
This is a repository copy of SASSI: Safety Analysis using Simulation-based Situation
Coverage for Cobot Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175209/

Version: Accepted Version

Proceedings Paper:
Lesage, Benjamin Michael Jean-Rene and Alexander, Rob orcid.org/0000-0003-3818-
0310 (2021) SASSI: Safety Analysis using Simulation-based Situation Coverage for Cobot
Systems. In: Proceedings of SafeComp 2021. Lecture Notes in Computer Science . , pp.
195-209.

https://doi.org/10.1007/978-3-030-83903-1_13

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SASSI: Safety Analysis using Simulation-based

Situation Coverage for Cobot Systems

Benjamin Lesage1 and Rob Alexander1

Department of Computer Science, University of York, York, UK
first.last@york.ac.uk

Abstract. Assessing the safety of collaborative robot (cobot) systems is
a difficult task due to the myriad of possible interactions between robots
and operators, and the potential for injury to the operators. Using a
situation coverage approach we can define the individual components
of such interactions, and thereby describe the problem space and the
coverage achieved when testing it. In this paper, we propose a situa-
tion coverage approach for testing the safety of a cobot system. Our
approach suggests using a combination of safety analysis techniques and
simulation-based testing to define situations of interest and explore haz-
ardous situations while only endangering virtual operators. We challenge
our assumptions by applying our method to an example based on a real-
world use-case. The proposed metrics, if they provide no advantage to
guided test generation techniques over random ones, helped us trim the
generated configuration landscape to identify safety gaps.

Keywords: Cobot · Situation Coverage · Simulation-based testing ·

Safety Analysis.

1 Introduction

Cooperative robots (cobots) [4] aim to allow human operators and robot work-
ers to share the same work-space, and work jointly to achieve a common goal.
Because of safety concerns, however, users tend to build physical barriers to iso-
late robots from the operators [19, 26]. These barriers tend to limit the level of
cooperation between human and robot, and reduce the advantages of deploying
cobots in the industrial space.

The CSI: Cobot project [7] aims to reduce the need for barriers in cobot
systems. The project proposes novel sensing and control techniques to improve
cobots’ awareness of their environment, especially regarding interactions with
human operators. A crucial requirement for the adoption of new techniques
is achieving confidence in the overall safety of the system. We consider safety
aspects in the context of the CSI: Cobot project, in particular investigating the
impact of changes in the system setup.

Simulation-based techniques, e.g. the CARLA simulator [8], are a common
approach to evaluate autonomous systems [5, 29, 21]. Simulations allow fast it-
erations over varied configurations, including hazardous ones, without endan-
gering the system itself, or its environment. However, the use of simulations

2 Benjamin Lesage and Rob Alexander

for testing safety constraints raises important issues. First, the safety case must
ensure the simulated environment is representative of the system under consid-
eration [2, 16]. Second, the tools must decide on a set of configurations (from the
effective-infinite configuration space) to drive testing and evaluate confidence in
the system safety [18].

Our approach relies on simulation-based, situation-driven testing to evaluate
the safety of a cobot system. It builds on the safety analysis of the cobot system
under consideration, which identifies accidents and losses that arise from unsafe
operation. The safety artefacts, generated as part of this analysis, capture unde-
sirable situations which though not hazardous by themselves may lead to a loss.
In the context of situation coverage [3], safety situations inform our exploration
of the system configurations and provide for an evaluation of the confidence in
the system safety.

We first introduce a manufacturing cobot use case to highlight our approach
in Section 2. We then outline the general principles of our approach in Section 3.
Section 4 discusses the identification of safety analysis artefacts, then monitored
to identify hazards and guide the generation of simulation configuration, respec-
tively in Section 5 and 6. Section 7 introduces our setup to assess the validity
of our approach. We compare our approach to existing work (Section 8) before
summarising our results in Section 9.

2 Case Study: Industrial manufacturing Cobot

We consider an industrial use case, defined in the context of the CSI: Cobot
project [7], involving the cooperation of a human operator and a robotic arm to
assemble small metal components (”assemblies”). Note that the general princi-
ples of our approach are not tied to the specific use case or tools we discuss in the
following. The operator provides a non welded assembly at a designated work
bench. The arm then retrieves the assembly and transports it to a spot welder
for processing, before returning to the same work bench for a handover. The
operator should keep out of the cell while the arm is active less he puts himself
at risk of injury. All the processing currently occurs within a walled cage, with
sensors to ensure no operator is present while the welder is active or the arm is
moving. The cell is depicted in Figure 1a.

Our default setup is an abstraction of the industrial use-case, depicted in
Figure 1b. All major components are in place, the welder, the cobot arm, and
the shared bench. The highlighted space in the middle defines the cell region.
The safety cage has been omitted. In lieu of a cage, a presence sensor stops
the arm when the operator enters the cell. Due to constraints of our simulation
environment, control of the arm and operator is limited with no exchange of
assembly between them. The arm is programmed to loop between two waypoints
from the bench at the bottom, to the welder at the top.

The SASSI Cobot method 3

(a) Cell configuration with an operator
(bottom), and an arm (centre) with a
clear path to a welder (top).

(b) Setup under evaluation, with the
cell region outlined (center) and the
safety walls removed.

Fig. 1: Considered industrial use case configuration and evaluated setup.

3 Overview of the SASSI method

The SASSI method relies on the artefacts produced by the safety analysis. A
key principle of our approach is to derive sufficient knowledge from the safety
artefacts to guide the testing of the system. The objective is to understand
if and how safety issues might arise in the system. Safety artefacts provide a
safety-centric view of the entities involved in the system, their interactions, their
relevant properties, and how those may lead to hazards; the safety analysis thus
informs multiple aspects of the toolchain.

The system design is at the root of the process and it guides all further steps,
defining the environment, its operating conditions, and safety requirements. Our
method is building confidence into the system by testing it, searching for safety-
relevant configurations, to provide feedback regarding safety aspects into the
design. Figure 2 presents the overall workflow of the analysis method.

System Design

Digital Twin Safety Monitoring

Safety Analysis

Configuration
Generator

1

2 34

5

6

Fig. 2: Overview of the Analysis method

The first step is to perform a safety analysis of the system (1) to under-
stand the occurrences of hazards in the system, and the conditions leading to
such events (Section 4). The system design further informs the development of
a simulation environment, the Digital Twin (2) which constitutes the baseline
for our simulation-based approach. The Digital Twin also allows for the evalu-
ation of system setups before their deployment in the actual cell. The artefacts

4 Benjamin Lesage and Rob Alexander

of the safety analysis provide information on safety-relevant situations in the
system (3) and the conditions for their detection (Section 5). The system design
further constrains acceptable configurations of the system. It defines elements
open to variations and their degree of freedom, thus outlining the domain of our
search (4). Safety artefact components observed running the simulation, from
a generated configuration, provide feedback on situations of interest (5) during
the search (Section 6). Finally, the coverage of generated and observed situa-
tions during analysis (6) provides some confidence in the safety of the system,
or highlights shortcomings that need to be addressed.

4 Analysing the system safety

The Safety Analysis aims to understand the safety of the system, by identifying
potential hazards, and the situations or causes leading to these events so they
can be managed. The analysis needs to be aware of the components and entities
interacting in the system as well as its operating environment. Without loss of
generality, we present the Systems Theoretic Process Analysis (STPA) technique
as the underlying safety analysis. The results of the application of STPA to our
use case and our experience have been documented in [1].

STPA [20] originates from systems approaches to safety engineering. Acci-
dents are assumed to arise from insufficient feedback or inadequate control in
the system, as modelled by a control structure. The STPA analysis process is as
follows:

1. Identify accident and loss scenarios: these encompass a range of undesired
events such as damage to property, injury to humans, or environmental pol-
lution.

2. Construct the system control structure: the control structure captures the
entities in the system and the flow of control and feedback between them.

3. Identify unsafe control actions (UCAs): UCAs correspond to the execution
of actions in undesirable configurations of the environment and the system.

4. Identify causal factors and control flaws: this step considers how unsafe ac-
tions arise as a result of inadequate control.

Our method relies on the artefacts produced by the STPA technique, notably
hazards and unsafe control actions. Hazards identify events which by definition
challenge the safety of the system. Unsafe control actions (UCAs), while not
hazardous themselves, are undesirable. A UCA is an action the execution of
which or lack thereof, in a given a configuration of the system, may give rise
to a hazard. Each safety artefact thus captures a situation, a combination of
components relevant to the safety of the system.

Our intuition is that monitoring for UCAs during testing can help identify
hot spots for safety in the explored space of configurations, and focus the analy-
sis effort on those regions more likely to result in hazards. The identification and
monitoring of individual situation components can further guide the search to-
wards UCA occurrences. Situation components finally outline a coverage target

The SASSI Cobot method 5

for the search. Focus should be given to strategies which cover varied combina-
tions of situations, as they provide more confidence in the safety of the system.

Example 1 We consider the cell in Figure 1a and two
situations captured by the safety analysis. Should the arm
move while its path is obstructed (UCA MUCA-1), it
may lead to a situation where a hazardous collision occurs
involving the arm (Hazard mH-3). Configurations where
there is an Obstruction in cell and the Arm is moving

are more likely to trigger these safety-relevant situations.

Configuration Space

Obstruction in Cell

Arm Moving

MUCA-1
MH-3

5 Monitoring safety artefacts

Monitoring aims to identify the set of safety-relevant situations that occurred
during simulation. The simulation environment tracks the state of relevant com-
ponents over time, producing a trace of events in the system. Runtime Verifi-
cation methods [10] provide a vast array of tools and techniques to identify the
violation of specific properties in a system from such a trace.

We use Fuzzy Linear Temporal Logical (LTL) [9, 12] to model safety artefacts.
Our intuition is to measure how close an artefact is to occurring over time in
a given configuration. An LTL formula captures a condition on the future of a
path, combining predicates using logic, e.g. a or b, and temporal operators, e.g.
d eventually occurs. The truth value of a predicate under fuzzy valuation [12]
ranges between 0 (false) and 1 (true). As opposed to a crisp true or false

valuation, fuzziness should provide search heuristics with a finer-grain metric to
compare different configurations. We further extend value comparison operators
with a tolerance. Once the compared values are in the tolerance range, the
comparison valuation linearly tends towards 1 as they draw closer to each other.

Example 2 Hazard MH-2 captures the situation where the arm exceeds its velocity
restrictions in proximity of another entity. It is divided in two components.

1. the arm exceeds its velocity restriction: comps(t) = arm.velocity(t) ≥V PROXV

2. the arm is in proximity of an entity: compd(t) = arm.distance(t) ≤D PROXD

arm.velocity(t) and arm.distance(t) respectively capture the velocity of the arm
and its distance to the closest entity at instant t. Constant PROXV constrains the arm
velocity in proximity of another entity, and PROXD defines the proximity distance
threshold for the arm.

If the arm is in close proximity of an entity, arm.distance(t) ≤ PROXD, then
the constraint is satisfied: compd(t) = 1. Conversely as per our fuzzy valuation rules,
if the arm is far enough from the closest object, D+PROXD < arm.distance(t), then
constraint is not satisfied: compd(t) = 0. The valuation of compd linearly increases as
the difference between arm.distance and PROXD decreases.

MH-2 is satisfied for a given configuration if both conditions, comps and compd,
eventually occur at the same time. Under fuzzy logic, the conjunction and always

temporal operator (respectively disjunction and eventually) are defined as the maxi-

6 Benjamin Lesage and Rob Alexander

mum (respectively minimum) of the combined predicates. The valuation of MH-2 under
configuration c can thus be computed as:

Occurs(MH-2, c) = max
t

(

min
(

compd(t), comps(t)
)

)

The situations we monitor for are formalised from STPA artefacts, namely
Hazards, UCAs, and their components. The textual description of each artefact
needs to be translated into a formal monitor specification, as per Example 2,
which might introduce errors in the process. We rely on a validation step to
assess the suitability of our formal artefact specification. Each formalised arte-
fact is tested against a number of crafted event traces, e.g. setting the value of
arm.velocity and arm.distance at different instants t, and compared to expected
truth values.

The simulation needs to expose the required information for monitoring. The
safety analysis thus informs the design of the simulation not only in terms of
the components and actions that should be modelled, but also regarding some
of the events that need to be tracked. The safety monitors can be incorporated
in the simulation tool itself, or applied to the output of the tool. We rely on
a separate, offline monitoring approach. This allows the parallel development
of the simulation environment, and the definition and validation of monitors.
Artefacts are formalised into expressions in the Python language using the MTL
library [25] for monitoring.

The safety monitors might rely on ground truth information that is unavail-
able or incorrect in the physical system due respectively to sensing gaps or faults.
Conversely, some artefacts may need to be simplified for evaluation and moni-
toring, preferably subsuming the target condition to prevent false negatives at
the cost of false positives.

Example 3 In the absence of a physics model, a collision between the arm, the op-
erator, or the assembly can be registered as soon as they connect, irrespective of their
relative speed and mass.

6 Generating and evaluating configurations

Automated testing techniques for autonomous robots need to address a number
of challenges. The tools need to evaluate the confidence in the safety of the
system to assess whether or not sufficient testing has been performed. They
should also guide the testing strategy to produce situations that are interesting
but also plausible and realistic.

Situation coverage [3] is a coverage criterion adapted to the testing of au-
tonomous robots. The underlying principle is to identify components of the en-
vironment the system might encounter, identify how they can vary, and ensure
that they, and combinations thereof, are evaluated during testing. High coverage
speaks for the quality of the testing strategy and provides an indicator that the
system has been considered in a variety of contexts. Testing of an autonomous
vehicle would be required to navigate different types of road intersection with

The SASSI Cobot method 7

various shapes, combined with the type of vehicles it might encounter at the
intersection, their direction of travel, and any other reasonable factor.

Macro-level components define a requirement on the inputs and their com-
binations exercised during testing. Their identification is obviously informed by
the system design which outlines reasonable operating configurations for the sys-
tem. Micro situation components define the set of situations that should always,
or never, be observed during the test campaign. The safety analysis provides
such information, capturing the set of events the system should cope with, e.g.
a human enters the cell during a welding operation.

We propose using the safety artefacts to guide testing. The occurrence of a
safety artefact reflects negatively on the confidence in the safety of the system.
We define a fitness metric to use as an objective function with state-of-the-art
search heuristics. A configuration with a higher fitness triggers the occurrences
of more artefacts and will be favoured by the search:

Fitness(c) =
∑

h∈Hazards

WH ×Occurs(h, c) +
∑

u∈UCAs

WU ×Occurs(u, c) (1)

Where Hazards and UCAs are the set of hazards and UCAs identified by
the safety analysis, Occurs(s, c) is the fuzzy truth value capturing the occur-
rence of artefact s under configuration c (see Section 5), WH and WU weigh the
occurrences of hazards and UCAs. We consider WH = 10 and WU = 1 in the
following although weights can be adjusted per artefact, based on their severity.

To assess the coverage achieved by test campaign t, we consider the portion
of safety artefacts triggered by the configurations encountered during testing:

ArtefactCoverage(t) =
|{s|s ∈ Artefacts ∧ ∃c ∈ t, Occurs(s, c) = 1}|

|Artefacts|
(2)

Where Artefacts = Hazards∪UCAs is the set of safety artefacts identified
by the safety analysis.

As the absence of observed safety artefacts is not a guarantee of safety, we
further split artefacts into their individual components to compute coverage
metrics. The components coverage is a measurement of the completeness of the
testing with regards to safety components. A component or a combination thereof
must be observed in all possible states to be considered as fully covered:

ComponentCoverageN (t) =

∣

∣

∣

⋃

s∈(N

SC
)
⋃

c∈t
OccursN (s, c)

∣

∣

∣

2N × |
(

N

SC

)

|
(3)

Where OccursN (s, c) captures the joint occurrences of components in s in
configuration c. As an example consider componentsA andB.Occurs2({A,B}, c)
can contains at most 4 values, A ∧ B, A ∧ ¬B, ¬A ∧ ¬B, ¬A ∧ B. SC is the
set of safety components derived from Artefacts, and

(

N
SC

)

the set of N -length
combinations of safety components. SC is built from the safety artefacts by au-
tomatically collecting the predicates and comparisons in their formulation, e.g.
compd and comps in Example 2.

8 Benjamin Lesage and Rob Alexander

7 Evaluation

The SASSI method outlines general principles for testing a cobot system for
safety. We rely in particular on safety artefacts to capture safety-relevant situa-
tion components. Those components guide the search through the configuration
space for interesting scenarios, and provide an evaluation of the relevant coverage
of the situation space. This section challenges our intuitions:

– Research Question 1. Are UCA necessary for hazards to occur?
– Research Question 2. Are situation-based heuristics a good guide for testing?

7.1 Problem space

We identified in Table 1a the artefacts monitored by the simulation. We simpli-
fied some conditions w.r.t. to the original artefacts to cope with limitations of the
simulation environment, as suggested in Section 3. The configuration variables
in Table 1b outline the configuration domain and search space.

Table 1: Configuration of the simulation for evaluation

(a) Safety artefacts monitored by the simulation.

Id Event

MH-1 The arm exceeds its velocity restriction in either region.
MH-2 The arm exceeds its velocity restriction in proximity of another entity.
MH-3 The arm, assembly, or operator is compromised because of a collision.
MUCA-1 The arm moves while the cell is obstructed.
MUCA-2 The arm stops moving before it reaches its target position.

(b) Definition of the problem search space

Variable Type Semantic

Arm position (i, j, k) ∈ R
3 Where the arm is in the cell, outlined in Figure 1b

Operator position (x, y, z) ∈ R
3 Where the operator is in the cell or outside

Restrict Velocity (b ∈ B) Likely velocity threshold violations if unset

7.2 Simulation setup

We discuss the integration for our evaluation with the Digital Twin developed in
the CSI: Cobot project [7]. The simulation captures a model of the system and
its behaviour. It is considered as a black box in our approach, used to evaluate
the system’s response to varied situations without any risk to its actors. The
simulation needs to satisfy the safety monitoring and configuration requirements.

The simulation scene is setup as described in Section 2. The position of the
operator is fixed during each run, and the safety stop will be prevent the arm
from moving if the operator is inside the cell. Collisions are recorded as soon as
the arm and operator connects. Virtual sensors, with no pendent in the physical
system, provide for ground truth information regarding the velocity of the arm
and its proximity to other entities, namely the operator. The cell region is defined
as a volume which monitors entities entering or leaving.

The SASSI Cobot method 9

The processing framework for our analysis focuses on interactions with the
Digital Twin (illustrated by Step 5 in Figure 2), ensuring valid configuration
files are generated and observations can be processed to identify situations of
interest. The Digital Twin provides hooks to configure pre-existing entities in the
simulated environment. All entity properties can be controlled through a unified
configuration file. Communication between independent actors within the twin
occurs through message passing, similarly to the real platform. Listeners capture
all cross-entity messages, functional or safety-related, issued during a run into
in a unified record.

Example 4 The cell region is defined as a safety region volume which monitors enti-
ties entering or leaving the volume. The arm safety stop discussed in Section 2 reacts
to unexpected entrances upon receiving the corresponding message. The same message
provides for the computation of the ”obstruction in cell” component during safety
monitoring.

Our toolchain supports the generation of configuration files for the Digital
Twin, exposes primitives to process the messages recorded during a run, and
allows for the evaluation of properties on the resulting observations. We configure
the process by defining the domain for the search, the set of safety artefacts
under evaluation, and the conversion from messages to variables required for
artefact evaluation such as arm.distance in Example 2. The tools automatically
extract the required safety components, and the corresponding coverage and
fitness metrics for a run. Combined with a search heuristic, they provide the
automated evaluation of the system.

7.3 Search heuristics

We consider a number of heuristics to explore the configuration space. All heuris-
tics were provided with the same budget of 1000 runs and the same input domain.

Ran randomly explores the configuration space, generating solutions within
the provided constraints. It is used as a baseline for comparison against guided
approaches.

GA-max (resp. GA-min) uses an elitist genetic algorithm [27, 24] to max-
imise (resp. minimise) the fitness metric introduced in Section 6. Genetic al-
gorithms operate on a population of configurations by selecting, and mutating
the best individuals. The two configurations respectively aim to maximise and
minimise the concurrent occurrences of safety artefacts in the system.

Quality diversity algorithms (QD) [22, 6] use a similar evolutionary approach.
An archive of solutions is maintained and the search aims for both diversity, i.e.
illuminating the archive, and individual performance, i.e. best in each niche. We
consider two variations of the QD configuration. QD-NS, removing the safety
stop if an operator is in the cell, increases the likelihood of collisions. QD-NF

does not rely on fuzzy valuation for safety artefacts, only 1 for true and 0 for
false, disrupting the search by reducing the granularity of the fitness metric.

We extract two features to define the niche covered by a configuration: the
highest-ranked observed hazard, and the highest-ranked observed UCA. Hazards

10 Benjamin Lesage and Rob Alexander

and UCAs are ranked by their identifier in the STPA analysis. This is a com-
promise over more accurate features, e.g. capturing the set of observed hazards,
to keep the size of the QD archive reasonable. The heuristic is set to minimise
the fitness metric in each niche. This configuration aims to observe a variety of
safety artefacts and conditions leading to hazards in isolation of each other.

7.4 Results

We challenge our intuition on the feasibility of our approach and its underlying
assumptions. Our work focused on building the Digital Twin, and the required
tooling to allow for testing for safety using the proposed approach. The results
in this section thus focus on state of the art heuristics for test generation1.

Are UCAs necessary for hazards to occur? We first evaluate our hypoth-
esis of a relation between the occurrences of UCAs and Hazards outlined in
Example 1, that is the occurrence of a UCA, as captured by the safety analysis,
is necessary for the occurrence of a hazard. Focus of testing effort on configura-
tions where UCAs (or components thereof) occur would increase the likelihood
of discovering latent hazards.

We consider all 6000 configurations generated during our test campaigns,
with the operator, arm and assembly in random states, irrespective of the heuris-
tic. Each configuration is run through the simulation for a full cycle, the arm
traversing all its way points. Processing the simulation output classifies runs into
ones where no safety situation occurred, either solely UCAs or Hazards occurs,
or both artefact types occur. The distribution of runs across these categories is
presented in Figure 3.

Fig. 3: Classification of situations detected across 6000 generated configurations.

We observed multiple cases where a hazard occurred without a UCA being
observed as well. Such observations occurred under all heuristics. These results
highlight gaps in our monitoring and safety analysis. None of the monitored
UCAs in the current setup relates to the velocity of the arm, and there is no
indicator that the related hazards might occur. Our initial safety analysis, at a

1 Each batch of 1000 runs took on average 5 hours to complete on a 1.8GHz i5 laptop.

The SASSI Cobot method 11

larger scale, does capture velocity-related UCAs. However those are confined to
specific, un-modelled actions of the arm, e.g. during a handover, and they still
do not cover all occurrences of a hazard.

Under the “Collision only” row in Figure 3, we focus on monitored MH-3 (a
collision with the arm), and MUCA-1 (a moving arm in an obstructed cell). Our
heuristics discovered solutions where the operator collided with an immobile arm
(MH-3 and ¬ MUCA-1). The operator moving was not identified as a control
action in our STPA analysis, given the lack of a controller on the operator in
our model. As such, no related unsafe control action was identified.

We identified reasonable hazard occurrences without a related UCA. Regions
where UCAs occur do result in a high likelihood of safety hazards. However, a
good heuristic should consider the hazard situation components on their own to
guide its result. Automated testing and classification of such occurrences helped
us identify gaps in our safety analysis and monitoring, despite the explored scene
and configuration space abstracting our use case.

Are situation-based heuristics a good guide for testing? We now consider
the benefits of safety testing guided by situation-based metrics, in particular the
occurrence of safety artefacts. All heuristics, except for Ran, use some form of
feedback to identify the best configurations, and direct the search to maximise or
minimise such occurrences. We compare in Table 2 the configurations generated
by each heuristic, their artefacts and components coverage, and the combinations
of such components they encountered.

Table 2: Coverage and fitness achieved under the different search heuristics

Heuristic Artefact Component (1) Component (2) (Min, Max) Fitness # Niches

Ran 100% 75% 54.82% (1, 32) 6
GA-min 100% 75% 54.10% (1, 31) 6
GA-max 100% 75% 54.69% (1, 32) 6
QD 100% 75% 54.82% (1, 32) 6
QD-NS 100% 75% 54.96% (14.64, 32) 6
QD-NF 100% 75% 54.82% (0, 31) 6

The results across heuristics are very similar. All heuristics managed to trig-
ger all monitored artefacts in our evaluation (Artefact), cover similar combina-
tions of them (# Niches), and the same configurations of situation components
considered on their own (Comp. (1)). Considering concurrent occurrences of
the safety components (Comp. (2)), the differences between heuristics remain
marginal with a slight benefit for QD-based ones, Ran, then GA. Our simple
setup has a high rate of safety occurrences, and a better comparison would be
provided by a less hazard-prone setup.

No heuristic achieved a 100% coverage of the component-based coverage met-
rics. This is the result of gaps in the coverage, and infeasible combinations of
components. As an example, three distinct components consider the position of
the operator namely, in the cell, at the bench, and at the welder. Full coverage of
the Comp. (2) metric would require observing the operator as being at the bench
and the welder at the same time. This is infeasible under the current configura-
tion space: the operator cannot lay down across the cell to reach both regions.

12 Benjamin Lesage and Rob Alexander

Unless he climbs onto the welder, the operator will also always be considered in
the cell when at the welder, (at welder, in cell) = (True, False) is infeasible.

Comparing the best and worst fitness encountered by each method provides
a similar insight. All methods managed to trigger all artefacts in a single con-
figuration (a fitness of 32), although across different configurations. Evidence
suggests the use of a presence sensor did reduce the likelihood of collisions be-
tween the operator and the arm, as exemplified with the high minimum fitness
under QD-NS. Only the QD-NF managed to observe a safe configuration, with
all configurations coming close with only a single UCA triggered.

All heuristics exploring our cage-less use-case have shown evidence of haz-
ardous configurations. Some occurrences may be attributed to limitations of the
simulated environment and setup, but they still highlight safety issues in the
system. As identified in the previous section, there are few mechanisms to pre-
vent or identify velocity constraint violations, except assessing the configuration
of the arm controller, as outlined by the lack of related UCA. These could be
mitigated by external control or sensing.

The proposed metrics provide little benefit to guided search heuristics, but
they can help trim the configurations that need to be reviewed following an
initial assessment. As an example focusing on the individuals in each of the
niches discovered by QD, we identified a safety issue in our setup where the arm
could reach outside of the cell and collide with the operator. Similarly, the arm
in the confines of the cell could still collide with an operator at the bench.

8 Related Work

Combinatorial or Design of Experiments (DoE) methods [15] scope the con-
figuration space to generate a set of complete or partial covering experiments.
Gleirscher [14] suggests the use of model-based techniques to generate tests en-
suring hazardous states of the system cannot be reached. Yu et al. [28] automati-
cally derive such a model from the safety analysis results. Our approach does not
rely on a model or a-priori knowledge on which situations a specific configura-
tion triggers. We use state-of-the-art search heuristics, guided by safety-relevant
metrics, to identify hazardous states.

Fontaine et al. [11] successfully propose the use of quality diversity algo-
rithms [22] to discover failure scenarios in a human-robot shared autonomy
problem. Other simulation-based approaches for testing automated vehicles show
similar promising results [23]. These approaches tend to rely on metrics tailored
to the modelled interaction. Our metrics instead derive from safety analyses,
and fuzzy evaluation provides for a gradual progression between an unlikely and
guaranteed occurrence. Neither property requires domain knowledge outside of
the safety analysis.

Metrics such as MCDC [13] focus on code coverage, ensuring as an example
the absence of dead code. However structural metrics are not adapted to evalu-
ating functional requirements even more so the emergent behaviours that may
arise from autonomous robots [17]. We propose instead the use of safety-centric

The SASSI Cobot method 13

coverage metrics, based on the observed situations, with a similar division of the
decision/situation into its condition/components.

9 Conclusion

We proposed a method to assess the safety of a cobot system, relying on the
artefacts captured during safety analysis to (1) inform the design of a simulation-
based environment, (2) guide search heuristics towards unsafe configurations,
and (3) assess confidence in the observed configurations. Our initial evaluation
highlighted genuine safety issues in our setup. It shows a high hazard likelihood,
and gaps in our safety analysis lead to hazards without early warning signs.

A strong safety baseline, increasing the challenge of triggering hazardous
behaviours, would be required to better assess the benefits of search heuristics
guided by safety components. This would also provide a fair evaluation of the
proposed coverage metrics. Further refinements of said coverage metrics to trim
infeasible combinations of safety components would provide improved coverage
and confidence.

Acknowledgements

This project is supported by the Assuring Autonomy International Programme, a part-
nership between Lloyd’s Register Foundation and the University of York.

We would like to thank the project partners at the University of Sheffield the

University of York for numerous insightful discussions. In particular, we would like to

thank James Douthwaite for his expertise with the Digital Twin.

References

1. AAIP Body of Knowledge: 1.2.1 Considering human/machine interactions.
https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/required-
behaviour/1-2/1-2-1/cobots/, accessed: 2021-02

2. Afzal, A., Le Goues, C., Hilton, M., Timperley, C.S.: A study on challenges of
testing robotic systems. In: 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST). pp. 96–107. IEEE (2020)

3. Alexander, R., Hawkins, H.R., Rae, A.J.: Situation coverage–a coverage criterion
for testing autonomous robots. Tech. rep., University of York (2015)

4. Bauer, A., Wollherr, D., Buss, M.: Human–robot collaboration: a survey. Interna-
tional Journal of Humanoid Robotics 5(01), 47–66 (2008)

5. Bobka, P., Germann, T., Heyn, J.K., Gerbers, R., Dietrich, F., Dröder, K.: Simu-
lation platform to investigate safe operation of human-robot collaboration systems
44 (2016), 6th CIRP Conference on Assembly Technologies and Systems (CATS)

6. Cazenille, L.: Qdpy: A python framework for quality-diversity.
https://gitlab.com/leo.cazenille/qdpy (2018)

7. CSI: Cobot. https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobots
8. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA:

an open urban driving simulator. CoRR abs/1711.03938 (2017),
http://arxiv.org/abs/1711.03938

14 Benjamin Lesage and Rob Alexander

9. Emerson, E.A.: Temporal and modal logic. In: Formal Models and Semantics, pp.
995–1072. Elsevier (1990)

10. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. In: International Conference on Runtime Verification (2018)

11. Fontaine, M., Nikolaidis, S.: A quality diversity approach to automatically gener-
ating human-robot interaction scenarios in shared autonomy (2021)

12. Frigeri, A., Pasquale, L., Spoletini, P.: Fuzzy time in LTL. CoRR abs/1203.6278
(2012), http://arxiv.org/abs/1203.6278

13. Ghani, K., Clark, J.A.: Automatic test data generation for multiple condition and
mcdc coverage. In: 2009 Fourth International Conference on Software Engineering
Advances. pp. 152–157. IEEE (2009)

14. Gleirscher, M.: Hazard-based selection of test cases. In: Proceedings of the 6th
International Workshop on Automation of Software Test. pp. 64–70 (2011)

15. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey.
Software Testing, Verification and Reliability 15(3), 167–199 (2005)

16. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: A sur-
vey. Robotics and Autonomous Systems 94, 43–52 (2017)

17. Helle, P., Schamai, W., Strobel, C.: Testing of autonomous systems–challenges and
current state-of-the-art. In: INCOSE international symposium. vol. 26, pp. 571–
584. Wiley Online Library (2016)

18. Huck, T.P., Ledermann, C., Kröger, T.: Simulation-based testing for early safety-
validation of robot systems. In: 2020 IEEE Symposium on Product Compliance
Engineering-(SPCE Portland). pp. 1–6. IEEE (2020)

19. Robotics — Safety requirements for robot systems in an industrial environment —
Part 1: Robots. Standard, International Organization for Standardization (2011)

20. Leveson, N.G., Thomas, J.P.: STPA Handbook. Cambridge, MA, USA (2018)
21. Norden, J., O’Kelly, M., Sinha, A.: Efficient black-box assessment of autonomous

vehicle safety. arXiv preprint arXiv:1912.03618 (2019)
22. Pugh, J.K., Soros, L.B., Stanley, K.O.: An extended study of quality diversity

algorithms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion. p. 19–20. GECCO ’16 Companion, ACM (2016)

23. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

24. Solgi, M.: geneticalgorithm: a python library for elitist genetic algorithm.
https://github.com/rmsolgi/geneticalgorithm (2020)

25. Vazquez-Chanlatte, M.: mvcisback/py-metric-temporal-logic: v0.1.1 (Jan 2019).
https://doi.org/10.5281/zenodo.2548862

26. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human–robot collaboration in
industrial settings: Safety, intuitive interfaces and applications. Mechatronics 55

27. Whitley, D.: A genetic algorithm tutorial. Statistics and computing 4(2) (1994)
28. Yu, G., wei Xu, Z., wei Du, J.: An approach for automated safety testing of safety-

critical software system based on safety requirements. In: 2009 International forum
on information technology and applications. vol. 3, pp. 166–169. IEEE (2009)

29. Zou, X., Alexander, R., McDermid, J.: Testing method for multi-uav conflict resolu-
tion using agent-based simulation and multi-objective search. Journal of Aerospace
Information Systems 13(5), 191–203 (2016)

