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Abstract. Counterfactual examples can be used to explain a specific
clinical prediction from a deep learning model by identifying what kind
of feature changes would produce a different result, i.e. flipping the pre-
diction’s classification. On-going research seeks to refine the metrics for
discovering counterfactual examples, given a specific input to a deep
learning model. Our work enhances this by using feature importance to
reveal how much individual feature changes in the counterfactual exam-
ple contribute to flipping the prediction’s classification, compared with
the original. Our approach does not depend on the specific metrics used
for generating the counterfactual examples, so it is general. It can be used
either to gain further insight when the counterfactual examples have al-
ready been generated or to influence the generation of the counterfactual
examples. We illustrate this novel approach with a healthcare example.

Keywords: Explainability · Deep Learning · Counterfactual Examples.

1 Introduction

Clinical predictions based on Machine Learning (ML) are having an increasingly
profound impact on the safety and quality of healthcare services [10], e.g. by
recommending treatments. Our focus in this paper is on using explainability for
ML-based systems to assist a clinician in achieving a desired healthcare goal.

Much work on explainability for ML-based models focuses on feature im-
portance explanations, which score or rank the input features, conveying the
relative importance of each input feature to the model output (or prediction)
[7]. However, this does not help model users to understand what they should do
in order to achieve a desired goal. More recently, Wachter et al [12] introduced
counterfactual explainability which produces counterfactual examples that iden-
tify what changes in inputs to the ML model would be needed to reverse (or
“flip”) the ML model prediction. In this paper, we are interested in identifying
changes in ML model inputs or patient conditions, that would enable a clinician
to achieve a desired goal for a given patient.

The counterfactual examples should be close to the initial inputs to the model
as smaller changes from the initial inputs are more likely to be achievable. Thus
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the approach should measure how far the predicted outcome of the counterfac-
tual is from the desired outcome and the distance from the counterfactual to the
initial input. When there are many features, searching for counterfactuals which
combine changes in multiple inputs is computationally expensive, so it is nec-
essary to find efficient solutions and to make simplifying assumptions, e.g. that
the effects of small changes in inputs are additive in order to flip the prediction.

In some situations, it is desirable to provide a set of diverse counterfactuals,
e.g. alternative changes in treatment, so that a user can choose which one to
implement [5]. Our work builds on this idea and seeks to provide more insight into
the different counterfactual examples. Specifically, our work enhances the value
of counterfactual explanations for deep learning classifiers by revealing how much
each input feature change in the counterfactual example contributes to flipping
the decision. This novel combination of diverse counterfactual explanations and
feature importance gives insight that enables users to choose which alternative
to implement – thus making the ML models more actionable.

2 Background

Counterfactual explanations have been studied in philosophy and psychology and
the work of Kahneman and Tversky in the 1970s and 1980s [4] presages many
aspects of counterfactuals now addressed in ML. The introduction of counterfac-
tual explanations for ML is more recent [12] but there is already some evidence
that users prefer counterfactuals over feature importance methods [1].

Counterfactual explanations were formalised by Wachter et al [12]. Generally,
given an input x, an ML classifier f , and a distance metric d, a counterfactual
explanation x′ which produces the desired output y can be generated by solving
the optimisation problem:

x′ = argmin{yloss(f(x′), y) + d(x, x′)} (1)

where yloss “pushes” the counterfactual x′ towards a different classification
than the initial input x, and the second term keeps the counterfactual x′ close
to the initial input x. There are four desirable properties for identifying good
counterfactuals [7]. First, they should achieve the desired outcome as closely as
possible, which is related to the first term in Equation 1. Second, the counter-
factuals should be as close as possible to the original instance, which is related
to the second term in Equation 1, i.e. the distance measure. Third, the coun-
terfactuals should be sparse, i.e. an ideal counterfactual needs to change only
a small number of features from the original instance. Fourth, it is desirable to
have diverse counterfactuals. On-going research seeks to incorporate these prop-
erties in the loss function and optimisation methods. An overview of existing
counterfactual explanation methods for ML is provided by Verma et al [11].

3 Method

Our method combines feature importance with counterfactuals. Specifically, it
uses DeepLIFT (Deep Learning Important FeaTures) [9] to assign a contribution
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score to each feature that changed in a counterfactual example. This can help
users to understand how much individual feature changes in the counterfactual
example contribute to flipping of the prediction’s classification compared with
the original instance. Where diverse counterfactual examples are available, the
feature importance can help to choose between them.

DeepLIFT is an additive feature attribution method, developed specifically
for use with deep neural networks (NNs). DeepLIFT compares the activation
of each neuron for the input features of interest to its “reference activation”
and attributes to each input a contribution score according to the difference.
The “reference activation” is a user-defined reference input representing a back-
ground value. In order to enhance the value of counterfactual explanations, we
assign a contribution score to each feature that changed in the counterfactual
examples using DeepLIFT where the initial or original input features provides
the “reference activation”1.

We chose DeepLIFT because it compares the counterfactual examples to the
initial instance and assigns the contribution scores according to the difference
in the predictions. In addition, it considers both positive and negative contribu-
tions of features, hence identifying the sign of dependencies between the input
features and the output. Further, the contribution score is generated by a single
backwards pass through the NN so the scores can be generated efficiently.

If there are many features in the counterfactual example that have a very low
contribution score, e.g. less than 1%, then that example might be discarded. This
facilitates the identification of sparse counterfactual examples which is particu-
larly important when choosing between diverse counterfactuals (see section-2).

4 Clinical Example

In Intensive Care Units (ICUs), mechanical ventilation is a common intervention
that consumes a significant proportion of ICU resources [13]. It is of critical
importance to determine the right time to wean the patient from mechanical
support. However, assessing a patient’s readiness for weaning is a complex clinical
task and it is potentially beneficial to use ML to assist clinicians [6]. Our example
uses Convolutional NN (CNN) based on the MIMIC-III data set [3] to predict
readiness for weaning in the next hour. 25 patient features are included in the
model as shown in Table 1. The predicted outcome is the probability of weaning
readiness in the next hour with 0.5 as the threshold (0 means wean; 1 means
continue). The CNN architecture and details of this example can be found in [2].

We illustrate our method with a patient’s record at a particular time as the
original instance to generate the counterfactual examples using DiCE (Diverse
Counterfactual Explanation) [8]. DiCE can generate multiple diverse counterfac-
tuals and works for any differentiable model. Thus it is widely applicable given
the characteristics of commonly used deep learning methods. Four counterfactu-
als are shown in Table 1 along with the original instance, where “—” means the

1 The contribution score for the features that didn’t change in the counterfactual
examples is zero, due to the way DeepLIFT works.
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Table 1. Counterfactual examples for a given original instance with contribution scores
(shown in blue and in parentheses)

Features Original instance
Counterfactual Examples
1 2 3 4

Admit Type Emergency — — — —
Ethnicity White — — — —
Gender Female — — — —
Age 78.2 — — — —
Admission Weight 86.5 — — — —
Heart Rate 119 — — — —
Respiratory Rate 24 21.9 (≤ 0.01) — 24.1 (≤ 0.01) 21.7 (≤ 0.01)
SpO2 98 — — 96 (≤ 0.01) —
Inspired O2 Fraction 100 — — — —
PEEP set 10 1.1 (-0.23) 9.2 (≤ 0.01) 2 (-0.2) 5.1 (-0.12)
Mean Airway Pressure 14 — 15.2 (≤ 0.01) — 14.8 (≤ 0.01)
Tidal Volume (observed) 541 — 540.1 (≤ 0.01) 541.9 (≤ 0.01) 541.9 (≤ 0.01)
PH (Arterial) 7.46 — 7.49 (≤ 0.01) — —
Respiratory Rate(Spont) 0 — 13.1 (-0.06) — —
Richmond-RAS Scale -1 — 0 (-0.32) — 2 (-0.37)
Peak Insp. Pressure 21 — — — —
O2 Flow 5 — 7.3 (-0.01) — 2.4 (0.02)
Plateau Pressure 19 — — — —
Arterial O2 pressure 124 123.6 (≤ 0.01) 123.6 (≤ 0.01) 123.6 (≤ 0.01) 124.3 (≤ 0.01)
Arterial CO2 Pressure 33 — — — —
Blood Pressure (systolic) 101 — — — —
Blood Pressure (diastolic) 65 — — — —
Blood Pressure (mean) 76 — — — —
Spontaneous breathing trials 0 1 (-0.06) 1 (-0.06) 1 (-0.07) —
Ventilator Mode 18 9 (-0.38) 1 (-0.44) 1 (-0.52) —
Predicted outcome 0.93 0.27 0.04 0.14 0.46

feature in the counterfactuals is not changed from the original instance. In order
to enhance the value of the counterfactual examples, each changed feature in the
counterfactuals is assigned with a contribution score (shown in parentheses and
in blue) to gain insight into how much it contributes to flipping the prediction.
For example, in Example 1, the sum of contribution score from changing PEEP
set, Spontaneous breathing trials, and Ventilator Mode is 0.67, which is the dif-
ference between the original prediction and the new prediction. The changes
of Respiratory Rate and Arterial O2 pressure in the counterfactual Example 1
contribute less than 1% each, which is negligible.

The benefit of adding the contribution score in the counterfactual examples
is twofold. First, it can help the user to choose which example to implement.
In our four counterfactual examples, Example 1 is attractive as it avoids a lot
of unnecessary changes which make little contribution by comparison with the
others, especially Example 2. Also, it helps the users to prioritise the changes
with high contribution scores. Second, it can also help to generate sparse coun-
terfactuals through post filtering. For example, we can add constraints that if
the contribution score in the counterfactuals is less than 1%, then the feature
is left unchanged. In counterfactual Example 4, when the features Respiratory
Rate and Arterial O2 pressure are kept the same as the original input, the new
prediction score is the same as the counterfactual Example 4 to two decimal
places. Thus, this will improve the sparsity of the counterfactual.
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5 Conclusion

We have introduced a novel method to enhance the value of counterfactual expla-
nations by revealing how much individual feature changes in the counterfactual
example(s) contribute to flipping the prediction’s classification. Our method uses
DeepLIFT to generate contribution scores for the features in the counterfactual
examples. We illustrated the method to show how it can help in choosing between
diverse counterfactuals generated by DiCE, potentially enabling identification of
sparse counterfactuals to implement, i.e. making the counterfactual more readily
actionable. Although we have used a specific healthcare example and DiCE for
producing the counterfactual examples to illustrate the method, we believe it
is general as it does not depend on the specific metrics used for generating the
counterfactual examples. Future work will include exploration of further exam-
ples and more extensive assessment of the method in a clinical setting.
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