
This is a repository copy of Benchmarking TinyML Systems:Challenges and Direction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174601/

Version: Accepted Version

Proceedings Paper:
Banbury, Colby R., Reddi, Vijay Janapa, Lam, Max et al. (14 more authors) (2020)
Benchmarking TinyML Systems:Challenges and Direction. In: SysML 2020, Proceedings.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

BENCHMARKING TINYML SYSTEMS: CHALLENGES AND DIRECTION

Colby R. Banbury 1 Vijay Janapa Reddi 1 Max Lam 1 William Fu 1 Amin Fazel 2 Jeremy Holleman 3 4

Xinyuan Huang 5 Robert Hurtado 6 David Kanter 7 Anton Lokhmotov 8 David Patterson 9 10 Danilo Pau 11

Jae-sun Seo 12 Jeff Sieracki 13 Urmish Thakker 14 Marian Verhelst 15 16 Poonam Yadav 17

ABSTRACT

Recent advancements in ultra-low-power machine learning (TinyML) hardware promises to unlock an entirely new

class of smart applications. However, continued progress is limited by the lack of a widely accepted benchmark

for these systems. Benchmarking allows us to measure and thereby systematically compare, evaluate, and improve

the performance of systems and is therefore fundamental to a field reaching maturity. In this position paper, we

present the current landscape of TinyML and discuss the challenges and direction towards developing a fair and

useful hardware benchmark for TinyML workloads. Furthermore, we present our four benchmarks and discuss

our selection methodology. Our viewpoints reflect the collective thoughts of the TinyMLPerf working group that

is comprised of over 30 organizations.

1 INTRODUCTION

Machine learning (ML) inference on the edge is an increas-

ingly attractive prospect due to its potential for increasing

energy efficiency (Fedorov et al., 2019), privacy, responsive-

ness (Zhang et al., 2017), and autonomy of edge devices.

Thus far, the field edge ML has predominately focused on

mobile inference which has led to numerous advancements

in machine learning models such as exploiting pruning, spar-

sity, and quantization. But in recent years, there have major

been strides in expanding the scope of edge systems. In-

terest is brewing in both academia (Fedorov et al., 2019;

Zhang et al., 2017) and industry (Flamand et al., 2018; War-

den, 2018a) towards expanding the scope of edge ML to

microcontroller-class devices.

The goal of “TinyML” (tinyML Foundation, 2019) is to

bring ML inference to ultra-low-power devices, typically un-

der a milliWatt, and thereby break the traditional power bar-

rier preventing widely distributed machine intelligence. By

performing inference on-device, and near-sensor, TinyML

enables greater responsiveness and privacy while avoiding

the energy cost associated with wireless communication,

which at this scale is far higher than that of compute (War-

1Harvard University 2Samsung Semiconductor, Inc. 3Syntiant
4University of North Carolina, Charlotte 5Cisco Systems
6California State Polytechnic University, Pomona 7Real World
Insights 8dividiti 9University of California, Berkeley 10Google
11STMicroelectronics, Italy 12Arizona State University 13Reality
AI 14Arm ML Research Lab 15KU Leuven 16Interuniversity Micro-
electronics Centre (IMEC) 17University of York. Correspondence
to: Colby R. Banbury <cbanbury@g.harvard.edu>.

Copyright 2020 by the authors.

den, 2018b). Furthermore, the efficiency of TinyML enables

a class of smart, battery-powered, always-on applications

that can revolutionize the real-time collection and process-

ing of data. This emerging field, which is the culmination

of many innovations, is poised only further to accelerate its

growth in the coming years.

To unlock the full potential of the field, hardware software

co-design is required. Specifically, TinyML models must

be small enough to fit within the tight constraints of MCU-

class devices (e.g., a few hundred kB of memory and limited

onboard compute horsepower in the order of MHz proces-

sor clock speed), thus limiting the size of the input and the

number of layers (Zhang et al., 2017) or necessitating the

use lightweight, non-neural network-based techniques (Ku-

mar et al., 2017). TinyML tools are broadly defined as

anything that enables the design, mapping, and deployment

of TinyML algorithms including aggressive quantization

techniques (Wang et al., 2019), memory aware neural archi-

tecture searches (Fedorov et al., 2019), frameworks (Ten-

sorFlow), and efficient inference libraries (Lai et al., 2018;

Garofalo et al., 2019). Efforts in TinyML hardware in-

clude improving inference on the next generation of general-

purpose MCUs (arm; Flamand et al., 2018), developing

hardware specialized for low power inference, and creating

novel architectures intended only as inference engines for

specific tasks (Moons et al., 2018).

The complexity and dynamicity of the field obscure the mea-

surement of progress and make dynamism design decisions

intractable. In order to enable the continued innovation, a

fair and reliable method of comparison is needed. Since

progress is often the result of increased hardware capability,

ar
X

iv
:2

00
3.

04
82

1v
4

 [
cs

.P
F]

 2
9

Ja
n

20
21

Benchmarking TinyML Systems

a reliable TinyML hardware benchmark is required.

In this paper, we discuss the challenges and opportunities

associated with the development of a TinyML hardware

benchmark. Our short paper is a call to action for estab-

lishing a common benchmarking for TinyML workloads on

emerging TinyML hardware to foster the development of

TinyML applications. The points presented here reflect the

ongoing effort of the TinyMLPerf working group that is cur-

rently comprised of over 30 organizations and 75 members.

The rest of the paper is organized as follows. In Section 2,

we discuss the application landscape of TinyML, including

the existing use cases, models, and datasets. In Section 3, we

describe the existing TinyML hardware solutions, including

outlining improvements to general-purpose MCUs and the

development of novel architectures. In Section 4, we discuss

the inherent challenges of the field and how they complicate

the development of a benchmark. In Section 5, we describe

the existing benchmarks that relate to TinyML and identify

the deficiencies that still need to be filled. In Section 6 we

discuss the progress of the TinyMLPerf working group thus

far and describe the four benchmarks. In Section 7, we

concluded the paper and discuss future work.

2 TINY USE CASES, MODELS & DATASETS

In this section we attempt to summarize the field of TinyML

by describing a set of representative use cases (Section

2.1), their relevant datasets (Section 2.2), and the model

architectures commonly applied to these specific use cases

(Section 2.3).

2.1 Use Cases

Despite the general lack of maturity within the field, there

are a number of well established TinyML use cases. We

categorize the application landscape of tiny ML by input

type in Table 3, which in the context of TinyML systems

plays a crucial role in the use case definition.

Audio wake words is already a fairly ubiquitous example of

always-on ML inference. Audio wake words is generally a

speech classification problem that achieves very low power

inference by limiting the label space, often to two labels:

“wake word” and “not wake word” (Zhang et al., 2017).

Anomaly detection and predictive maintenance are com-

monly deployed on MCUs in factory settings where audio,

motor bearing, or IMU data can be used to detect faults in

products or equipment.

Other deployed TinyML applications, like activity recog-

nition from IMU data (Hassan et al., 2018), rely on low

feature dimensionality to fit within the tight constraints of

the platforms. Some use cases have been proven viable, but

have yet to reach end users because they are too new, like

visual wake words (Chowdhery et al., 2019).

Many traditional ML use cases can be considered futuristic

TinyML tasks. As ultra-low-power inference hardware con-

tinues to improve, the threshold of viability expands. Tasks

like large label space image classification or object counting

are well suited for low-power always-on applications but

are currently too compute and memory hungry for today’s

TinyML hardware.

Furthermore, TinyML has a significant role to play in future

technology. For example, many of the fundamental features

of augmented reality (AR) glasses are always-on and battery-

powered. Due to tight real time constraints, these devices

cannot afford the latency of offloading computation to the

cloud, an edge server, or even an accompanying mobile

device. Thus, due to shared constraints, AR applications can

benefit significantly from progress in the field of TinyML.

2.2 Datasets

There are a number of open-source datasets that are relevant

to TinyML usecases. Table 3 breaks them down by the

type of data. Despite the availability of these datasets, the

majority of deployed TinyML models are trained on much

larger, proprietary datasets. The open-source datasets that

are competitively large are not TinyML specific. The lack

of large, TinyML focused, open-source datasets slows the

progress of academic research and limits the ability of a

benchmark to represent real workloads accurately.

2.3 Models

Table 3 lists common model types for TinyML use cases.

Although neural networks (NN) are a dominant force in

traditional ML, it is common to use non-NN based solutions

like decision trees (Kumar et al., 2017), for some TinyML

use cases, due to their low compute and memory require-

ments.

Machine learning on MCU-class devices has only recently

become feasible; therefore, the community has yet to pro-

duce models that have become widely accepted as Mo-

bileNets have become for mobile devices. This makes the

task of selecting representative models challenging. How-

ever, immaturity also brings opportunity as our decisions

can help direct future progress. Selecting a subset of the

currently available models, outlining the rules for quality

versus accuracy trade-offs, and prescribing a measurement

methodology that can be faithfully reproduced will encour-

age the community to develop new models, runtimes, and

hardware that progressively outperform one another.

Benchmarking TinyML Systems

Table 1. Survey of TinyML Use Cases, Models, and Datasets

INPUT TYPE USE CASES MODEL TYPES DATASETS

AUDIO

AUDIO WAKE WORDS

CONTEXT RECOGNITION

CONTROL WORDS

KEYWORD DETECTION

DNN
CNN
RNN
LSTM

SPEECH COMMANDS (WARDEN, 2018A)
AUDIOSET (GEMMEKE ET AL., 2017)
EXTRASENSORY (VAIZMAN ET AL., 2017)

IMAGE

VISUAL WAKE WORDS

OBJECT DETECTION

IMAGE CLASSIFICATION

GESTURE RECOGNITION

OBJECT COUNTING

TEXT RECOGNITION

DNN
CNN
SVM
DECISION TREES

KNN
LINEAR

VISUAL WAKE WORDS (CHOWDHERY ET AL., 2019)
CIFAR10 (KRIZHEVSKY ET AL., 2009B)

MNIST (LECUN & CORTES, 2010)
IMAGENET (DENG ET AL., 2009)

DVS128 GESTURE (AMIR ET AL., 2017)

PHYSIOLOGICAL /
BEHAVIORAL

METRICS

SEGMENTATION

FORECASTING

ACTIVITY DETECTION

DNN
DECISION TREE

SVM
LINEAR

PHYSIONET (GOLDBERGER ET AL., 2000)
HAR (CRAMARIUC, 2019)
DSA (ALTUN ET AL., 2010)

OPPORTUNITY (ROGGEN ET AL., 2010)
UCI EMG (LOBOV ET AL., 2018)

INDUSTRY

TELEMETRY

SENSING (LIGHT, TEMP, ETC)
ANOMALY DETECTION

MOTOR CONTROL

PREDICTIVE MAINTENANCE

DNN
DECISION TREE

SVM
LINEAR

NAIVE BAYES

UCI AIR QUALITY (DE VITO ET AL., 2008)
UCI GAS (VERGARA ET AL., 2012)

NASA’S PCOE (SAXENA & GOEBEL, 2008)

Figure 1. A logorithmic comparison of the active power consump-

tion between TinyML systems and those supported by MLPerf.

TinyML systems can be up to four orders of magnitude smaller in

the power budget as compared to state-of-the-art MLPerf systems.

3 TINY HARDWARE CONSTRAINTS

TinyML hardware is defined by its ultra-low power con-

sumption, which is often in the range of 1 mWatt and below.

At the top of this range are efficient 32-bit MCUs, like those

based on the Arm Cortex-M7 or RISC-V PULP processors,

and at the bottom are novel ultra-low-power inference en-

gines. Even the largest TinyML devices consume drastically

less power than the smallest traditional ML devices. Figure

1 shows the logarithmic comparison of the active power

consumption between TinyML devices and those currently

supported by MLPerf (v0.5 inference results from the open

and closed divisions). TinyML devices can be up to four or-

ders of magnitude smaller in the power budget as compared

to state-of-the-art MLPerf systems.

The advent of low-power, cheap 32-bit MCUs have revolu-

tionized the compute capability at the very edge. Cortex-M

based platforms are now regularly performing tasks that

were previously infeasible at this scale, mostly due to sup-

port for single instruction multiple data (SIMD) and digital

signal processing (DSP) instructions. This fast vector math

supports NN and highly efficient SVM implementations, it

also accelerates many feature computations using 8bit fixed

point arithmetic.

A feature of MCUs is the prevalence of on-chip SRAM

and embedded Flash. Thus, when models can fit within the

tight on-chip memory constraints, they are free of the costly

DRAM accesses that hamper traditional ML. Widespread

adoption and dispersion of TinyML are reliant on the capa-

Benchmarking TinyML Systems

bility of these platforms.

Although general-purpose MCUs provide flexibility, the

highest TinyML performance efficiency comes from special-

ized hardware. Novel architectures can achieve performance

in the range of one micro Joule per inference (Holleman,

2019). These specialized devices expand the boundaries of

ML to the ultra low power end of TinyML processors.

4 CHALLENGES

TinyML systems present a number of unique challenges to

the design of a performance benchmark that can be used

to measure and quantify performance differences between

various systems systematically. We discuss the four primary

obstacles and postulate how they might be overcome.

4.1 Low Power

Low power consumption is one of the defining features of

TinyML systems. Therefore, a useful benchmark should

ostensibly profile the energy efficiency of each device. How-

ever, there are many challenges in fairly measuring energy

consumption. Firstly, as illustrated in Figure 1, TinyML

devices can consume drastically different amounts of power,

which makes maintaining accuracy across the range of de-

vices difficult.

Secondly, determining what falls under the scope of the

power measurement is difficult to determine when data paths

and pre-processing steps can vary significantly between

devices. Other factors like chip peripherals and underlying

firmware can impact the measurements. Unlike traditional

high-power ML systems, TinyML systems do not have spare

cores to load the System-Under-Test (SUT) with minimal

overheads.

4.2 Limited Memory

Due to their small size, TinyML systems often have tight

memory constraints. While traditional ML systems like

smartphones cope with resource constraints in the order

of a few GBs, tinyML systems are typically coping with

resources that are two orders of magnitude smaller.

Memory is one of the primary motivating factors for the

creation of a TinyML specific benchmark. Traditional

ML benchmarks use inference models that have drastically

higher peak memory requirements (in the order of gigabytes)

than TinyML devices can provide. This also complicates

the deployment of a benchmarking suite as any overhead

can significantly impact power consumption or even make

the benchmark too big to fit. Individual benchmarks must

also cover a wide range of devices; therefore, multiple levels

of quantization and precision should be represented in the

benchmarking suite. Finally, a variety of benchmarks should

be chosen such that the diversity of the field is supported.

4.3 Hardware Heterogeneity

Despite its nascency, TinyML systems are already diverse

in their performance, power, and capabilities. Devices range

from general-purpose MCUs to novel architectures, like

in event-based neural processors (Brainchip) or memory

compute (Kim et al., 2019). This heterogeneity poses a

number of challenges as the system under test (SUT) will

not necessarily include otherwise standard features, like

a system clock or debug interface. Furthermore, the task

of normalizing performance results across heterogeneous

implementations is a key challenge.

Today’s state-of-the-art benchmarks are not designed to han-

dle the challenges readily. They need careful re-engineering

to be flexible enough to handle the extent of hardware het-

erogeneity that is commonplace in the TinyML ecosystem.

4.4 Software Heterogeneity

There are three distinct methods for model deployment on

to TinyML systems: hand coding, code generation, and ML

interpreters.

Hand coding often produces the best results as it allows for

low-level, application specific optimizations; however, the

task is time consuming and the impact of the optimizations

are often opaque to anyone but the original design team.

Moreover, hand coding limits the ability to share knowledge

and adopt new methods, which is detrimental to the rate

of progress in TinyML. From a benchmarking perspective,

hand coded submission will likely produce the best numeri-

cal results at the cost of reproducibility, comparability and

time.

Code generation methods produce well optimized code with-

out the significant effort of hand coding by abstracting and

automating system level optimizations. However, code gen-

eration does not address the issues with comparability, as

each major vendor has their own set of proprietary tools and

compilers, which also makes portability a challenge.

ML interpreters allow for significant portability as their

abstract structure is the same across platforms. TensorFlow

Lite for Microcontrollers, a popular ML framework for

TinyML, uses an interpreter to call individual kernels, like

convolution, during run time. The framework is independent

of the model architecture, therefore new models can be

easily swapped in. Additionally, the reference kernels can

be individually optimised and changed to fit the platform.

This method comes with a small overhead in binary size

and performance. From a benchmarking perspective, this

abstraction separates the impact of the model architecture

on the system level performance, which makes results more

generalizable.

Benchmarking TinyML Systems

Table 2. Existing Benchmarks

BENCHMARK ML? POWER? TINY?

COREMARK ×
√ √

MLMARK
√

× ×
MLPERF INFERENCE

√ √
×

TINYML REQUIREMENTS
√ √ √

A benchmark suite must balance optimality with portabil-

ity, and comparibility with representativeness. A TinyML

benchmark should support many options for model deploy-

ment but the impact of that choice on the results must be

carefully evaluated.

5 RELATED WORK

There are a number of ML related hardware benchmarks,

however, none that accurately represent the performance

of TinyML workloads on tiny hardware. Table 2 shows a

sampling of the widely accepted industry benchmarks that

are directly applicable to the discussion on TinyML systems.

EEMBC CoreMark (Gal-On & Levy) has become the stan-

dard performance benchmark for MCU-class devices due

to its ease of implementation and use of real algorithms.

Yet, CoreMark does not profile full programs, nor does it

accurately represent machine learning inference workloads.

EEMBC MLMark (Torelli & Bangale) addresses these is-

sues by using actual ML inference workloads. However, the

supported models are far too large for MCU-class devices

and are not representative of TinyML workloads. They re-

quire far too much memory (GBs) and have significant run

times. Additionally, while CoreMark supports power mea-

surements with ULPMark-CM (EEMBC), MLMark does

not, which is critical for a TinyML benchmark.

MLPerf, a community-driven benchmarking effort, has

recently introduced a benchmarking suite for ML infer-

ence (Reddi et al., 2019) and has plans to add power mea-

surements. However, much like MLMark, the current

MLPerf inference benchmark precludes MCUs and other

resource-constrained platforms due to a lack of small bench-

marks and compatible implementations.

As Table 2 summarizes, there is a clear and distinct need for

a TinyML benchmark that caters to the unique needs of ML

workloads, makes power a first-class citizen and prescribes

a methodology that suits TinyML.

6 BENCHMARKS

To overcome theses challenges, we adopt a set of principles

for the development of a robust TinyML benchmarking suite

and select a set of 4 benchmarks.

6.1 Open and Closed Divisions

As previously stated, TinyML is a diverse field, therefore

not all systems can be accommodated under strict rules,

however, without strict rules, direct comparison of the hard-

ware becomes more difficult. To address this issue, we

adopt MLPerf’s open and closed structure. More traditional

TinyML solutions can submit to the closed division where

submissions must use a model that is considered equivalent

to the reference model. TinyML systems that fall outside

the bounds of the ”closed” benchmark can submit results to

the open division which will allow submissions to deviate

as necessary from the closed reference. We believe this

structure increases the inclusivity of the bechmarking suite

while maintaining the comparability of the results.

Additionally, the open division allows for submissions to

demonstrate novel software optimizations. Software based

organizations can submit results using the reference plat-

form while altering the model or inference engine to demon-

strate the relative advantage of their unique solutions.

6.2 Use Cases

Our use case selection process prioritized diversity, fea-

sibility, and industry relevance. Diversity to ensure our

benchmark suite covered as much of the field as possible,

feasibility in terms of access to open source datasets and

models, and relevance to real world applications.

The group has selected four use cases to target: audio

wake words, visual wake words, image classification, and

anomaly detection. Audio wake words refers to the com-

mon, keyword spotting task (e.g. “Alexa”, “Ok Google”,

and “Hey Siri”). Visual wake words is a binary image classi-

fication task that indicates if a person is visible in the image

or not. The image classification use cases targets small label

set size image classification. Anomaly detection is a broader

use case that classifies time series data as “normal” or “ab-

normal”. We specifically select audio anomaly detection as

our use case due to the availability of a relevant dataset.

These use cases have been selected to represent the broad

range of TinyML. They encompass three distinct input data

types and range from relatively resource hungry (visual

wake words) to light weight (anomaly detection). Further-

more the models traditionally used for these use cases are

varied therefore the benchmarking suite can support a di-

verse set of ML techniques.

6.3 Dataset Selection

The group has selected a dataset for each use case, as shown

in Table 3. The datasets help specify the use cases, are used

to train the reference models, and are sampled to create the

tests sets used during the measurement on device. Further-

Benchmarking TinyML Systems

Table 3. TinyMLPerf Benchmarking Suite

USE CASE DATASETS MODEL

AUDIO WAKE WORDS SPEECH COMMANDS (WARDEN, 2018A) DS-CNN (ZHANG ET AL., 2017)

VISUAL WAKE

WORDS

VISUAL WAKE WORDS DATASET

(CHOWDHERY ET AL., 2019)
DS-CNN (TFLM-PERSON-DETECTION)

IMAGE

CLASSIFICATION
CIFAR10(KRIZHEVSKY ET AL., 2009A) RESNET 8 (HE ET AL., 2016)

ANOMALY

DETECTION

TOYADMOS (TOY CAR)(KOIZUMI ET AL.,
2019)

DEEP AUTOENCODER (KOIZUMI ET AL.,
2020)

more, the datasets can be used to train a new or modified

model in the open division. We have selected datasets that

are open, well known, and relevant to industry use cases.

6.4 Model Selection

The group has selected four reference models. These ref-

erence models are the benchmark workloads in the closed

division and act as a baseline for the open division. The DS-

CNN described in (Zhang et al., 2017) have been selected

for audio wake words. The MobilenetV1(Howard et al.,

2017) used in the TensorFlow Lite for Microcontrollers

person detection example (TFLM-Person-Detection) has

been selected for visual wake words. An eight layer ResNet

model (He et al., 2016) has been selected for image clas-

sification. The baseline deep autoencoder from Task 2 of

DCASE2020 competetition has been selected for anomaly

detection. (Koizumi et al., 2020). The models were se-

lected, based on industry input, to be representative of their

respective use cases.

6.5 Metrics

The benchmarking suite will primarily measure inference

latency with the option to measure energy consumption. The

scope of the the the measurements is determined by each

benchmark. In the open division the accuracy of the model

must remain within a set threshold of the closed division

model.

6.6 Future work

Perfection is often the enemy of good, therefore, to fill

the community’s need for comparability, our priority is to

quickly establish a set of minimum viable benchmarks and

iteratively address deficiencies. The benchmarking suite

will continue to evolve to meet the needs of the community.

We plan to accept result submissions in March of 2021.

7 CONCLUSION

In conclusion, TinyML is an important and rapidly evolving

field that requires comparability amongst hardware inno-

vations to enable continued progress and stability. In this

paper, we reviewed the current landscape of TinyML, in-

cluding highlighting the need for a hardware benchmark.

Additionally, we analyzed challenges associated with devel-

oping said benchmark and discussed a path forward. Finally,

we have selected use cases, datasets, and models for our

four benchmarks.

If you would like to contribute to the effort, join the work-

ing group here: https://groups.google.com/u/

4/a/mlcommons.org/g/tiny

The benchmark suite is available here: https://

github.com/mlcommons/tiny

REFERENCES

Helium: Enhancing the capabilities of the smallest de-

vices. URL https://www.arm.com/why-arm/

technologies/helium.

Altun, K., Barshan, B., and Tunçel, O. Comparative study

on classifying human activities with miniature inertial and

magnetic sensors. Pattern Recognition, 43:3605–3620,

10 2010. doi: 10.1016/j.patcog.2010.04.019.

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J.,

Nolfo, C. D., Nayak, T., Andreopoulos, A., Garreau,

G., Mendoza, M., Kusnitz, J., Debole, M., Esser, S.,

Delbruck, T., Flickner, M., and Modha, D. A low

power, fully event-based gesture recognition system. In

2017 IEEE Conference on Computer Vision and Pattern

Benchmarking TinyML Systems

Recognition (CVPR), pp. 7388–7397, July 2017. doi:

10.1109/CVPR.2017.781.

Brainchip. Akida neuromorphic sys-

tem on chip. URL https://www.

brainchipinc.com/products/

akida-neuromorphic-system-on-chip.

Chowdhery, A., Warden, P., Shlens, J., Howard, A.,

and Rhodes, R. Visual wake words dataset. CoRR,

abs/1906.05721, 2019. URL http://arxiv.org/

abs/1906.05721.

Cramariuc, A.-C. P. I. M. B. Precis har, 2019. URL http:

//dx.doi.org/10.21227/mene-ck48.

De Vito, S., Massera, E., Piga, M., and Martinotto, L. On

field calibration of an electronic nose for benzene estima-

tion in an urban pollution monitoring scenario. Sensors

and Actuators B Chemical, 129:750–757, 02 2008. doi:

10.1016/j.snb.2007.09.060.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-

Fei, L. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR09, 2009.

EEMBC. Ulpmark - an eembc benchmark. URL https:

//www.eembc.org/ulpmark/index.php.

Fedorov, I., Adams, R. P., Mattina, M., and Whatmough, P.

Sparse: Sparse architecture search for cnns on resource-

constrained microcontrollers. In Advances in Neural In-

formation Processing Systems 32, pp. 4978–4990. Curran

Associates, Inc., 2019.

Flamand, E., Rossi, D., Conti, F., Loi, I., Pullini, A., Roten-

berg, F., and Benini, L. Gap-8: A risc-v soc for ai at

the edge of the iot. In 2018 IEEE 29th International

Conference on Application-specific Systems, Architec-

tures and Processors (ASAP), pp. 1–4, July 2018. doi:

10.1109/ASAP.2018.8445101.

Gal-On, S. and Levy, M. Exploring coremark - a bench-

mark maximizing simplicity and efficacy. Technical re-

port. URL https://www.eembc.org/techlit/

articles/coremark-whitepaper.pdf.

Garofalo, A., Rusci, M., Conti, F., Rossi, D., and Benini,

L. Pulp-nn: accelerating quantized neural networks

on parallel ultra-low-power risc-v processors. Philo-

sophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, 378(2164):

20190155, Dec 2019. ISSN 1471-2962. doi: 10.1098/rsta.

2019.0155. URL http://dx.doi.org/10.1098/

rsta.2019.0155.

Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A.,

Lawrence, W., Moore, R. C., Plakal, M., and Ritter, M.

Audio set: An ontology and human-labeled dataset for

audio events. In Proc. IEEE ICASSP 2017, New Orleans,

LA, 2017.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff,

J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,

G. B., Peng, C.-K., and Stanley, H. E. PhysioBank, Phys-

ioToolkit, and PhysioNet: Components of a new research

resource for complex physiologic signals. Circulation,

101(23):e215–e220, 2000. Circulation Electronic Pages:

http://circ.ahajournals.org/content/101/23/e215.full

PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.

Hassan, M. M., Uddin, M. Z., Mohamed, A., and Almogren,

A. A robust human activity recognition system using

smartphone sensors and deep learning. Future Generation

Computer Systems, 81:307–313, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Holleman, J. The speed and power advantage

of a purpose-built neural compute engine, Jun

2019. URL https://www.syntiant.com/post/

keyword-spotting-power-comparison.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017.

Kim, H., Chen, Q., Yoo, T., Kim, T. T.-H., and Kim, B. A

1-16b precision reconfigurable digital in-memory com-

puting macro featuring column-mac architecture and bit-

serial computation. In ESSCIRC 2019-IEEE 45th Eu-

ropean Solid State Circuits Conference (ESSCIRC), pp.

345–348. IEEE, 2019.

Koizumi, Y., Saito, S., Uematsu, H., Harada, N., and Imoto,

K. Toyadmos: A dataset of miniature-machine operating

sounds for anomalous sound detection. In 2019 IEEE

Workshop on Applications of Signal Processing to Audio

and Acoustics (WASPAA), pp. 313–317. IEEE, 2019.

Koizumi, Y., Kawaguchi, Y., Imoto, K., Nakamura, T.,

Nikaido, Y., Tanabe, R., Purohit, H., Suefusa, K., Endo,

T., Yasuda, M., and Harada, N. Description and dis-

cussion on DCASE2020 challenge task2: Unsupervised

anomalous sound detection for machine condition moni-

toring. In arXiv e-prints: 2006.05822, pp. 1–4, June 2020.

URL https://arxiv.org/abs/2006.05822.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. 2009a.

Benchmarking TinyML Systems

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian

institute for advanced research). 2009b. URL http:

//www.cs.toronto.edu/˜kriz/cifar.html.

Kumar, A., Goyal, S., and Varma, M. Resource-efficient

machine learning in 2 KB RAM for the internet of

things. In Precup, D. and Teh, Y. W. (eds.), Pro-

ceedings of the 34th International Conference on Ma-

chine Learning, volume 70 of Proceedings of Ma-

chine Learning Research, pp. 1935–1944, International

Convention Centre, Sydney, Australia, 06–11 Aug

2017. PMLR. URL http://proceedings.mlr.

press/v70/kumar17a.html.

Lai, L., Suda, N., and Chandra, V. Cmsis-nn: Efficient

neural network kernels for arm cortex-m cpus, 2018.

LeCun, Y. and Cortes, C. MNIST handwritten digit

database. 2010. URL http://yann.lecun.com/

exdb/mnist/.

Lobov, S., Krilova, N., Kastalskiy, I., Kazantsev, V., and

Makarov, V. Latent factors limiting the performance

of semg-interfaces. Sensors, 18:1122, 04 2018. doi:

10.3390/s18041122.

Moons, B., Bankman, D., Yang, L., Murmann, B., and

Verhelst, M. Binareye: An always-on energy-accuracy-

scalable binary cnn processor with all memory on chip

in 28nm cmos. In 2018 IEEE Custom Integrated Circuits

Conference (CICC), pp. 1–4. IEEE, 2018.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,

Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,

Charlebois, M., Chou, W., Chukka, R., Coleman, C.,

Davis, S., Deng, P., Diamos, G., Duke, J., Fick, D., Gard-

ner, J. S., Hubara, I., Idgunji, S., Jablin, T. B., Jiao, J.,

John, T. S., Kanwar, P., Lee, D., Liao, J., Lokhmotov,

A., Massa, F., Meng, P., Micikevicius, P., Osborne, C.,

Pekhimenko, G., Rajan, A. T. R., Sequeira, D., Sirasao,

A., Sun, F., Tang, H., Thomson, M., Wei, F., Wu, E., Xu,

L., Yamada, K., Yu, B., Yuan, G., Zhong, A., Zhang, P.,

and Zhou, Y. Mlperf inference benchmark, 2019.

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster,

K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G.,

Ferscha, A., Doppler, J., Holzmann, C., Kurz, M., Holl,

G., Chavarriaga, R., Sagha, H., Bayati, H., Creatura,

M., and d. R. Millàn, J. Collecting complex activity

datasets in highly rich networked sensor environments.

In 2010 Seventh International Conference on Networked

Sensing Systems (INSS), pp. 233–240, June 2010. doi:

10.1109/INSS.2010.5573462.

Saxena, A. and Goebel, K. Turbofan engine

degradation simulation data set, 2008. URL

http://ti.arc.nasa.gov/project/

prognostic-data-repository.

TensorFlow. Tensorflow lite for microcontrollers.

URL https://www.tensorflow.org/lite/

microcontrollers.

TFLM-Person-Detection. Tensorflow lite for mi-

crocontrollers person detection example. URL

https://github.com/tensorflow/

tensorflow/tree/master/tensorflow/

lite/micro/examples/person_detection.

tinyML Foundation. tinyml summit, 2019. URL https:

//www.tinymlsummit.org/.

Torelli, P. and Bangale, M. Measuring inference perfor-

mance of machine-learning frameworks on edge-class

devices with the mlmark benchmark. URL https:

//www.eembc.org/techlit/articles/

MLMARK-WHITEPAPER-FINAL-1.pdf.

Vaizman, Y., Ellis, K., and Lanckriet, G. Recognizing

detailed human context in the wild from smartphones and

smartwatches. IEEE Pervasive Computing, 16(4):62–74,

October 2017. ISSN 1558-2590. doi: 10.1109/MPRV.

2017.3971131.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M., Homer, M.,

and Huerta, R. Chemical gas sensor drift compensation

using classifier ensembles. Sensors and Actuators B:

Chemical, s 166–167:320–329, 05 2012. doi: 10.1016/j.

snb.2012.01.074.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:

Hardware-aware automated quantization with mixed pre-

cision. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 8612–8620,

2019.

Warden, P. Speech commands: A dataset for limited-

vocabulary speech recognition, 2018a.

Warden, P. why the future of machine learning is tiny, 2018b.

URL https://petewarden.com/2018/06/11/

why-the-future-of-machine-learning-is-tiny/.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. Hello edge:

Keyword spotting on microcontrollers, 2017.

