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ABSTRACT  

 

Can the sorption mechanism be proven by fitting an isotherm model to experiment? Such a 

question arises because (i) multiple isotherm models, with different assumptions on sorption 

mechanisms, often fit an experimental isotherm equally well, (ii) some isotherm models (such 

as BET and GAB) fit experimental isotherms that do not satisfy the underlying assumptions of 

the model, and (iii) some isotherms (such as Oswin and Peleg) are empirical equations that do 

not have a well-defined basis on sorption mechanisms. To overcome these difficulties, we 

propose a universal route of elucidating the sorption mechanism directly from an experimental 

isotherm without an isotherm model, based on the statistical thermodynamic fluctuation theory. 

We have shown that how sorbate-sorbate interaction depends on activity is the key to 

understanding the sorption mechanism.  Without assuming adsorption sites and planer layers, 

an isotherm can be derived which contains the Langmuir, BET, and GAB models as its special 

cases. We have constructed a universal approach applicable to adsorption and absorption, solid 

and liquid sorbents, and vapour and liquid sorbates, and demonstrated its efficacy using the 

humidity sorption isotherm of sucrose from both the solid and liquid sides.  

 

INTRODUCTION 

 

Sorption isotherms play an important role in all aspects of our daily lives from food,1–3 

clothing,4 and building,5–7 as well as in diverse scientific areas, such as biomolecules and 

colloids,8 activated carbons,9,10 nanoparticles,11 and aerosol.12 Understanding the molecular 

interactions underlying an isotherm is crucial.  

 

However, there are more than 80 different isotherm models published so far, each lying on a 

spectrum between empirical and physical.13–18 The empirical models (such as the Oswin19 and 

Peleg20,21) do not have a well-defined physical basis, and despite their practical value, no 

insight on adsorption mechanism can be gained by fitting such a model to an experimental 

isotherm. The physical models (such as the Langmuir,22 BET,23,24 and GAB25–27) are founded 

on assumed adsorption mechanisms, such as adsorption sites, layers, their numbers, and 

binding constants.13–18 However, some of the most popular physical models have been applied 

routinely beyond their basic assumptions and premises.20 Doubts have been raised whether the 

goodness of fit is a sufficient criterion to judge the correctness of a sorption mechanism because 
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different types of models can fit an experimental isotherm equally well.20,28 In the face of these 

difficulties, the objective of this paper is threefold:  

I. to establish a universal sorption theory applicable to adsorption and absorption, solid 

and liquid sorbents, and vapour and liquid sorbates, 

II. to reveal the molecular interactions underlying an experimental isotherm as well as 

an isotherm model, and   

III. to clarify the similarity and difference between sorption and solvation  

These objectives have immediate ramifications to the use of isotherm models in the study of 

sorption. We will demonstrate that (i) the actual interpretation of the parameters calculated 

from an isotherm model may be different from what they claim to be and that (ii) the sorption 

mechanism can be clarified directly from an experimental isotherm without relying on isotherm 

models and their assumptions.    

  

A universal approach to sorption must be applicable across the traditional classifications and 

categories, such as adsorption versus absorption29 and sorbent versus solvent.30,31 Such a 

classification is founded on experimental observations and the reality of the system. Yet many 

difficulties arise across these categories. For example, the routine application of adsorption 

models23–27,32–34 to absorption phenomena20 and confusing “sorbate structure” with “solvent 
structure” in the study of “water structure”35,36 have led to confusion. In the following, we shall 

present a brief sketch of these difficulties to show that a unified theory across the classification 

boundary is indispensable for overcoming these difficulties.  

 

Adsorption versus absorption. The Brunauer–Emmett–Teller (BET),23,24 Guggenheim–
Anderson–de Boer (GAB),25–27 and Frenkel-Halsey-Hill (FHH)32–34 models were proposed to 

explain multilayer adsorption on planer surfaces. These models have been applied to fit 

sorption isotherms of far more complex systems (such as moisture on wood,6,7 powders,37 

aerosol,12 rock,38 and food1–3,39–41); difficulties have arisen when assuming these complex 

sorption phenomena are multilayer adsorption onto a plane. Recognizing the non-planer nature 

of sorbents at the core of these difficulties, the fractal nature of surfaces has been taken into 

account for the multilayer models such as the BET23,24 and FHH models.14–18 However, how 

the “fractal dimension” 𝐷 has been introduced is different from one model to another,42,43 and 

different values of 𝐷 depending on the range of sorbate vapour pressure44,45 and even the values 

of 𝐷 exceeding that of the embedding environment (i.e., 3) have sometimes been reported.18,46–

48 Furthermore, doubts have been raised on the foundations of the BET-GAB and FHH models 

themselves. The FHH model and its fractal generalization14–16 are based on an assumed 

distance variation of the “adsorption potential”,49 which, according to Dubinin, has “in itself 
no physical meaning for adsorption in micropores”.50 The monolayer assumption, one of the 

key assumptions of the BET-GAB models, has also been questioned.20 For example, water 

sorption isotherm on starch granules showed no dependence on the BET surface area;51 

discrepancies in calculated monolayer adsorption arise when different adsorption models were 

adopted;52 the same isotherm model (fractal BET) can fit different behaviour arising from 

variation of cellulose crystallinity, i.e., water adsorption without swelling or absorption with 

swelling.53 These difficulties necessitate a universal theory that applies both to adsorption and 

absorption, regardless of surface geometry such as porosity.  



 

Sorbent versus solvent. The uptake of moisture or gas by liquids and solutions has been 

studied for a long time,29,54,55 with important applications such as CO2 capture56 and moisture 

sorption in liquid food and drinks.1–3,35,39–41 However, difficulties have arisen whenever 

solvation in the solution phase was confused with adsorption onto a solid surface due to an 

apparent similarity between solvation and adsorption.30,36,57 For example, the key contribution 

to the Norrish constant, presumed to represent the “water structure” in liquid food, turned out 

to signify solute-solute interaction.35 Moreover, the osmotic stress technique,58,59 which was 

founded on an apparent analogy between preferential solvation and the Gibbs adsorption 

isotherm, misattributed the exclusion of osmolytes from protein surface to protein hydration 

increase.30,36,57 Such confusion stems from an apparent similarity between sorption and 

solvation which has been invoked for a long time.60,61 In this context, the extension of solution-

phase fluctuation to adsorption by Zimm60 and Zimm and Lundman,61 and its subsequent 

applications beyond liquid sorbents,62–66 must be re-examined.  For these reasons, a universal 

theory of sorption, which applies to solid and liquid sorbents alike, is needed.  

 

Sorbent transition. A hygroscopic powder sorbent, after a critical relative humidity called 

the deliquescence point, dissolves in water.67–72 A sharp transition in the isotherm is a signature 

of the deliquescence transition.71,72 From the solution side, the addition of more solutes (such 

as sucrose) into a liquid sorbent solidifies the system. These transitions accompany an overall 

change in the physical state of the sorbent and an overall change in molecular mobility 

manifested as the change of plasticity and viscosity, as well as caking.67–72 Even though these 

properties are dynamic rather than thermodynamic, sorption isotherm is still considered to be 

an important physical property; these common observations are rationalized often by assuming 

“that water in amorphous solids can exist both in a ‘bound’ and a ‘solvent-like’ state, with, 
perhaps, two types of ‘bound’ states”.69 Consequently, the adsorption isotherm models, which 

focus exclusively on the “bound water”, cannot say anything about the “solvent-like water” 

which is often invoked in interpretation. Since sorption isotherms play a crucial role73 in 

understanding how manufacturing conditions, such as granular size, tablet compression, 

crystallinity or coating, affect the transitions 51,74–78, a universal theory of sorption, which 

encompasses the different degrees of sorbent mobility, is necessary.  

 

Thus, our goal is to develop a universal theory of sorption that can be used for adsorption 

and absorption and solid and liquid adsorbents alike, without any limitations on surface 

geometry imposed by model assumptions or (semi-)empirical formulae.49,79 Our foundation is 

the principles of statistical thermodynamics.80,81 We have previously published a rigorous 

approach to solvation in multiple component solutions,57,82,83 to adsorption isotherm84 and 

mesoscale confinement;85 we have also clarified the similarity and difference between 

solvation and adsorption.30,31,86 A model-free quantification of solvent-solvent or adsorbate-

adsorbate interactions shed light on the molecular basis of formulation processes.84,87–89  

 

We will show that a universal theoretical framework can be applied to adsorption and 

absorption and that the sorbate-sorbate interaction plays a key role in understanding the 

functional shape of an isotherm. Similarities and differences between liquid and solid sorbents 



will be clarified (see THEORY). We will demonstrate that an isotherm that includes the 

Langmuir,22 BET,23,24 and GAB25–27 models as its special cases can be derived directly from 

sorbate-sorbate interaction without assuming adsorption sites and layers. Furthermore, the 

existing isotherm models will be repurposed purely as convenient fitting functions without their 

claimed adsorption mechanisms (see RESULTS AND DISCUSSION).  

 

THEORY 

 

Statistical thermodynamics of adsorption. Consider a phase (denoted as ∗)  consisting of 

sorbent (species 1) and sorbate (species 2). The key to studying sorption is the concept of the 

excess number for the species 𝑖,   𝑁𝑖𝑒 = 𝑁𝑖∗ − 𝑁𝑖𝐼 − 𝑁𝑖𝐼𝐼 (1) 

We are considering, in Eq. (1), the entire system, with the superscript ∗, composed of sorbate 

and sorbent in equilibrium, as well as the reference state with the superscripts 𝐼 and 𝐼𝐼. The 

reference systems 𝐼  and 𝐼𝐼  are the sorbent interior and sorbate phases, respectively, in the 

absence of an interface. Note that there is no such thing as the “interfacial phase” as a separate 
entity. Rather, the presence of the interface is quantified by the difference between the system 

and the two reference systems.30,31,80,84,90  

 

Adsorption (i.e., sorbates cannot penetrate the sorbent) and absorption (i.e., sorbates can 

move into the sorbent) are considered two subcategories of sorption.91 Therefore, we need to 

extend our previous paper on adsorption84 to incorporate absorption. To this end, we begin by 

summarizing our statistical thermodynamic foundation.84 To study surfaces (with the surface 

area 𝐴𝑆 ) without any limitations on shape and porosity, we have generalized the Gibbs 

adsorption isotherm and statistical thermodynamically and derived84  −𝛽𝐴𝑆 ( 𝜕𝛾𝜕 ln 𝑎2)𝑇 = 〈𝑁2𝑒〉 (2) 

using only the basic principles of partially open ensembles under the generalized Gibbs 

dividing surface condition,84  〈𝑁1𝑒〉 = 〈𝑁1∗〉 − 〈𝑁1𝐼〉 − 〈𝑁1𝐼𝐼〉 = 0 (3) 

applicable to any surface geometry, even in the presence of cavities and crevices. Note that 〈 〉 
denotes ensemble average.  The location of the Gibbs dividing surface is specified with Eq. (3) 

by referring to component 1. 

 

Understanding a sorption isotherm microscopically means explaining its functional shape 

(i.e., the IUPAC types) based on the underlying molecular interactions. Sorbate-sorbate 

interaction has been considered to play a key role in determining the shape of an isotherm.9,92–

95 Recently, we have shown, via rigorous statistical thermodynamics,84 that adsorbate-

adsorbate interaction can be quantified directly from an isotherm’s derivative, which is the key 

to classifying functional shapes; the activity (𝑎2) dependence of the adsorbed quantity, 〈𝑁2𝑒〉, 
is related rigorously to the adsorbate-adsorbate number correlation, as84  ( 𝜕〈𝑁2𝑒〉𝜕 ln 𝑎2)𝑇 = 〈𝑁2∗2〉 − 〈𝑁2∗〉2 − 〈𝑁2𝐼2〉 + 〈𝑁2𝐼〉2 − 〈𝑁2𝐼𝐼2〉 + 〈𝑁2𝐼𝐼〉2 

(4) 



 

When applying Eq. (2) to adsorption, we ignore absorption, i.e., 𝑁2𝐼 = 0 and consider that 

the adsorbent is composed of species 1, which does not dissolve or evaporate into phase 𝐼𝐼, 

such that 𝑁1𝐼𝐼 = 0. We postulate that the effect of an interface is confined within a finite 

distance from the surface, which we refer to as the subsystem (with volume 𝑣). Dividing the 

partially open ensemble into a local subsystem and a bulk adsorbate vapour system,84,96 we can 

rewrite Eq. (2) as  −𝛽𝐴𝑆 ( 𝜕𝛾𝜕 ln 𝑎2)𝑇 = 〈𝑛2∗ 〉 − 〈𝑛2𝐼𝐼〉 (5a) 

in terms of the difference in adsorbate number between the interfacial subsystem 〈𝑛2∗ 〉 and the 

adsorbate subsystem 〈𝑛2𝐼𝐼〉 with the same volume 𝑣.84 (Here, the lower-case characters signify 

the numbers and volume pertaining to the local subsystem.) Our results, so far, have been 

general and without restrictions. From here onwards, we shall consider the adsorption of 

vapour, because of the wealth of applications and high-quality experimental data. Since vapour 

density is much lower than that of the adsorbates at the interface, we neglect 〈𝑛2𝐼𝐼〉, therefore,  −𝛽𝐴𝑆 ( 𝜕𝛾𝜕 ln 𝑎2)𝑇 ≃ 〈𝑛2∗ 〉 (5b) 

Eq. (4) can also be written using the local subsystems,84  (𝜕(〈𝑛2∗〉 − 〈𝑛2𝐼 〉)𝜕 ln 𝑎2 )𝑇 = 〈𝛿𝑛2∗𝛿𝑛2∗〉 − 〈𝛿𝑛2𝐼𝐼𝛿𝑛2𝐼𝐼〉 
(6a) 

where 𝛿𝑛2∗ = 𝑛2∗ − 〈𝑛2∗ 〉  and 𝛿𝑛2𝐼𝐼 = 𝑛2𝐼𝐼 − 〈𝑛2𝐼𝐼〉 . Since the vapour-phase fluctuation is 

negligibly small, Eq. (6a) leads to   ( 𝜕〈𝑛2∗ 〉𝜕 ln 𝑎2 )𝑇 = 〈𝛿𝑛2∗𝛿𝑛2∗〉 
(6b) 

Note that 〈𝛿𝑛2∗𝛿𝑛2∗ 〉 is the sorbate-sorbate number correlation in the presence of the interface.  

 

  Generalization to absorption isotherms. Now we generalize Eq. (6) to the absorption 

isotherm. Our theoretical foundation is Eq. (4), which was derived under the generalized Gibbs 

dividing surface, Eq. (3). We again consider that the absorbent is composed of species 1, whose 

dissolution or evaporation into phase 𝐼𝐼 is negligible, such that 𝑁1𝐼𝐼 = 0. Just as in the case of 

adsorption, we postulate that the effect of the interface on the vapour side is confined within a 

certain distance, inside the volume 𝑣. Since there is also absorption into the absorbent, we 

divide 𝑁2∗ and 𝑁2𝐼𝐼 into  𝑁2∗ = 𝒩2∗ + 𝑁2∗′         𝑁2𝐼𝐼 = 𝑛2𝐼𝐼 + 𝑁2𝐼𝐼′ (7) 

where 𝒩2∗ is the number of absorbates in the volume 𝑉𝐼 + 𝑣 and 𝑛2𝐼𝐼 in the volume 𝑣 for the 

vapour reference system. The rest, 𝑁2∗′ and 𝑁2𝐼𝐼′, are the numbers of absorbates in the bulk. 

Because the effect of the interface on the side of phase 𝐼𝐼 is confined within the volume 𝑣, 𝑁2∗′ = 𝑁2𝐼𝐼′ 84. Following the same argument as the Eqs. (30)-(34) of Ref [84] in postulating 

that the correlation 〈𝛿𝒩2∗𝛿𝑁2∗′〉 is negligible compared to 〈𝛿𝒩2∗𝛿𝒩2∗〉 and that 〈𝛿𝑛2𝐼𝐼𝛿𝑁2𝐼𝐼′〉 is 

negligible compared to 〈𝛿𝑛2𝐼𝐼𝛿𝑛2𝐼𝐼〉, we obtain   (𝜕(〈𝒩2∗〉 − 〈𝑛2𝐼 〉)𝜕 ln 𝑎2 )𝑇 = 〈𝛿𝒩2∗𝛿𝒩2∗〉 − 〈𝛿𝑛2𝐼𝐼𝛿𝑛2𝐼𝐼〉 (8a) 



Since the vapour-phase fluctuation, 〈𝛿𝑛2𝐼𝐼𝛿𝑛2𝐼𝐼〉, is negligibly small, Eq. (8a) leads to   ( 𝜕〈𝒩2∗〉𝜕 ln 𝑎2 )𝑇 = 〈𝛿𝒩2∗𝛿𝒩2∗〉 (8b) 

Note that 〈𝛿𝒩2∗𝛿𝒩2∗〉 is the sorbate-sorbate number correlation in the presence of the sorbents.  

 

Here we have arrived at a significant conclusion: the adsorption isotherm (Eq. (6b)) and 

absorption isotherm (Eq. (8b)) have the identical functional form. The only difference is that 

Eq. (8b) has taken absorption into account whereas Eq. (6b) did not. 

 

  Understanding a sorption isotherm from underlying sorbate-sorbate interaction. We 

have established above that adsorption and absorption isotherms obey the same basic 

relationship. This means that adsorption and absorption can be analyzed in the same way, 

without any need for distinguishing between the two. We, therefore, adopt a common notation 

for a sorption isotherm.  Using 〈𝑛2〉 as the quantity of sorption, we generalize Eqs. (6b) and 

(8b) into the following universal form:  ( 𝜕〈𝑛2〉𝜕 ln 𝑎2 )𝑇 = 〈𝛿𝑛2𝛿𝑛2〉 (9a) 

Sorbate number fluctuation, 〈𝛿𝑛2𝛿𝑛2〉, determines the gradient of an isotherm when plotted 

against ln 𝑎2. Since how it increases is the main feature of an isotherm, the sorbate number 

fluctuation is the key to understanding the functional shape of an isotherm on a molecular basis.  

 

Here we introduce two alternative yet equivalent perspectives to facilitate the use of Eq. (9a) 

for interpreting an isotherm based on sorbate-sorbate interaction. The first is the excess number 

of sorbate molecules around a probe sorbate molecule, 𝑁22, defined as,30,57,84   𝑁22 = 〈𝑛22〉 − 〈𝑛2〉2 − 〈𝑛2〉〈𝑛2〉  
(9b) 

The excess number represents the net number of additional sorbates that can be found around 

a probe sorbate compared to an expectation that a probe sorbate does not affect the spatial 

distribution of sorbates. 𝑁22 has a direct link to the gradient of an isotherm, as84  (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇 = 𝑁22 + 1 
(9c) 

Eq. (9) shows that the functional shape of an isotherm is characterized by sorbate-sorbate 

interaction quantified via the excess sorbate number.  

 

The second perspective on sorbate-sorbate interaction information is the Kirkwood-Buff 

integral, 𝐺22, which is related to the excess number, as30,57,84    𝐺22𝑣 = 𝑁22〈𝑛2〉 (10a) 𝐺22 is particularly useful, because it has a microscopic interpretation via the sorbate-sorbate 

distribution function, 𝑔22(𝒓) with 𝒓 being the position vector, as30,57,84  𝐺22 = ∫ 𝑑𝒓[𝑔22(𝒓) − 1] (10b) 



Note that 𝑔22(𝒓) quantifies the sorbate-sorbate correlation in the presence of the sorbents. 𝐺22/𝑣 can be determined from the isotherm alone; to determine 𝐺22 itself, 𝑣 must be measured 

experimentally because it cannot be quantified unless there is information about surface 

thickness.  

 

The excess number and the Kirkwood-Buff integral depend not only on the direct interaction 

between a pair of sorbates itself but also on the interface and other sorbates mediating the 

interaction. 𝐺22 (and consequently 𝑁22) can either be positive or negative. When it is negative, 

the sorbates are excluded from the probe sorbate. Therefore, the excess number and the 

Kirkwood-Buff integral can handle both attractive and repulsive interactions. Defining an 

“interaction” exclusively as attractive and short-ranged has repeatedly brought confusion into 

the understanding of macromolecular solvation and conformational equilibria.30,36,57,97 

Separate theoretical treatments were necessary for binding98–100 and exclusion101,102 for a long 

time with much confusion,57,97 until a unified treatment was introduced via the excess number 

and the Kirkwood-Buff integral.30,36,57,97. An excess number and the Kirkwood-Buff integral 

are therefore universal tools for solvation and sorption alike.  

 

 

RESULTS AND DISCUSSION.  

 

Sorption into liquids and solids across deliquescence. Based on the excess number and the 

Kirkwood-Buff integral, we have established a universal language for the two different classes 

of phenomena, solvation and sorption (see THEORY). Having a universal language is useful 

especially when a sorbent goes through deliquescence. One of the main questions in solvation 

is how a solute molecule changes the solution structure, or more specifically, the solvent-

solvent interaction. For example, a long-standing mystery on the mechanism of strong, 

cooperative solubilization by hydrotropes was resolved by the enhanced hydrotrope-

hydrotrope interaction by a solute molecule, quantified via the Kirkwood-Buff 

integral.82,83,89,96,103 This is analogous to a sudden, stepwise rise in the adsorption of water on 

mesoporous carbons attributed to the water cluster formation at the interface.84 Thus, how 

sorbate-sorbate interaction is mediated by a surface is analogous to how solvent-solvent 

interaction is mediated by a solute.30,36 

 

Such an analogy between solvation and sorption necessitates an establishment of a theory of 

sorption for liquid sorbents and to compare it with solid sorbates. As before, consider, for 

simplicity, a two-component solution consisting of “sorbent” (species 1) and “sorbate” (species 
2).  In the liquid phase, it is natural to consider how the activity (or vapour pressure) of a species 

depends on solution composition to probe interactions in solution. In doing so, we choose the 

solution composition as the variable and measure the change of activity. However, while this 

perspective is suitable for studying solvation, it is different from the one more convenient for 

sorption: taking the activity (or vapour pressure) of sorbate 𝑎2 as the variable to measure the 

solution composition, 〈𝑁2〉/〈𝑁1〉. This is governed by its number fluctuation60,104, as  



(𝜕 [〈𝑁2〉〈𝑁1〉]𝜕 ln 𝑎2 )
𝑇,𝑃,𝑁1

= 1〈𝑁1〉 ( 𝜕〈𝑁2〉𝜕 ln 𝑎2)𝑇,𝑃,𝑁1 = 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝑁1,𝜇2}〈𝑁1〉  

(11) 

For clarity, throughout this paper, we denote the fixed ensemble parameters in { }. Eq. (11) can 

be rewritten as   ( 𝜕〈𝑁2〉𝜕 ln 𝑎2)𝑇,𝑃 = 〈(𝛿𝑁2)2〉{𝑇,𝑃,𝑁1,𝜇2} (12) 

 

Sorption into liquid (Eq. (12)) is analogous to sorption in/on solids (Eqs. (4) and (8)). Despite 

the apparent similarity, there is a subtle yet fundamental difference between liquid and solid 

sorbents: both 𝑇 and 𝑃 are kept constant in the sorption into liquids (Eq. (11)) whereas 𝑇 is the 

sole constant in the sorption in solids (Eqs. (4) and (8)). This difference comes directly from 

the Gibbs phase rule; a two-component solution in a single phase has one more degree of 

freedom than a (sorbent-sorbate) two-phase system.30,31,86,89 Consequently, the Gibbs dividing 

surface is introduced for solid sorbents whereas there is no dividing surface for the liquid 

sorbent.  

 

We must bear in mind that Eq. (12) pre-supposes a single phased mixture of sorbate and 

liquid sorbent. Therefore, if sorbate and liquid sorbent do not mix and the sorbate (adsorbate, 

in this case) forms a film on the liquid sorbent surface, the system is in two phases and the 

adsorption theory for solid sorbates should be applied, instead of Eq. (12). On the other hand, 

when sorbates change sorbent-sorbent interaction, as in the case of swelling, we use Eq. (12). 

Thus, rather than the “liquid” and “solid” states of the sorbent, the degrees of freedom and the 

existence of the Gibbs dividing surface are the fundamental considerations when we have to 

choose between Eq. (12) and Eqs. (4) and (8) as the basis of analysis. (In this paper, we will 

only analyze solid sorbents with 2 degrees of freedom and liquid sorbents with 1 degree of 

freedom.)  

 

To understand the solution-phase interactions, we need to rewrite Eq. (11) using the local 

subsystems. Note that Eq. (11) is in a size-invariant form.105 Therefore, the relative fluctuation 

can be rewritten using a subsystem (still considered macroscopic), as105 1〈𝑛1〉 ( 𝜕〈𝑛2〉𝜕 ln 𝑎2)𝑇,𝑃,𝑛1 = 〈(𝛿𝑛2)2〉{𝑇,𝑃,𝑛1,𝜇2}〈𝑛1〉{𝑇,𝑃,𝑛1,𝜇2}  
(13) 

There is now an apparent similarity between Eq. (13) and the sorption isotherm expressed by 

local subsystems (Eq. (9)). This can be made clearer by rewriting Eq. (13) as  (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇,𝑃,𝑛1 = 𝑁22′ + 1 
(14a) 

𝑁22′ + 1 = 〈(𝛿𝑛2)2〉{𝑇,𝑃,𝑛1,𝜇2}〈𝑛2〉{𝑇,𝑃,𝑛1,𝜇2}  
(14b) 

 



Even though sorption in liquid, expressed via the subsystem (Eq. (14)), seems similar to 

sorption in solid (Eq. (9)), there is a fundamental difference between the two. The key is the 

difference in the ensembles adopted by the two. In liquids, not only the number of sorbates but 

also the volume of the {𝑇, 𝑃, 𝑛1, 𝜇2} subsystem fluctuates in Eq. (14b), because 𝑃, instead of 𝑣, 

is kept constant.105 Such a sorbate-sorbate number correlation must be observed separately 

from the volume fluctuation. Converting the {𝑇, 𝑃, 𝑛1, 𝜇2}  subsystem to a {𝑇, 𝑣, 𝑛1, 𝜇2} 

subsystem is necessary to single out the number fluctuation. This conversion is facilitated by 

our recent algebraic method based on the invariance of concentration fluctuation, in this case 

of 𝐶2 = 𝑛2/𝑛1, as105  𝑛2 + (𝛿𝑛2){𝑛1}𝑛1 = 𝑛2 + (𝛿𝑛2){𝑣}𝑛1 + (𝛿𝑛1){𝑣} = 𝐶2 (1 + (𝛿𝑛2){𝑣}𝑛2 − (𝛿𝑛1){𝑣}𝑛1 + 𝑂 (1𝑣)) 
(15a) 

which can be simplified as105 (𝛿𝑛2){𝑇,𝑃,𝑛1,𝜇2} = (𝛿𝑛2){𝑇,𝑣,𝜇1𝜇2} − 𝐶2(𝛿𝑛1){𝑇,𝑣,𝜇1,𝜇2} + 𝑂(1) (15b) 

Using Eq. (15b), Eq. (14) can be rewritten as  (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇,𝑃,𝑛1 = 〈(𝛿𝑛2)2 〉{𝑇,𝑣,𝜇1,𝜇2}〈𝑛2〉{𝑇,𝑣,𝜇1,𝜇2} − 2 〈𝛿𝑛1𝛿𝑛2〉{𝑇,𝑣,𝜇1,𝜇2}〈𝑛1〉{𝑇,𝑣,𝜇1,𝜇2}  

+𝐶  〈(𝛿𝑛1)2 〉{𝑇,𝑣,𝜇1,𝜇2}〈𝑛1〉{𝑇,𝑣,𝜇1,𝜇2} + 𝑜(1) 

(16) 

 

Eq. (16) is the fundamental relationship for absorption in liquid sorbates. To clarify its 

physical meaning, we rewrite Eq. (16) in a manner analogous to sorption to solid sorbents, i.e., 

Eq. (9a). To do so, let us use Eq. (9b) again as the definition for the excess numbers, through 

which Eq. (16) becomes   (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇,𝑃,𝑛1 = [(𝑁22 + 1) − 2𝑁12 + 𝐶2(𝑁11 + 1)] (17a) 

where 𝑁𝑖𝑗 was defined (Eq. (9b)) as the excess number of species 𝑗 around species 𝑖. Using the 

Kirkwood-Buff integral, 𝑁𝑖𝑗 = 𝑐𝑗𝐺𝑖𝑗, Eq. (17a) is transformed into a well-known expression in 

the Kirkwood-Buff theory of solutions104,106 that was used previously as the foundation for 

studying the water activity concept in liquid food:35  (𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇,𝑃,𝑁𝑠 = 𝑐2(𝐺22 + 𝐺11 − 2𝐺12) + 1 + 𝐶2 
(17b) 

where 𝑐2 = 𝑁2/𝑉 is concentration.  

  

What, then, is the difference between liquid and solid sorbents? The crucial difference is the 

presence of sorbent-sorbent (𝐺11) and sorbate-sorbent (𝐺12) interactions, as can be seen by 

comparing Eq. (17) with Eq. (9). Therefore, the following set of transformations (Eq. (18)) 

converts the isotherm for liquid sorbents (Eq. (16)) to the one for solid sorbents (Eq. (9)):  〈𝛿𝑛1𝛿𝑛2〉{𝑇,𝑣,𝜇1,𝜇2} = 0           〈(𝛿𝑛1)2 〉{𝑇,𝑣,𝜇1,𝜇2} = 0    (18a) 

or equivalently,    (𝜕〈𝑛1〉𝜕𝜇2 )𝑇,𝑣,𝜇1 = 0          (𝜕〈𝑛1〉𝜕𝜇1 )𝑇,𝑣,𝜇2 = 0    (18b) 



Eq. (18) shows that a liquid sorbent transforms to a solid sorbent when the number fluctuation 

involving sorbent molecules diminishes. From the solid side, the deliquescence transition 

introduces the fluctuations involving sorbent numbers and transforms the sorption theory for 

solids (Eq. (9)) to liquids (Eq. (17)). Since the number fluctuations (Eq. (18)) distinguishes a 

solid sorbent and a liquid sorbent, a sorption theory for liquids cannot be applied directly to 

solids (Appendix A).  

 

Thus, we have established a theory of sorption for solid and liquid sorbates and clarified the 

transformation from one to another. Now we compare solid versus liquid sorbents, taking 

amorphous sucrose as an example. On the solid side, we use the sorption isotherm at 25 oC as 

modelled by the empirical Oswin isotherm model between 𝑎2 = 0.3 and 0.85.107 Using the 

Oswin model as a fitting equation, the sorbate-sorbate (water-water) interaction can be 

calculated via statistical thermodynamics (Eq. (9)). See Appendix B for more details about this 

procedure. Figure 1 shows the change of water-water interaction with 𝑎2. The deliquescence 

point of sucrose is around 𝑎2 = 0.85 .71,72 The discontinuity of 〈𝑛2〉  at this point72 is not 

captured by the Oswin model which can exhibit divergence only at 𝑎2 → 1 (see Appendix A). 

The increase of 𝑁22  with 𝑎2  shows that sorbates, despite their increase in quantity, do not 

behave like bulk water (in which case, 𝑁22 ≃ −1108).   

 

Let us compare the moisture sorption isotherm of amorphous sucrose to that of aqueous 

sucrose solutions. We have analyzed the latter in detail in our previous papers,35,109 based on 

the Norrish constants2,110 in the dilute sucrose region35 and on the activity model of Mathlouthi 

and Starzak111 in combination with the density data of sucrose-water mixture112 in the 

concentrated sucrose region.109 The most important conclusion was that the sorbent-sorbent 

interaction is neither negligible nor minor, except in the concentrated region. This is 

demonstrated via the water-water, water-sugar and sugar-sugar Kirkwood-Buff interactions (as 

in Eq. (17b)); what makes the Norrish constant (essentially 𝐺22 + 𝐺11 − 2𝐺12 in terms of the 

Kirkwood-Buff integrals) large and positive is the sorbent-sorbent (sugar-sugar) interaction, 

not the sorbate-sorbate (water-water) interaction.35 This illuminates a fundamental difference 

between absorption into a solid versus into a liquid: the mobility of the sorbent molecules.  

 

  Connecting sorbate-sorbate interaction to an isotherm model. Generalizing the Langmuir, 

BET, and GAB models beyond surface adsorption onto a plane. Here we demonstrate that an 

isotherm model, which incorporates the Langmuir,22 BET,23,24 and GAB25–27 models as its 

special cases, can be derived without assuming adsorption sites and layers. Such a 

generalization will serve as the justification for the routine application of these models beyond 

planer multilayer adsorption1–3,20,39–41,51 with an additional benefit of increased freedom in the 

allowed range of parameters. Our foundation is the dependence of sorbate-sorbate interaction 

(quantified via 𝐺22/𝑣) on sorbate activity, 𝑎2. (The sorbate-sorbate interaction, as explained in 

the THEORY section, is under the influence of the sorbents.) Our starting point is the 

combination of Eqs. (9c) and (10a), which yields  



(𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 )𝑇 − 1〈𝑛2〉 = 𝐺22𝑣  

(19a) 

This can be simplified as  ( 𝜕𝜕 ln 𝑎2 1〈𝑛2〉 )𝑇 + 1〈𝑛2〉 = − 𝐺22𝑣  
(19b) 

Eq. (19b) is a first-order differential equation. To solve this equation, we rewrite Eq. (19b) as  ( 𝜕𝜕 ln 𝑎2 [ 𝑎2〈𝑛2〉] )𝑇 = − 𝐺22𝑣 𝑎2 
(19c) 

The general solution of Eq. (19c) is given as  〈𝑛2〉 = 𝑎2𝐴 − ∫ 𝐺22𝑣 𝑑𝑎2 (20) 

where 𝐴 is a constant of integration.  

 

With the help of Eq. (20), a sorption isotherm model can be constructed directly from the 

dependence of sorbate-sorbate interaction on its activity. Here we adopt the following simple 

relationship:  𝐺22𝑣 = 𝐵 + 𝐶𝑎2 + ⋯ 
(21a) 

with 𝐵  and 𝐶  as constants. The coefficient 𝐵  is the 𝑎2 → 0  limit of 
𝐺22𝑣 , which is also the 〈𝑛2〉 → 0 limit as can be seen from Eq. (20). The coefficient 𝐶 comes from sorbate-sorbate-

sorbate correlation (Appendix C). When 𝐶 = 0, there is no three-body contribution in 𝐺22. In 

general, an expansion up to the 𝑛th order of 𝑎2 must be considered in Eq. (21a) if 𝑛 body 

correlation between sorbates needs to be considered. Taking up to the first order of 𝑎2, we 

obtain the following isotherm from Eq. (21a) via Eq. (20):   〈𝑛2〉 = 𝑎2𝐴 − 𝐵𝑎2 − 𝐶2 𝑎22 (21b) 

with the following form suitable for determining the constants from experimental data:  𝑎2〈𝑛2〉 = 𝐴 − 𝐵𝑎2 − 𝐶2 𝑎22 
(21c) 

A fitting equation similar to Eq. (21c) has been used widely to determine the parameters for 

several sorption isotherm models, which are closely related to GAB and BET models.23–27,113 

Such models have been classified as the “homogeneous sorption models” in the catalogue of 

sorption models by van den Berg and Bruyn.13 In this sense, Eq. (21b) is considered to be a 

statistical thermodynamic generalization of the homogeneous sorption model.  

 

Eq. (21b) was derived from the 𝑎2-dependence of the sorbate-sorbate interaction (Eq. (21a)) 

without any assumptions on adsorption layers. It contains the Langmuir22, BET,23,24 and  GAB 
25–27 models as its special cases as we demonstrate below. The Langmuir isotherm (with the 

monolayer capacity 𝑛𝑚 and the Langmuir constant, 𝐾𝐿),   〈𝑛2〉 = 𝑛𝑚𝐾𝐿𝑎21 + 𝐾𝐿𝑎2 
(22a) 



corresponds to the special case, 𝐴 = 1𝑛𝑚𝐾𝐿, 𝐵 = − 1𝑛𝑚, and 𝐶 = 0, of Eq. (21b). Consequently, 

the Kirkwood-Buff integral for the Langmuir model,  𝐺22𝑣 = 𝐵 = − 1𝑛𝑚 
(22b) 

is a constant independent of activity. The negative sign of 𝐺22 shows that it is dominated by 

the constant excluded volume, 
𝑣𝑛𝑚 , due to the repulsive interaction between sorbates. The 

monolayer-based interpretation of Eq. (22b) is simply to consider − 1𝐵 = 𝑛𝑚 as the constant 

number of “binding sites”. 
 

The dominance of the repulsive interaction is in contrast to the statement that there are no 

lateral interactions (i.e., adsorbates do not interact with one another) in the Langmuir 

model.49,79,114 Not only attractive but also repulsive interactions should be incorporated into the 

“sorbate-sorbate interaction” that determines the functional shape of an isotherm. 𝐶 = 0 means 

that the Langmuir model neglects the contribution from higher-order correlations between 

sorbates. Thus, the Langmuir model can be derived from the dominance of the repulsive 

sorbate-sorbate interactions incorporated up to 2 body correlation without using the monolayer 

adsorption on a planar interface.  

 

Next, we turn to demonstrate that the BET and GAB models are the special cases within our 

isotherm, Eq. (21b). The GAB model, with the BET parameter 𝐶𝐵 and the GAB parameter 𝐾𝐺, 

has the following form:   〈𝑛2〉 = 𝐶𝐵𝑛𝑚𝐾𝐺𝑎2(1 − 𝐾𝐺𝑎2)[1 + (𝐶𝐵 − 1)𝐾𝐺𝑎2] (23a) 

in which the BET model is its special case, 𝐾𝐺 = 1. Comparing Eq. (23a) with Eq. (21b) shows 

that the GAB model is the special case of Eq. (21b) with 𝐴 = 1𝐶𝐵𝐾𝐺𝑛𝑚, 𝐵 = 2−𝐶𝐵𝐶𝐵𝑛𝑚, and 𝐶 =2𝐾𝐺(𝐶𝐵−1)𝐶𝐵𝑛𝑚 . This leads to the following expression for the Kirkwood-Buff integral of the GAB 

model:  𝐺22𝑣 = 𝐵 + 𝐶𝑎2 = 1𝑛𝑚 [2𝐾𝐺(𝐶𝐵 − 1)𝐶𝐵 𝑎2 − 𝐶𝐵 − 2𝐶𝐵 ] 
(23b) 

From Eqs. (23a) and (23b), the excess number can also be expressed as,   𝑁22 = 𝐾𝐺𝑎21 − 𝐾𝐺𝑎2 − 𝐾𝐺(𝐶𝐵 − 1)𝑎21 + 𝐾𝐺(𝐶𝐵 − 1)𝑎2 
(23c) 

 

Eq. (23b) shows that the sorbate-sorbate Kirkwood-Buff integral of the GAB model is a 

linear function of 𝑎2 and a special case of Eq. (21b). Eq. (21b) does not have restrictions on 

the range of values for 𝐴, 𝐵, and 𝐶  introduced by the multilayer adsorption model and is 

considered to be a generalization of the GAB and BET models. Eq. (21b) was derived solely 

from an 𝑎2-dependence of 𝐺22, and incorporating up to the first order of 𝑎2 is equivalent to the 

presence of a three-body correlation between sorbates which is independent of 𝑎2 (see 

Appendix C). This foundation is more general than the monolayer and multilayer adsorption 

mechanism assumed by the GAB model and serves not only as a justification of the widespread 



use of the GAB model beyond its original model assumptions but also to allow a wider range 

of values for the fitting parameters, 𝐴, 𝐵, and 𝐶. Moreover, the fitting at higher 𝑎2 may be 

refined, if necessary, by incorporating higher-order terms of 𝑎2  into the polynomial, and 

consequently, the multiple-body correlations between sorbates.  

 

  Sorbate-sorbate interaction determines the functional shape of an isotherm regardless of the 

fitting models. Here we show that the calculated sorbate-sorbate interaction is independent of 

isotherm models and their assumptions, even when multiple different models can fit an 

isotherm equally well. However, the limiting behaviour of the isotherm at the 𝑎2 → 0 limit 

should also be considered, which must satisfy the condition imposed by Henry’s law.115,116   

 

Such a consideration was inspired by an important recent review by Peleg,20 who raised 

questions on the monolayer concept for water. Peleg suggested that “isotherm’s shape alone 
does not contain enough information to uniquely identify and quantify the underlying sorption 

mechanisms20 because multiple isotherm models, each assuming different adsorption 

mechanism or none, can often fit an experimental isotherm equally well.20,21,117. Indeed, the 

purely empirical Peleg model 21 can fit some experimental data as closely as the BET and GAB 

models.20 The Peleg model, with its 4 parameters, 𝐴𝑃, 𝐵𝑃 , 𝛼𝑃 , and 𝛽𝑃, has the following form:  〈𝑛2〉 = 𝐴𝑃𝑎2𝛼𝑃 + 𝐵𝑃𝑎2𝛽𝑃 (24) 

Using Eq. (9), we obtain the following expression for the sorbate-sorbate interaction:  𝑁22 = 𝐴𝑃(𝛼𝑃 − 1)𝑎2𝛼𝑃 + 𝐵𝑃(𝛽𝑃 − 1)𝑎2𝛽𝑃𝐴𝑃𝑎2𝛼𝑃 + 𝐵𝑃𝑎2𝛽𝑃  
(25) 

Using Eqs. (24) and (25), the Kirkwood-Buff integral can be expressed as   𝐺22𝑣 = 𝐴𝑃(𝛼𝑃 − 1)𝑎2𝛼𝑃 + 𝐵𝑃(𝛽𝑃 − 1)𝑎2𝛽𝑃(𝐴𝑃𝑎2𝛼𝑃 + 𝐵𝑃𝑎2𝛽𝑃)2  
(26) 

 

Figure 2 shows the moisture sorption isotherm, 〈𝑛2〉 against 𝑎2, of potato starch from the 

fitting using the GAB and Peleg models.21 Comparative goodness of fit by both models for the 

experimental isotherm data21 (Figure 2) leads to a good agreement of sorbate-sorbate (water-

water) interaction 𝑁22  between the two models, except for 𝑎2 ≃ 0  (Figure 3). Note that 

Henry’s Law imposes the limiting behaviour 𝑁22 → 0 must be satisfied at 𝑎2 → 0. This can be 

demonstrated by starting from a linear relationship with a constant 𝑘𝐻, 〈𝑛2〉 = 𝑘𝐻𝑎2, which 

reflects the proportionality between the sorbate quantity (〈𝑛2〉) and the vapour pressure (𝑃 =𝑃0𝑎2, with 𝑃0 being the pressure at saturation). Substituting this linear relationship into Eq. 

(9c), we can prove that 𝑁22 = 0 in this linear region. Figure 3, therefore, show that the GAB 

model satisfies this limiting behaviour but the Peleg model does not.  

 

Despite the difference in the basic assumptions of the GAB and Peleg models, the underlying 

sorbate-sorbate interaction, expressed in terms of 𝐺22/𝑣, is very close to one another, except, 

again at 𝑎2 → 0, where the Peleg model does not satisfy Henry’s Law (Figure 4). Despite this, 

in most ranges of 𝑎2, sorbate-sorbate interactions calculated from the two very different models 



are very similar to one another. This is a demonstration of the universality of 𝑁22 and 𝐺22/𝑣, 

regardless of the assumptions made in the fitting models.   

  

  Sorbate-sorbent interaction. What the “monolayer capacity” 𝑛𝑚 calculated by the BET model 

means has been questioned.20,118 The “BET surface area”, a widely used measure of sorption, 

is calculated from 𝑛𝑚 together with the adsorbate cross sectional area and molar volume.24 

However, a wide discrepancy between the “BET surface areas” for nitrogen and water have 

been reported widely.20,118 Such an inconsistency, arising from the application of the isotherm 

model beyond its limits, yet again motivates a general statistical thermodynamic approach 

based on the expansion of the Kirkwood-Buff integral (Eq. (21b)).  

 

We have already established the physical meaning of the parameters 𝐵 and 𝐶 . Here, we 

clarify the interpretation of the parameter 𝐴. To this end, let us start from the limiting behaviour 

of Eq. (21b) at 𝑎2 → 0,  〈𝑛2〉 = 𝑎2𝐴  (27) 

The activity 𝑎2 is defined as 𝑎2 = 𝑃𝑃𝑜, where 𝑃𝑜 is the saturation pressure of vapour. Using the 

ideal gas equation of state, 〈𝑛2𝐼𝐼〉 = 𝑃𝑣𝑅𝑇  yields the number of vapour sorbates contained in 

volume 𝑣. Taking all together, Eq. (27) can be rewritten as  𝑣 〈𝑛2∗ 〉 − 〈𝑛2𝐼𝐼〉〈𝑛2𝐼𝐼〉 = 𝑅𝑇𝑃𝑜𝐴 
(28) 

Here, we have used the original expression, 〈𝑛2∗〉 − 〈𝑛2𝐼𝐼〉, instead of its abbreviation, 〈𝑛2〉, 

introduced in the THEORY section. Noting that the left-hand side of Eq. (28) is the Kirkwood-

Buff integral between the sorbate surface and sorbent, 𝐺𝑠2, so we obtain,  1𝐴 = 𝑃𝑜𝑅𝑇 𝐺𝑠2 
(29) 

Thus, the parameter 𝐴 is related to the sorbate-sorbent Kirkwood-Buff integral at the 𝑎2 → 0 

limit.  

 

The BET model is the special case of Eq. (29), in which 𝐴 = 1𝑛𝑚𝐶𝐵. Therefore, 𝐺𝑠2 can be 

expressed in terms of the BET parameters as  𝑛𝑚𝐶𝐵 = 𝑃𝑜𝑅𝑇 𝐺𝑠2 
(30) 

i.e., the product of the monolayer capacity, 𝑛𝑚, and the BET parameter, 𝐶𝐵. To determine the 

BET parameters, the gradient and intercept of the linearized plot 1〈𝑛2〉 𝑎21 − 𝑎2 = 1𝐶𝐵𝑛𝑚 + 𝐶𝐵 − 1𝐶𝐵𝑛𝑚 𝑎2 
(31) 

is combined to determine 𝑛𝑚 and 𝐶𝐵.49,79 From Eq. (30), 𝐺𝑠2 is related to the intercept of this 

plot. The independent determination of 𝑛𝑚  and 𝐶𝐵  assumes 𝐴 = 1𝐶𝐵𝑛𝑚 , 𝐵 = 2−𝐶𝐵𝐶𝐵𝑛𝑚 , and 𝐶 =2(𝐶𝐵−1)𝐶𝐵𝑛𝑚  in Eq. (21b), which leads to 𝐶 = 2(𝐴 − 𝐵) , meaning that the three-body sorbate 

interaction is expressed by sorbate-sorbent and sorbate-sorbate interactions. We emphasize 

here that the parameters 𝑛𝑚 and 𝐶𝐵 are determined by both the sorbate-sorbent and sorbate-



sorbate Kirkwood-Buff integrals. Therefore, from a Kirkwood-Buff perspective, neither 𝑛𝑚 

nor 𝐶𝐵 correspond purely to the sorbate-sorbent and sorbate-sorbate interaction. In contrast, 

since Eq. (29) does not involve any assumptions on the mode of sorption (such as adsorption, 

absorption, and surface geometry), it can attribute a physical meaning to the parameter 𝐴 in 

terms of sorbate-sorbent interaction. 

 

Extending the fluctuation theory of sorption. We have thus demonstrated that our statistical 

thermodynamic approach,84 when applied to an adsorption model, can reveal its underlying 

molecular interactions. (A further example, the Fractal FHH model,14–16 is examined in 

Appendix D.) This is an extension of our previous approach to the formulation in the solution 

phase, clarifying the molecular interactions underlying empirical models that may be different 

from what they had originally assumed.36,119–121  

 

In applying our general statistical thermodynamic theory, we have focused on relatively 

simple sorption isotherms that can be modelled via expanding the Kirkwood-Buff integral 

around 𝑎2 → 0, taking up to sorbate three-body interactions that are, of course, influenced by 

the presence of the sorbent. Sorbent surface structure has been incorporated only as an average 

in 〈𝑛2〉. How surface heterogeneity affects sorption isotherms, a question particularly important 

in microporous and mesoporous interfaces,24,93 will be addressed in a forthcoming paper. This 

requires an explicit consideration of the partition function underlying Eq. (11).84 Interpreting 

the temperature dependence of sorption is also presented in a forthcoming paper.  

 

 

CONCLUSION  

 

Attempting to understand sorption mechanism by fitting an isotherm model to experiment may 

end up inconclusive when multiple isotherm models, with different assumptions on sorption 

mechanisms,13–18 fit an experimental isotherm equally well.20 Some isotherm models (such as 

BET and GAB models23–27,32–34) are used to fit experimental systems beyond their underlying 

assumptions,20 and a discrepancy between the assumption (planer multilayer adsorption) and 

reality (often absorption with swelling) has been widely recognized in the literature.20,51,118  

 

Such difficulties can only be overcome by a universal approach to determining the sorption 

mechanism directly from an experimental isotherm. We have shown that sorbate-sorbate 

interaction, the key to understanding the functional shape (type) of an isotherm,9,92–95 can be 

quantified directly from an isotherm. We have constructed a theory applicable universally to 

adsorption and absorption,29 solid and liquid sorbents,30,31 and vapour and liquid sorbates, 

making it possible to analyze an isotherm from both sides of deliquescence transition.  

  

We have demonstrated that different isotherm models fitting to a single data does not pose 

any difficulties in interpretation; it simply leads to the same sorbate-sorbate interaction. Based 

solely on the dependence of the sorbate-sorbate Kirkwood-Buff integral on activity, we have 

constructed an isotherm, which contains the Langmuir and the GAB models as its special cases, 

directly from the Kirkwood-Buff integrals without introducing any assumptions on adsorption 



layers. Unlike adsorption models, our theory is model-free and is founded on the principles of 

statistical thermodynamics, according to which the sorbate-sorbent and sorbate-sorbate 

Kirkwood-Buff integrals play a key role in elucidating the microscopic mechanism underlying 

an isotherm. This theory will be extended to cover the temperature dependence of sorption in 

a forthcoming paper.  

 

 

APPENDICES 

 

Appendix A 

 

In the statistical thermodynamic isotherm theory of Zimm60 and Zimm and Lundberg,61 only 

sorbate-sorbate interaction is present. Their theory,  (𝜕 ln 𝑐2𝜕 ln 𝑎2)𝑇,𝑃,𝑁1 = − 𝑐2𝐺22 + 1 − 𝑘𝑇𝜅𝑇𝑐2𝑉1𝑐1  
(A.1) 

was derived from the Kirkwood-Buff theory of solutions, namely Eq. (17), in combination with 

the Gibbs-Duhem equation.60 The presence of constant 𝑇 and 𝑃 in Eq. (A.1) is different from 

the isotherm with a solid-state sorbate (Eq. (9)) in which only 𝑇  is kept constant. In the 

derivation of Eq. (A.1) from Eq. (17), 𝐺11  and 𝐺12  were converted to 𝜅𝑇  (the isothermal 

compressibility) and 𝑉1  (partial molar volumes of the species 1 and 2)60 via the Gibbs-Duhem 

equation. This means that (i) Eq. (A.1) presupposes a single-phase solution31,84 and (ii) 𝐺12 and 𝐺22 do not appear in the Zimm theory but are contained implicitly in 𝑉1 and 𝜅𝑇. Therefore, the 

Zimm theory of adsorption is valid only for liquid sorbents, despite many cases of its 

applications to solid sorbents.  

 

Appendix B 

 

The Oswin model19 is a purely empirical relationship based on the Pearson Type XII 

distribution.122 Hence, it does not assume any underlying mechanism of adsorption on a 

molecular basis. This model, with the parameters 𝐴 and 𝐵, can be expressed as   〈𝑛2〉 = 𝐴 ( 𝑎21 − 𝑎2)𝐵
 

(B.1) 

Using Eq. (9a), we obtain the following expression for sorbate-sorbate interaction:   𝑁22 = 𝜕 ln〈𝑛2〉𝜕 ln 𝑎2 − 1 = 𝑎2 + (𝐵 − 1)1 − 𝑎2  
(B.2) 

The divergence of 〈𝑛2〉 and 𝑁22, according to the Oswin model, takes place only at 𝑎2 → 1.  

 

Appendix C 

 

Here we show the physical interpretation of the parameters 𝐶 in Eq. (21), expressed as   𝐶 = 1𝛽𝑣𝑎2 𝜕𝐺22𝜕𝜇2  
(C.1) 



where the Kirkwood-Buff integral is expressed using the inhomogeneous ensemble, 〈𝑛2〉2 , 

which is the ensemble average of 𝑛2 in the system with a fixed 𝑛2 molecule, as   𝐺22 = 𝑣 〈𝑛2〉2 − 〈𝑛2〉〈𝑛2〉  
(C.2) 

Combining Eqs. (C.1) and (C.2),  𝜕𝐺22𝜕𝜇2 = 𝑣〈𝑛2〉 𝜕(〈𝑛2〉2 − 〈𝑛2〉)𝜕𝜇2 − 𝛽𝑣 〈𝑛2〉2 − 〈𝑛2〉〈𝑛2〉 〈𝛿𝑛2𝛿𝑛2〉〈𝑛2〉  
(C.3) 

The first term of Eq. (C.3) can be evaluated, using the Eq. (B10) of Ref [82] in the absence of 

the species 1, as  𝑣〈𝑛2〉 𝜕(〈𝑛2〉2 − 〈𝑛2〉)𝜕𝜇2 = 𝛽(〈𝛿𝑛2𝛿𝑛2〉2 − 〈𝛿𝑛2𝛿𝑛2〉) 
(C.4) 

Note that 〈𝛿𝑛2𝛿𝑛2〉2 − 〈𝛿𝑛2𝛿𝑛2〉 signifies the increase in sorbate-sorbate correlation caused 

by the presence of a fixed sorbate molecule. Eq. (C.4) therefore represents the three-body 

correlation involving sorbates. The second term of Eq. (C.3), using the definitions of the 

Kirkwood-Buff integral (Eqs. (C.2), (9b), and (10a)), as  𝛽𝑣 〈𝑛2〉2 − 〈𝑛2〉〈𝑛2〉 〈𝛿𝑛2𝛿𝑛2〉〈𝑛2〉 = 𝛽𝐺22(𝑁22 + 1) 
(C.5) 

Combining Eqs. (C.4) and (C.5), we obtain  𝐶 = 1𝑣𝑎2 [(〈𝛿𝑛2𝛿𝑛2〉2 − 〈𝛿𝑛2𝛿𝑛2〉) − 𝐺22(𝑁22 + 1)] (C.6) 

Eq. (C.6) shows that 𝐶 is a difference between three-body and two-body correlations.  The 

expansion up to the first order of 𝑎2 is possible in Eq. (21) when 𝐶 is a constant independent 

of 𝑎2.   

 

Appendix D 

 

Here we calculate the sorbate-sorbate interaction underlying the Fractal FHH model.14–16 This 

model, which has the two constants, 𝑛𝑚 and 𝐷, is expressed as  〈𝑛2〉 = 𝑛𝑚(−𝑅𝑇 ln 𝑎2)𝐷−3 (D.1) 

where 𝐷 , according to this model, is the fractal dimension between 2 and 3 (embedding 

system). To substitute this equation into Eq. (9c), we rewrite Eq. (D.1) as  ln〈𝑛2〉 = (𝐷 − 3) ln(−𝑅𝑇 ln 𝑎2) + ln 𝐵 (D.2) 

Then the fluctuation theory yields 𝑁22 + 1 = 3 − 𝐷(− ln 𝑎2) 
(D.3) 

Eq. (D.3) is a self-similar relationship.  

 

Let us clarify the physical picture underlying Eq. (D.3). To do so, let us note that Eq. (D.1) 

has been justified based on a macroscopic approach and a microscopic lattice model.15 Both 

justifications assume the structure of adsorbates identical to the bulk solvent.15 For a bulk 

solvent, the Kirkwood-Buff theory yields 𝑁22 ≃ −1, which is equivalent to the Gurvitsch rule 

for adsorbate density.108 This is satisfied only at 𝐷 = 3  (Eq. (D.3)) when the adsorbate 

dimension is the same as that of the embedding system. At 𝐷 = 2, when the original FHH was 



derived, the fluctuation diverges as the increase of 𝑎2 or 〈𝑛2〉, contradictory to that of bulk 

solvent as assumed by the FHH model. Thus, the “fractal dimension” 𝐷,14–16,42,123,124 is, in fact, 

a parameter governing how adsorbate-adsorbate interaction, 𝑁22, depends on the adsorption 

potential, −𝑅𝑇 ln 𝑎2.  
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Figure 1. Water-water interaction, 𝑁22, underlying the moisture sorption isotherm of sucrose 

against the activity of water vapour, 𝑎2, calculated from the reported fit to the Oswin model 

(Appendix A) with the parameters 𝐴 = 10.7708 and 𝐵 = 0.8284, with an average error of 

1.41 % between 𝑎2 = 0.3  and 0.85107 (see Fig. 429 and Table 1 therein). The blue line 

represents the deliquescence point of sucrose at 𝑎2 = 0.85.71,72  

 

  



Figure 2. Moisture sorption isotherms of potato starch calculated from the GAB model (black 

line, Eq. (23c)) and the Peleg model (red line, Eq. (25)), using the fitting parameters provided 

by Peleg.21 The units of 〈𝑛2〉 is % dry basis.  

  

  



 

Figure 3. Comparison of water-water interaction expressed via the excess number, 𝑁22 , 

calculated from the GAB model (black line, Eq. (23c)) and the Peleg model (red line, Eq. (25)) 

for the moisture sorption isotherm of potato starch, using the fitting parameters provided by 

Peleg.21 

  



 

Figure 4. Comparison of water-water interaction expressed via the Kirkwood-Buff integral, 𝐺22/𝑣, calculated from the GAB model (black line, Eq. (23b)) and the Peleg model (red line, 

Eq. (26)) for the moisture sorption isotherm of potato starch, using the fitting parameters 

provided by Peleg.21 The units are (% dry basis)-1.  
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