the appropriate database

(using Java APIs for each type of database) and creates Java

objects for the results, populating them with the retrieved data.

Lets assume that an “Order” entity has a reference to another

entity, “User”, representing the user who placed the order (as

this is defined in the TyphonML model in the example of

Figure 3). The date of the order and the name of the user could

be retrieved using the query presented in Listing 1. As we are

interested in retrieving these two attributes only, two partially

filled Java objects will be created (one for each entity).

Listing 1. An example of a “Select” query in TyphonQL.
from Order o , User u
s e l e c t o . date , u . name
where o . u s e r == u

However, when arbitrary expressions (or aggregated results)

are queried for, the result will contain anonymous entities. For

instance, Listing 2 counts the number of orders placed in a

specific date. In this case, we use the “as” keyword to name

the expression count(o) as it does not correspond to a declared

attribute of any entity. The result is stored in an anonymous

entity which has one attribute named “numOfOrders”.

Listing 2. An example of a “Count” query in TyphonQL.
from Order o
count (o) as numOfOrders
where o . date == ”28−01−2019”

Finally, Listing 3 presents examples of the remaining DML

commands supported by TyphonQL.

Listing 3. Examples of an “Insert”, “Update” and “Delete” command in
TyphonQL.
i n s e r t Order {date : ”29−01−2019” , t o t a l A m o u n t : 1 5 0 . 0 ,
p r o d u c t s : {p1 , p2 } , pa idWi th : C r e d i t C a r d 1 , u s e r : buyer1}

update from Order o s e l e c t o where o . u s e r == buyer1
s e t t o t a l A m o u n t = 100 .0

d e l e t e from Order o s e l e c t o
where o . name == ” Nick Black ”

IV. CONCLUSIONS AND FUTURE WORK

In this paper we propose a methodology for designing, de-

ploying, querying, evolving and analysing hybrid persistence

architectures that fulfill growing scalability and heterogene-

ity requirements of organisations. We described three new

domain-specific languages, named TyphonML, TyphonDL and

TyphonQL giving some insights on their underlying principles

and the current status of implementation. In the future, the

constructs and the tools of all the languages need to be

finalised and refined based on feedback while working on

real case scenarios from the industrial partners involved in

the project. Among others we plan to work on the extensibility

mechanism of TyphonQL and the execution of Data Definition

Language commands, support for the definition of individual

nodes and of standard configuration concepts (e.g. DB master-

slave nodes, Elastic instances, etc.) using TyphonDL.

REFERENCES

[1] C. Strauch, U.-L. S. Sites, and W. Kriha, “NoSQL databases,” Lecture

Notes, Stuttgart Media University, vol. 20, 2011.
[2] K. Kaur and R. Rani, “Modeling and querying data in NoSQL databases,”

in 2013 IEEE International Conference on Big Data. IEEE, 2013, pp.
1–7.

[3] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006,
p. 118.

[4] P. Klint, T. v. d. Storm, and J. Vinju, “RASCAL: A domain specific
language for source code analysis and manipulation,” in SCAM’09. IEEE
Computer Society, 2009, pp. 168–177.

