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Abstract—Variational autoencoders (VAEs) are one of the most
popular unsupervised generative models which rely on learning
latent representations of data. In this paper, we extend the
classical concept of Gaussian mixtures into the deep variational
framework by proposing a mixture of VAEs (MVAE). Each
component in the MVAE model is implemented by a variational
encoder and has an associated sub-decoder. The separation
between the latent spaces modelled by different encoders is
enforced using the d-variable Hilbert-Schmidt Independence
Criterion (dHSIC) criterion. Each component would capture
different data variational features. We also propose a mechanism
for finding the appropriate number of VAE components for a
given task, leading to an optimal architecture. The differen-
tiable categorical Gumbel-Softmax distribution is used in order
to generate dropout masking parameters within the end-to-
end backpropagation training framework. Extensive experiments
show that the proposed MAVE model learns a rich latent data
representation and is able to discover additional underlying data
factors.

Index Terms—Mixtures of Variational Autoencoders, Genera-
tive deep learning, Representation learning, Optimal number of
components in mixtures.

I. INTRODUCTION

Research in deep learning focused initially on addressing

supervised classification problems, where training data are

labelled. Meanwhile, unsupervised learning aims to find the

intrinsic structure of the data without assuming any a priori

knowledge. A classic model for data representation, rooted in

statistical inference and proving excellent statistical approx-

imation properties is the Gaussian mixture model (GMM).

GMMs have been used to define Radial Basis Functions (RBF)

networks by adding a second layer of linear processing units

for supervised classification [1], [2], [3], [4]. RBF networks

have been shown to have universal approximation properties

[5], [6], [7]. The variational GMM model addresses the

uncertainty in the estimation of the mixture model parameters

by defining a lower bound on the marginal log-likelihood,

replacing the true posterior distribution with a variational

approximation, [8], [9], [10].

Lately, generative deep models have gained an increas-

ing attention from the research community. The Variational

Autoencoder (VAE) [11] consists of two convolution neural

network (CNN) components: the encoder and the decoder. The

decoder is used to approximate the conditional distribution

p(x|z) for reconstructing the data x from the estimated latent

space z. Meanwhile, the latent space is modelled by a vari-

ational distribution q(z|x), estimated by the encoder, which

aims to match the prior distribution during the training. In

relation to classical clustering methods, VAEs have considered

GMMs as prior distributions [12] and they have been used for

deep spectral clustering [13], [14]. Another generative model

is the Generative Adversarial Network (GAN) [15]. A GAN

is also composed of two networks: the generator and the

discriminator, playing a min-max game. The generator aims to

generate realistic data in order to fool the discriminator whose

task is to distinguish the real data from fake. GANs generate

better quality images with higher contrast than VAE, but

they lack an appropriate inference mechanism. Mixed GAN

and VAE architectures have been enabled with representation

learning capabilities [16], [17].

Let us consider the generative ability of deep learning

structures based on representations inferred from the latent

space. One limitation of the VAE is the fact that its latent space

is fixed after the training, with the data’ posterior probability

represented by the parameters characterizing a simple Gaus-

sian distribution. A single VAE model has a low-dimensional

latent space and can only capture a few underlying variation

factors of the data. For instance, a VAE with a two-dimensional

stochastic latent variable vector, can only learn two meaningful

representations. Furthermore, the posterior in VAEs is of a

rather simple form, and not able to capture complex structures

behind data. Other problems when using single VAEs are

overfitting and over-regularisation in data representation, [12].

In this work we address these problems by developing a

novel Mixture of Variational Autoencoders (MVAE), which

enjoys many more advantages than existing models, including

memory efficiency and performance. The contributions of this

research study are summarized as follows:

1) We propose an efficient network architecture design

for the VAE mixture model. Unlike in other mixture

models using deep networks for the decoder [12], [18],

MVAE implements the decoder of each component as

a simple non-linear mapping requiring few parameters

and low computational costs. A Dirichlet sampling pro-

cess is used for assigning mixing parameters for each

component. Unlike using a fixed symmetric Dirichlet

distribution as in other approaches [19], the proposed

sampling process finds automatically the optimal weight

of each component.

2) We propose a measure for enforcing the separability of

the latent space representation associated with each VAE

component, by using the d-variable Hilbert-Schmidt

Information criterion (dHSIC) [20]. The dHSIC measure

is always positive and can be easily integrated in the

objective function used for training MVAE deep learning

model. The dHSIC measure can also significantly relieve

the over-regularization problem which affects other VAE

based methods [11], [12], [18].
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3) We propose a new way for selecting the number of

components, during the training. A dropout mechanism

is enabled by sampling from either a Gumbel-softmax

or a Gaussian distribution. We define a loss function

which includes the dropout rate estimation, controlling

how the number of components is decided and ensuring

the end-to-end training for MVAE.

4) We show through extensive experimentation, that the

proposed mixture model learns several distinct clusters

in the latent space, which enables a rich data representa-

tion, benefiting many down-stream tasks. The proposed

model provides a competitive performance when com-

pared with the state of the art VAE frameworks.

The rest of paper is organized as follows. Related research

is discussed in Section II. The proposed model and its ob-

jective function are described in detail in Section III, while

in Section IV we present the architecture of the model and

its training algorithm. The experimental results are reported

Section V and the conclusions are drawn in Section VI.

II. RELATED WORK

A. Probabilistic mixture model

The Gaussian mixture model (GMM) is an unsupervised

learning model which can be trained using the Expectation

Maximization (EM) algorithm, [21]. Meanwhile, a varia-

tional model can be used to define a lower bound for the

marginal log-likelihood [8], [9]. The Variational Expectation-

Maximization (EM) algorithm was used to find a set of hy-

perparameters for the variational GMM model [10]. Gaussian

distributions are used to model the distribution of the means

of each Gaussian component of the mixture, Wishard distri-

butions are used for their corresponding covariance matrices,

and Dirichlet for the mixing parameters.

GMMs have been embedded into Radial Basis Functions

(RBF) networks by adding a second layer of linear processing

units [1], [2], [3], [4], [5] for supervised classification. RBF

networks have been shown to have universal approximation

properties [5], [6], [7] and were trained using backpropagation

[1], robust clustering [2], or orthogonal least squares [3].

B. The variational autoencoder (VAE)

A variational autoencoder (VAE) [11] is a probabilistic

model which learns a compressed data representation. The

VAE model is made up of two complementary networks:

encoder and decoder. VAEs have probabilistic inference mech-

anisms that can capture data’ characteristics. Let x be a data

sample vector and z a vector of stochastic latent variables.

While the encoder maximizes pη(z|x), the decoder in VAE

implements a distribution qθ(x|z), called the variational pos-

terior, where η and θ represent the parameters of the Convolu-

tion Neural Networks (CNNs) implementing the encoder and

decoder, respectively. The evidence lower bound (ELBO) on

the marginal log-likelihood in VAEs is defined as :

Ex∼X [log p(x)] ≥Ex∼X [Eqθ(z|x)[log pη(x|z)

+ log p(z)− log qθ(z|x)]]
(1)

where X is the empirical distribution characterizing the data

and pη(x|z) is a generative model implemented by the decoder

of parameters η, while p(z) is the prior distribution of the

latent space, usually a Gaussian distribution with the identity

matrix as its covariance. The re-parameterization trick [22],

[23] is used in order to allow for the gradients to be effi-

ciently transferred from the VAE’s encoder to decoder when

maximizing ELBO from (1). The first term from the right

side of (1) can be calculated using the reconstruction error,

while the others can be seen as the Kullback-Leibler (KL)

divergence between the variational posterior and the prior

distributions, encouraging the variational posterior to match

the prior distribution.

C. Representation learning in VAEs

VAEs provide an efficient inference mechanism for esti-

mating informative latent variables corresponding to the given

data. There are two measures to evaluate the quality of

approximate inference in VAEs, [22]. One consists in the

ability of the variational posterior to match the true posterior.

The second measure represents the capacity of the inference

network to yield good variational parameters. One way for

improving the quality of the approximate inference consists in

increasing the expressiveness of the approximate posteriors.

For instance, the normalizing flow [24], [25], [26], [27] was

used in VAEs in order to make the approximate posteriors

more expressive. Another way is by introducing auxiliary

variables, such as the Hierarchical Variational Models [14],

[28], the Hamiltonian variational inference [29], or using two

stochastic layers [30]. Importance sampling [31], [32] is also

used in VAEs for improving the quality of the inference.

One of the problems displayed by VAEs is that of posterior

collapse when the variational distribution closely matches the

uninformative prior for a subset of latent variables. InfoVAE

[33] aims to address the posterior collapse problem by using

a mutual information term in the objective function. Ma et

al. [34], introduced a new regularization term in the VAE

objective, called the mutual posterior-divergence, used to mea-

sure the diversity of posteriors. Zhang et al. [35], proposed

a new form of VAE, namely Wasserstein-Wasserstein Auto-

Encoders, which replaces the KL divergence term with a

new regularization term measuring the squared Wasserstein-

2 distance between the prior and the aggregated posterior.

D. Deep mixture models using VAEs

Some recent efforts propose to use mixture models based

on VAEs for learning complex structures behind the data.

Kurle et al [18] introduced a mixture model, called Multi-

Source Neural Variational Inference (MSVI) aiming to capture

probabilistic characteristics from multiple sources. However,

MSVI relies on multiple source domains and would not

encourage disentanglement between encoding distributions.

Dilokthanakul et al [12], [18] develops a model considering a

GMM as prior distribution for unsupervised clustering tasks.

This model still suffers from over-regularisation. A mixture of

VAEs defined in a fixed architecture was proposed in [36].
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In summary, existing VAE models do not learn multiple

separate representations of data, where each representation

could capture rich statistical characteristics in different ways.

One advantage for the proposed Mixture of VAEs model over

other mixture models [12], [18], is that it can learn multiple

disentangled representations by using an efficient network

architecture which requires a lower computational complexity

and a reduced number of parameters. Furthermore, instead of

using a symmetric Dirichlet distribution [12] for sampling

the mixing parameter, we model the sampling process by

using inference models, leading to optimal configuration for

the mixing parameters. We also propose a novel dropout

mechanism for the selection of MVAE’s components by using

dHSIC regularization which overcomes the over-regularization

problem characteristic in VAEs [11].

III. THE OBJECTIVE FUNCTION FOR THE MIXTURE OF

VARIATIONAL AUTOENCODERS

A single VAE has a fixed processing capacity defined

by its structure which is not able to model probabilistic

relationships characterizing complex data. In the following,

for comprehensively modelling complex data, we introduce the

Mixture of Variational Autoencoders (MVAE) model. MVAE

extends the concept of Mixtures of Gaussians [8], [10], into the

deep learning framework. MVAE model learns a collection of

separate latent spaces, extracted independently by each VAE

component of a mixture. In Section III-A we define the basic

objective function for the mixture model. In Section III-B

we discuss how various VAE components can learn different

aspects of the data, while deciding the number of components

in the MVAE model is explained in Sections III-C and III-D.

A. The underlying framework and objective function

The learning goal of the proposed mixture model is to model

a collection of separate latent spaces that capture different

aspects of data. Let us denote by pηi
(x|zi) the variational

posterior for the i-th decoder, implemented by a Convolution

Neural Network (CNN) of parameters ηi, where zi represents

the inferred stochastic latent variable vector, for i = 1, . . . ,K,

where K is the number of VAE components.

The data generation process is defined by the following

stages. The latent variable zi is yielded by the i-th encoder :

zi ∼ N (µθi(x), σθi(x)), (2)

where each encoder, is defined as a CNN of parameters θi,
and models a multivariate Gaussian function, [36].

We do not directly recover the data by using a decoder, as

in the classical VAE [11], due to the complexity of the mixture

model. Instead, we firstly consider a simple network as a sub-

decoder, implemented by a nonlinear transformation function

denoted as ti(·), i = 1, . . . ,K which outputs a variable si.

In the following, the mixing weights are sampled from a

Dirichlet distribution, Dir(a) [10], as :

{w1, . . . , wK} ∼ Dir(a), (3)

where a = {a1, a2, . . . , aK} represents its parameters, with

each entry provided by one of the encoders. The transformed

latent representations are then combined, considering the mix-

ing parameters, to form a single representation:

s =

K
∑

i=1

wisi, (4)

characterized by the constraint
K
∑

i=1

wi = 1, and considering

the inference in the latent space we have the probability for

the output variable s :

p(s|z) =
K
∑

i=1

witi

(
∫

pθi(zi|x)dx

)

(5)

where θi represents the parameters of each encoder network

i = 1, . . . ,K. Afterwards, in the mixture model, we have a

single mix-decoder for reconstructing the data x′:

x′ ∼ p(x|s). (6)

For the generation process, each i-th sub-decoder corre-

sponding to an encoder, is seen as a component of the mixture

model. Each component has its own independent inference

mechanism, which is beneficial for representation learning

when representing complex latent spaces. Let us consider an

approximate posterior qθ(z,w|x) implemented by an indepen-

dent encoder. We use the Jensen’s inequality to obtain the

variational lower bound as follows :

log p(x) = logEqθ(z,w|x)

[

p(x, z,w)

qθ(z,w|x)

]

≥ Eqθ(z,w|x)

[

log
p(x, z,w)

qθ(z,w|x)

]

.

(7)

In the following we consider the independence of the

latent variables in the joint log-likelihood p(x, z,w) =
p(x|z,w)p(z)p(w) and also q(z,w|x) = q(z|x)q(w|x) and

we replace these in (7). Then we have the upper bound on

− log pη(x) representing the mixture of the lower error bound

(MELBO) basic objective function for MVAE, where the loss :

LMELBO = −Eqθ(z,w|x)[log pη(x|z,w)]

+ Eqθ(z,w|x) log

[

p(z)

q(z|x)

]

+ Eqθ(z,w|x) log

[

p(w)

q(w|x)

]

= −Eqθ(z,w|x)[log pη(x|z,w)]

+DKL(qθ(z|x)||p(z)) +DKL(qθ(w|x)||p(w))
(8)

where p(w) and p(z) are the priors for the mixing parameters

w and for the latent variables z = {zi|i = 1, . . . ,K}, while

θ = {θi|i = 1, . . . ,K}, η = {ηi|i = 1, . . . ,K}, represent the

parameters of the networks modelling the mixture of encoders

and decoders, respectively. After explicitly expanding the basic

objective function corresponding to the mixture model we

have:

LMELBO =− Ep(s|z)[log pη(x|s)] +DKL(qθ(w|x)||p(w))

+
1

K

K
∑

i=1

DKL(qθi(z|x)||p(z))

(9)

where K is the number of components, qθi(z|x) represents the

variational modelled by one of the mixing components, defined
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by the parameters θi, and pη(x|s) is the probability of the mix-

decoder, modelled by a network defined by the parameters η,

aiming to reconstruct the data x′. Let us consider tγi
(si|z) the

function of each sub-decoder, where {γi|i = 1, . . . ,K} are the

parameters of K sub-decoders. The output of each sub-decoder

is multiplied by its corresponding mixing parameter and the

results are then summed up like in equation (5).

B. Enforcing the separation in the latent space among the

MVAE components

LMELBO from equation (9) is the basic objective function

for the mixture model, where each encoder defines its own

latent space. We enforce that various components learn distinct

aspects of the data by employing a regularization term r(z) :

LObj = LMELBO + β r(z) (10)

where LObj is the objective function of MVAE, and β is a

hyperparameter controlling the relative strength of the regu-

larization.

In the mixture model, each encoder has its own independent

inference mechanism. Nevertheless, without a regularization

mechanism, the encoders might all learn the same features,

resulting in overlaps of their characteristic latent spaces. This

happens because each associated encoder and sub-decoder

shares the same network architecture. Consequently, we should

increase the distinction between the latent representations of

various MVAE components in order to encourage them to learn

different aspects of the data.

Various measures for the regularization function r(z), from

(10), can be used for enforcing each component to learn a

distinct latent space from the others. For example, the L2

norm between the latent variables of two different encoders,

or statistical distances such as KL divergence or its symmetric

correspondent, Jensen-Shannon (JS) divergence [37] between

the probabilistic representation of the latent spaces for each

pair of encoders, can be used. In any of these measures we

calculate the differences between the latent space representa-

tions for all possible pairs of encoders from the mixture:

r(z) =

K
∑

i=1

K
∑

j=1

d(p(zi), p(zj)), i 6= j (11)

where d(·, ·) represents one of the discriminatory measures

mentioned above, evaluated between the probabilistic repre-

sentations p(zi) and p(zj), characterizing the latent space of

a pair of encoders {i, j}i,j=1,...,K .

All measures listed above are always positive, and when

considered in (10) they would be differentiated during the

Stochastic Gradient Descent (SGD) training which can lead to

derailing the convergence during the training. In order to avoid

this situation we consider a new measure of independence by

assuming that the joint probability of the latent space for the

whole mixture of VAEs is equal to the product of marginal

probabilities of the individual variables, [38]:

q(z1, z2, . . . , zK) =

K
∏

i=1

q(zi) (12)

where q(zi) is the marginal probability of the latent variable

zi, which represents the output of the i-th encoder. Let us

consider the cross-covariance operator Czi,zj
defined on the

encoders output variables zi and zj . The largest eigenvalue of

the operator Czi,zj
measures the dependence score between

the distributions defined by the latent variables zi and zj and

this should be zero for ensuring the independence of the two

latent spaces. The covariance operator is defined based on the

squared Hilbert-Schmidt norm as follows, [20] :

Czi,zj
= Ezi,zj

[k(zi), l(zj)]− Ezi
[k(zi)]Ezj

[l(zj)] (13)

where zi and zj are the latent variables produced by i-th
and j-th encoders and k(·), l(·) represent kernel functions in

the latent space, usually defined as Gaussian. The Hilbert-

Schmidt independence criterion (HSIC) [20] represents the

generalization of Frobenius norm and is defined as :

HSIC(zi, zj) = ‖Czi,zj
‖2 (14)

where Czi,zj
is provided in (13).

The definition of the cross-covariance operator can be ex-

tended for assessing the independence of d variables, similarly

to the expressions from (13) and (14), representing the latent

space {z1, z2, . . . , zd} defined by d VAE components [20],

[38]. This criterion is called dHSIC and evaluates the inde-

pendence among all K encoder components. dHSIC is null

if and only if all components zi, i = 1, . . . ,K are mutually

independent. The K components are mutually independent if

their joint distribution is equal to the product of their marginal

distributions, [39]. dHSIC can be easily integrated as the

regularization factor r(z) in the optimization function LObj ,

from (10), as follows:

LObj = LMELBO + β dHSIC (z1, z2, . . . , zK) , (15)

where LMELBO defines the inference process for MVAE and

β is the contribution of the constraint associated with dHSIC.

C. Deciding the number of VAE components using dropout

probabilities

The number of components in classical mixture models,

such as GMMs or RBF networks, was selected in various

ways. New processing units were added in [1] as long as

decreasing the classification error. Bayesian Information Cri-

terion [40], which is equivalent to the Minimum Description

Length [41], was used in the context of Variation Expectation-

Maximization algorithm in [10] for deciding the number of

mixing components. In this research study, we propose to

extend the idea of probabilistic dropout for selecting the

appropriate number of VAE components during the training

of MVAE while ensuring an efficient end-to-end training

mechanism. Each mixing component is seen as a probabilistic

node which contributes to the mixture output in the network,

according to a dropout probability.

We consider two different approaches for the dropout pro-

cedure when selecting the number of components in MVAE.

First we introduce a traditional dropout method, by sampling

a set of variables, which are either 0 or 1, according to the

dropout rate. This models a vector whose entries represent
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masking parameters for the outputs of each of the K sub-

decoders. We denote a masking vector, sampled from the

Bernoulli distribution, by m = {m1,m2, . . . ,mK}, whose

entries are used as the weights for the mixing parameters :

bi =
miwi

K
∑

j=1

mjwj

. (16)

Then, the output of each sub-decoder is multiplied by the

corresponding mixing parameter and the probability of the

variable s, for the whole MVAE model (5), becomes:

p(s|z) =
K
∑

i=1

biti

(
∫

pθi(zi|x)dx

)

. (17)

In this way, only the components contributing significantly to

the inference will be considered for the generation process

in MVAE, according to the dropout masking parameters from

(16). The variable s is characteristic of the mixed latent space,

which is then fed into the mix-decoder, yielding as outputs

the reconstructed data as in (6). The Bernoulli distribution

can be used for modelling the masking. However, this is non-

differentiable and cannot be used directly in the context of the

end-to-end backpropagation training.

We could also consider the variational Gaussian dropout for

selecting the VAE components (MVAE-Gau) as in [42]. In this

case, a dropout vector m for VAE components is sampled from

a Gaussian distribution N (1, τ), where τ = p/(1−p), and p is

the dropout rate. The sampled masking vector m is then used

directly on the mixing parameters w as in (16). The dropout

loss is taken into account in the objective function LObj from

(15) by adding the KL-divergence penalty associated with

the dropout DKL(q(m)||p(m)), measuring the KL divergence

between the variational distribution for the masking parameters

q(m) and its corresponding posterior p(m). After considering

the general objective function for the mixture model (9), the

dHSIC regularization from (15), and considering the loss due

to each VAE component dropout, we obtain the following

objective function for the MVAE-Gau model :

LMVAE−Gau =− Ep(s|z)[log pη(x|s)] +DKL(pθ(w|x)||p(w))

+
1

K

K
∑

i=1

DKL(qθi(z|x)||p(z))

+ β dHSIC (z1, z2, . . . , zK)

+DKL(q(m)||p(m)).
(18)

The last term DKL(q(m)||p(m)), represents the contribution

of the dropout loss and is not analytically tractable when

considering a Gaussian distribution dropout, but it can be

approximated using the following polynomial expression :

DKL(q(m)||p(m)) ≈ c−0.5 log(τ)−c1τ−c2τ
2−c3τ

3 (19)

where τ defines the variance of the Gaussian distribution

used for sampling the dropout, and the constants used in the

polynomial approximation c, c1, c2, c3 are provided in [42].

D. Sampling the Gumbel-softmax distribution for selecting the

number of components

In this section we consider the Gumbel-softmax distribution

[43], representing a categorical distribution which is also dif-

ferentiable, for selecting the number K of VAE components.

A sample vector is drawn from a categorical distribution with

probabilities {ai|i = 1, . . . ,K} for each encoder of MVAE

by using the Gumbel-softmax trick [44], [45] :

one hot

(

argmax
i

(log ai + gi)

)

(20)

where gi is a sample drawn from the Gumbel(0, 1) distribu-

tion. The Gumbel-softmax trick adopts the softmax function

as a continuous, differentiable approximation to the argmax
expression as, [43] :

mi =
exp[(log(ai) + gi)/T ]

K
∑

i=1

exp[(log(ai) + gi)/T ]

(21)

where m = {m1,m2, . . . ,mK} is a K-dimensional mask-

ing vector and T is the temperature parameter. When the

temperature T is increasing, the samples inferred from the

Gumbel-softmax become uniformly distributed and they are no

longer selective. In contrast, if the temperature T approaches

zero, the Gumbel-Softmax distribution becomes the one hot
selective categorical distribution, picking up one component

of the mixture over the others.

In the following, we estimate the dropout masking param-

eters by using the following sampling process:

mi =
exp((log(1− p) + g1)/T )

exp((log(1− p) + g1)/T ) + exp((log(1− p) + g2)/T )
(22)

where mi is a sampled masking value, which can be closer

to either 1 or 0, corresponding to keeping or dropping the

mixing component i, g1, g2 ∼ Gumbel(0, 1), [46], where p
is a learnable dropout rate, while we set the temperature as

T = 0.1. The dropout masking parameters mi, depending on

a single dropout rate p, are then combined with the mixing

parameters, sampled from the Dirichlet distribution, as in

equation (16), and then used for calculating the mixed latent

variable, as in (17). Eventually, the mix-decoder yields the

reconstructed data, as in (6). This approach is called the

Mixture of VAEs with Gumbel-softmax dropout (MVAE-GS).

The Gumbel-softmax trick from (21) approximates a

Bernoulli distribution by generating samples close to either 0

or 1, while it is also differentiable. Gal et al. in [47] considered

the dropout regularization term as the entropy of a Bernoulli

random variable :

H(p) = −p log p− (1− p) log(1− p) (23)

where p is the dropout probability in (22). We can see that this

regularization term depends only on the dropout rate p and if

we fix the dropout rate during the training, this term can be

omitted. However, if we optimize the dropout rate, this term

plays an important role in the MVAE mixture components

selection. For instance, the dropout rate becomes close to 0.5,

when maximizing H(p) in (23).
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After considering the entropy of the dropout regularization

from (23) for the Gambel-softmax dropout penalty, instead of

the last term from (18) used for MVAE-Gau, the objective

function for MVAE-GS method becomes :

LMVAE−GS =− Ep(s|z)[log pη(x|s)] +DKL(pθ(w|x)||p(w))

+
1

K

K
∑

i=1

DKL(qθi(z|x)||p(z))

+ β dHSIC (z1, z2, . . . , zK)−H(p),
(24)

where H(p) is provided in (23).

IV. MVAE STRUCTURE AND TRAINING

In the following we discuss the architecture and the training

algorithm for the MVAE model.

A. The MVAE model structure

The proposed mixture model is based on a collection of en-

coders and sub-decoders processing the information in parallel.

Their outputs are weighted according to their contribution to

the data representation. Meanwhile, this structure is enabled

with a dropout mechanism aiming to define a minimal process-

ing architecture. The structure of the MVAE model is shown

in the diagram from Fig. 1. Each encoder with the associated

sub-decoder can be seen as a component in the MVAE mixture

model. The encoder outputs the hyperparameters {µi, σi} of

a Gaussian distribution, and one parameter ai of the Dirichlet

distribution, for i = 1, . . . ,K, considering initially K mixing

components. Then, the code is sampled from the distribution

modelled by the corresponding hyperparameters. In order to

allow the gradients to be estimated from the encoder to sub-

decoder, we use the reparametrization trick, [11] :

zi = µi + σi ⊙ ε, (25)

where ε ∼ N (0, I) is a random variable sampled from the

Gaussian distribution of mean 0 and having the identity matrix

I as the covariance.

For the mixing parameters, we adopt implicit reparameter-

ization gradients [48]. The mixing parameters are sampled

from the Dirichlet distribution Dir(a1, a2, . . . , aK), with each

parameter produced by one of the encoders:
(

w1
∑K

j=1 wj

, . . . ,
wK

∑K
j=1 wj

)

∼ Dir(a1, . . . , aK), (26)

where the sum of the mixing parameters is 1. The mixing

parameters are then multiplied by the dropout parameters

which are either 0 or 1, defined as in Section III-C for MVAE-

Gau, or as in Section III-D for MVAE-GS. The contribution

of each mixing component is calculated according to (16).

B. Training the Mixture of VAEs model

Although the proposed mixture model is based on a collec-

tion of encoders and sub-decoders, we show that it can be eas-

ily trained by using the SGD algorithm [49], when considering

either the objective function from equation (18) for MVAE-

Gau or that from (24) for MVAE-GS, depending on what

component dropout procedure is adopted for the mixing model.

Similarly to the classical VAE [11], we consider the isotropic

multivariate Gaussian N (0, I) as the prior distribution for

each decoder over their latent variable space representations.

The KL divergence DKL(qθi(z|x)||p(z)), between the prior

and posterior for each i-th encoders, is calculated considering

Gaussian pdfs in the latent space, as:

DKL(qθi(z|x)||p(z)) =
1

2

Si
∑

j=1

(1 + log
(

σ2
i,j

)

− µ2
i,j − σ2

i,j),

(27)

where Si is the dimension of the latent variable space z

for the i-th encoder and the characteristic latent space vari-

ables µi,j and σi,j are evaluated from the training data.

The total KL divergence, is calculated considering all K
components, where each VAE component contributes with

the expression from (27). We also calculate the KL di-

vergence DKL(qθ(w|x)||p(w)) corresponding to the mixing

parameters, representing the second term from either objective

function, (18) or (24). The KL divergence corresponding to

the mixing parameters is evaluated analytically between two

Dirichlet distributions of parameters a = {a1, . . . , aK} and

b = {bi, . . . , bK} as:

DKL(qθ(a|x)||p(b)) = log Γ(a0)−
K
∑

i=1

log Γ (ai)

− log Γ(b0) +

K
∑

i=1

log Γ(bi)

+
K
∑

i=1

(ai − bi)(ψ(ai)− ψ(a0))

(28)

where a0 =
K
∑

i=1

ai, b0 =
K
∑

i=1

bi, Γ(·) is the Gamma func-

tion and Ψ(·) is the Digamma function. In practice, a are

the parameters of the Dirichlet distribution estimated by all

encoders, following the training, while b are the parameters

of an empirical Dirichlet distribution, p(w).
For the reconstruction error, when considering N training

images, we use the mean squared error (MSE) criterion,

representing the first term from (9) and in the expressions

from (18) and (24), as :

LRec =
1

2

N
∑

i=1

‖x′
i − xi‖

2
F (29)

where x′ represents the reconstructed image result by the mix-

decoder while ‖ · ‖F denotes the Frobenius norm.

The gradient used for SGD optimization [49], when consid-

ering the objective function LMVAE−Gau from equation (18),

derived in Section III-C, is given by :

∇MVAE−Gau
Ω [LRec +

K
∑

i=1

DKL(qθi(z|x)||p(z))

+DKL(qθ(a|x)||p(b)) + β dHSIC(z1, . . . , zK)

+DKL(q(m)||p(m))],

(30)

where the first three terms represent the image reconstruction

(29), the KL divergence for all MVAE’s components, where
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1 1 1{ , , }aµ σ
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=
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τ
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4 4 4{ , , }aµ σ
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Fig. 1. The structure of the proposed MVAE model, when considering K = 4 encoders with associated sud-decoders.

each component contributes with the expression from (27) and

their mixing weights (28), respectively, while the last two

components represent the objective functions for enforcing

the independence of the mixing components (15) and for

evaluating their dropout probabilities.

When considering the MVAE-GS approach, described in

Section III-D, we have the following updating gradient for the

SGD based training:

∇MVAE−GS
Ω [LRec +

K
∑

i=1

DKL(qθi(z|x)||p(z))

+DKL(qθ(a|x)||p(b)) + β dHSIC(z1, . . . , zK)−H(p)
(31)

with the last term provided in equation (23).

The parameters being updated in the MVAE model are :

Ω = {θ, γ, ν, η} (32)

where θ and γ are the parameters of the mixture of K

encoders qθ(z|x) and sub-decoders pγ(s|z), and η are the

parameters for the mix-decoder network, while ν represent the

parameters of the network inferring the dropout parameters for

the components.

The pseudocode of the MVAE-GS training algorithm is

provided in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section we assess the results provided by the

proposed Mixture of VAEs (MVAE) model on a variety of

datasets. Each component of the MVAE model is represented

by an encoder and a sub-decoder. The probabilistic models

are implemented by using fully connected and convolutional

networks, depending on the complexity of the dataset. The

prior is the standard Gaussian distribution N (0, I) and the

outputs for each encoder are the hyperparameters of the

Gaussian distribution defining its latent space. We set β = 1 in

the objective function from (15), representing the weight for

the dHSIC term, defining the independence among the mixing

Algorithm 1: MVAE-GS training algorithm.

1
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Update parameters of model according t18 : oo equation (31)

21:

20 : End

End

components. For the implementation we use Python language

and the deep learning Tensorflow platform.

A. MNIST dataset

The MNIST dataset [50], consists of images of handwritten

digits of size 28 × 28 pixels. We train MVAE with K = 4
components when using the MVAE-Gau loss, defined in

equation (18), considering 60,000 and 100,000 images for

training and testing, respectively. A set of original MNIST

images are shown in Fig. 2a, and their reconstruction by

MVAE is provided in Fig. 2f, while the reconstructions by each
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of the four components are shown in Figures 2b-e. We observe

that the mixture model gives a better reconstruction than

each individual component. In the following, we investigate

the uniqueness of the latent space representation by each

component considering a different sub-decoder than its cor-

responding encoder during the tests. For the images of digits

from Fig. 3a we consider reconstructions by mismatching the

sub-encoders and encoders for the same images. The results

of such mismatches are shown in Figures 3b-e and we observe

that these images are not properly reconstructed. This happens

because each sub-decoder is uniquely fitted to the associated

encoder and not to any of the others which would yield

different latent space representations.

(a) Real test samples.

(b) Results by the VAE component 1.

(c) Results by the VAE component 2.

(d) Results by the VAE component 3.

(e) Results by the VAE component 4.

(f) Results by the MVAE model.

Fig. 2. Reconstructed images from the MNIST dataset by MVAE and its
individual VAE components.

(a) Real test samples.

(b) Results when using the encoder 1 with the latent variables of the
sub-decoder 2.

(c) Results when using the encoder 2 with the latent variables of the
sub-decoder 3.

(d) Results when using the encoder 3 with the latent variables of the
sub-decoder 4.

(e) Results when using the encoder 4 with the latent variables of the
sub-decoder 3.

Fig. 3. Results when mis-matching the encoders and sub-decoders when
reconstructing images from the MNIST dataset.

B. Representing complex images

In the section, we evaluate the performance of the proposed

MVAE mixture model on some databases which contain more

complex images, such as the human face dataset entitled

Celebrities Faces Attributes (CelebA) [51], and ImageNet

database [52]. CelebA dataset contains almost 200,000 human

face images with 10,177 identities. Each encoder of the

mixture model is implemented by a deep convolution net

consisting of 5 convolution layers while the fully connected

layers are used to output the 256-dimensional hyperparameters

of the Gaussian and Dirichlet distributions defining the latent

space for MVAE. Each sub-decoder is implemented by a

simple architecture with only a single layer of 8 × 8 × 256.

The output of the sub-decoder is then transformed into a 3D

tensor after multiplying with the mixing weights and dropout

parameters, as shown in Fig. 1. The mix-decoder is a deep

deconvolution net consisting of 7 layers, which receive the

tensor as the input and generates images as the output. We

set the kernel size as 3 × 3 for all convolution processing

units. The mixture model is initially built using K = 6
mixing components considering the dropout rate optimized

during the training using the Gaussian dropout (MVAE-Gau),

as described in Section III-C. We train the mixture model using

the Adam optimization algorithm for 10 epochs with a learning

rate of 0.001. A set of face images from CelebA dataset

is shown in Fig. 4a, while their reconstructions by MVAE-

Gau are provided in Fig. 4b. We also show the reconstruction

results in Fig. 5c for MVAE-Gau for the subset of images from

ImageNet database [52], shown in Fig. 5a. For comparison the

same images are reconstructed by MSVI [18] in Fig. 5b. It

can be observed that both human face and natural images are

reconstructed well by the MVAE-Gau model.

We also explore the manifold continuity by performing

interpolation experiments in the latent space. For a single

VAE, we can directly perform interpolations on the latent

variables inferred by that VAE. Nevertheless, in the mixture

model, we have multiple variational encoders, each defining its

own latent space, which allows us to perform interpolations in

new regions of the latent space, located in between the latent

spaces modeled by different VAE components. Initially, a pair

of images {x1,x2} is randomly selected and we map these

into the latent representation by using the trained encoders.

We consider K = 6 components, and the interpolation di is

performed on the output of each encoder as :

di = (1− a)Ei(x1)+aEi(x2), (33)

where Ei(·) is the output i-th variational encoder, i = 1, . . . , 6
and a is a hyperparameter controlling the interpolation in

the latent space. Then, the latent space interpolations are

transformed through the sub-decoders SubDeci(·) into :

c =
6
∑

i=1

wi · SubDeci(di), (34)

where wi is the weight modeling the contribution of each sub-

decoder i = 1, . . . ,K to the result of the interpolation c. Then,

the mix-decoder MixDec(·) is used to generate the image x′:

x′ =MixDec(c). (35)

Interpolation results on CelebA dataset are shown in Fig. 6,

where {x1,x2} are displayed as the extreme left and right im-

ages from each row of images. The interpolated images, when

varying a in (33) are shown in between the reconstructions of

the original images. From these results we observe smooth and
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realistic transitions which model various changes in the human

face appearance, such as changing the illumination in the

image, varying the hair style, modifying the age appearance,

and so on. By exploring the manifold continuity, these results

show the enriched data representations which can be achieved

in the latent space of the MVAE model.

(a) Randomly selected images.

(b) Reconstructed face images by MVAE-Gau.

Fig. 4. Reconstruction results for face images from CelebA dataset, [51].

(a) Randomly selected images.

(b) Reconstructed natural images by MSVI [18].

(c) Reconstructed natural images by the MVAE-Gau.

Fig. 5. Reconstruction results for images from ImageNet dataset.

Fig. 6. Interpolation results in the latent space, where the extreme left and
right are real images from CelebA, while the images in between are the
reconstruction results by MVAE model.

Fig. 7. Interpolation results, when the sub-decoder uses the latent space
corresponding to a different encoder as its input, according to equation (36),
where the extreme left and right images are real images from CelebA.

We also investigate the separation in the latent space be-

tween the information encoded by different encoders. For this

experiment, we choose randomly a pair of images and extract

their latent variables using the encoders. Then we perform

interpolations for each sub-decoder, where instead of using

the corresponding inputs as in the previous experiment, we

would use the outputs of a different encoder as the input to

the given sub-decoder, replacing (34) with :

ĉ =

6
∑

i=1

wi · SubDeci(dj) (36)

where j 6= i. For example, the first sub-decoder is fed with the

interpolation results in the latent space of the second encoder.

The reconstruction results are shown in Fig. 7, where the

real images {x1,x2} are shown as the first and last on each

row, while the images in between are the interpolation results

using (36). We observe that in these situations, the mixture

model does not generate reasonable results. The main reason

is that each component encoder learns a unique latent space,

which is distinct from all other latent spaces modelled by the

other encoders. This result is the consequence of enforcing the

learning of distinct latent spaces for each VAE, by using the

dHSIC measure, as described in Section III-B.

(a) Results of component 1. (b) Results of component 2.

(c) Results of component 3. (d) Results of component 4.

Fig. 8. Generated images of digits by different VAE components when fixing
the class label and changing the first latent variable z1 from 0 to 3.

C. Latent space analysis

In the following we explore the latent space representation

for the MVAE model. Each encoder and associated sub-

decoder consider jointly the data and their corresponding class

labels {x,y}, where the class information y is represented as a

one-hot vector. We train the MVAE-Gau model, with Gaussian

defined dropout, for K = 4 components, and considering only

two latent variables, z1 and z2, on images from the MNIST

dataset. Then we fix the class label while changing only one

of the latent variables from 0 to 3. The generated results

with images of the digit ’5’ are shown in the Figures 8a-d

for each of the four components considered. Meanwhile, the

generated images of the handwritten digit ’5’, for K = 6
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(a) Component 1. (b) Component 2. (c) Component 3. (d) Component 4. (e) Component 5. (f) Component 6.

Fig. 9. Generated images of digits for six different VAE components when fixing the class label and changing the first latent variable z1 from 0 to 6.0.

(a) Component 1. (b) Component 2. (c) Component 3. (d) Component 4. (e) Component 5. (f) Component 6.

Fig. 10. Generated images of digits for six different VAE components when fixing the class label and changing the second latent variable z2 from 0 to 6.0.

components, when changing either the variable z1 or z2
from the latent space are shown in Figures 9a-f and 10a-f,

respectively, for each VAE component. We observe that each

component provides a different output when changing a single

variable in the latent space, which shows the ability of the

latent space to model various data attributes. We observe that

we achieve a better disentanglement in the data representation

when increasing the number of components from 4 to 6. By

considering two different latent variables for each component

of the mixture we can model additional underlying factors,

while each component defines a different writing style for the

generated images.

We also train MVAE-Gau with K = 4 components, under

the unsupervised learning setting, assuming that the class

labels are not known. The latent variables corresponding to

the images from the MNIST database, during testing, are

plotted in Fig. 11, where the colours represent different class

labels. These results indicate that MVAE provides a rich data

representation, where the information is distributed among

different regions of the latent space for each component.

D. Enforcing the separation between the latent space repre-

sentations of MVAE’s components

The dHSIC measure is used to enforce the independence

between the latent spaces of the encoders, as explained in Sec-

tion III-B. In this section we evaluate the separation between

the latent spaces modelled by the encoders, through exper-

iments following the training of MVAE-GS on the MNIST

dataset. We consider K = 6 VAE components and a latent

space consisting of two variables, z1 and z2. First, we estimate

the dHSIC measure between each pair of encoders’ latent

space distributions. The results, when assuming a penalty of

β = 1 and β = 10 in the objective function from (24) are

provided in Figures 12a and 12b, respectively. We observe

that when using a larger β we achieve better independence

between the encoding distributions.

After training MVAE-GS, considering the cost function

from (24) with K = 6 components, we randomly select

a batch of images belonging to the same class, and then

estimate their corresponding latent vectors by using various

mixing components. We map the latent representation results

in Figures 13a and 13b, for β = 10 and β = 0, respectively,

where the colors represent the latent space representations

produced by different components. We observe that the latent

space represented in Fig. 13a contains distinct clusters of

latent vectors for the MVAE components, while when not

considering the dHSIC term, i.e. β = 0, each component tends

to embed data into the same region of the latent space, as

shown in Fig. 13b. These results show that the dHSIC measure,

used in the objective function from (24), plays an important

role in encouraging each component to embed data in different

regions of the latent space.

E. Visual quality evaluation

In this section, we evaluate the reconstruction and repre-

sentation learning ability of the proposed MVAE model and

compare with the results achieved by the state of the art. The

following models are considered for comparison: (1) Multiple

Source Variational Inference (MSVI) [18] model, which is

a mixture of experts where each expert is implemented by

a VAE. We implement MSVI by using the same network

architecture used for our model. However, MSVI has more

parameters than the proposed model, since we use a sub-

decoder implemented by a single layer instead of an entire

deep convolution net. (2) InfoVAE [33] is the current state of

art VAE framework, which is able to balance accurate infer-

ence with the reconstruction quality. We implement InfoVAE

by using a large network architecture. (3) β-VAE is a variant

of the VAE framework which aims to learn disentangled

representations. (4) We also compare with a single VAE [11]

implemented by a large network architecture. (5) Finally, we

consider for comparison several other recent VAE frameworks,

such as those proposed in [34], [35], [53].
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Fig. 11. The representation of the latent space for the MVAE model for the MNIST dataset.
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Fig. 12. Analysing the independence of the latent spaces for the mixture
components in MVAE-GS, considering the cost function from (24).
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Fig. 13. The representation of the latent spaces for MVAE for the images
showing the handwritten digit ’1’ from the MNIST dataset. Different colours
represent the latent vector projections of different components.

We evaluate the reconstruction ability of the proposed

approach on CIFAR10 dataset [60], which contains 60,000

images grouped into 10 classes. We train the proposed MVAE

model using 50,000 images, with K = 6 components initially,

using the Gambel-softmax dropout during the training, while

setting the maximum number of training epochs to 100. In

order to evaluate both generative ability and the likelihood of

model collapse, we consider the Inception Score (IS), [61]:

IS = exp(Ex[DKL(p(y|x)||p
∗(y))]) (37)

where DKL represents the Kullback-Leibler divergence be-

tween the distributions of the labels of the recovered images

and those from the database; x represents the image and

p(y|x) is the probability of the softmax output for the trained

classifier; p∗(y) represents the labels statistics for the given

images. The reconstruction Root Mean Square Error (RMSE)

TABLE I
RMSE AND INCEPTION SCORE ON CIFAR10 DATABASE.

Model RMSE IS

DCGAN* [54] in [16] - 6.16
ALI* [55] in [16], [56] - 5.34
PixelCNN++* [57] in [32] 3.289 5.51
BEGAN [58] - 5.62
MVAE-Gau 2.97 6.38

MVAE-Gau fixed K 3.52 6.09
MVAE-GS 3.36 6.26
MSVI [18] 3.46 5.84
InfoVAE [33] 3.24 6.17
β-VAE [59] 9.12 4.92
VAE 4.64 5.04
Wasserstein-Wasserstein Auto-Encoders [35] 3.49 6.05
Continuous Bernoulli VAE* [53] - 4.55
MAE [34] 4.11 5.49

TABLE II
RMSE AND INCEPTION SCORE ON CIFAR100 DATABASE.

Model RMSE IS

MVAE-Gau 3.10 5.64

MVAE-Gau fixed K 3.68 5.44
MVAE-GS 3.11 5.60
MSVI [18] 5.30 4.72
InfoVAE [33] 4.29 5.06
β-VAE [59] 9.17 3.31
VAE 6.84 4.07
Wasserstein-Wasserstein Auto-Encoders [35] 5.83 4.97
MAE [34] 4.11 5.20

as well as the Inception Score for CIFAR10 and CIFAR100

databases are provided in Tables I and II, where “MVAE-

Gau fixed K” denotes that the model considers K fixed and

‘*’ represents that we cite results reported at the indicated

reference. We also indicate the number of components found

when considering the Gambel-softmax dropout (MVAE-GS),

and the average, calculated from several runs, for this database

is K = 4.11. From Table I we find that MVAE-Gau provides

the best result. We can also observe that selecting the number

of components definitely improves the performance, as shown

when comparing the results of MVAE-Gau with those provided

by MVAE-Gau using a fixed K.

We also evaluate the performance on the more challenging

dataset, ImageNet [52]. The results are reported in Table III,

where it can be observed that the proposed MVAE based

models outperform all other VAE based methods considered
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for comparison when applied on ImageNet.

TABLE III
RMSE AND INCEPTION SCORE (IS) ON IMAGENET DATABASE.

Model RMSE IS

MVAE-Gau 19.44 6.84

MVAE-Gau fixed K 20.87 6.30
MVAE-GS 20.45 6.52
MSVI [18] 22.29 6.12
InfoVAE [33] 22.73 6.14
β-VAE [59] 31.47 5.05
VAE 28.44 5.46
Wasserstein-Wasserstein Auto-Encoders [35] 25.63 5.79
MAE [34] 23.25 5.87

F. Evaluation of the representation learning

The representation learning ability is a very important prop-

erty for deep learning models. We assume that the proposed

mixture model is able to provide a rich representation of data,

which would help to avoid overfitting because it embeds data

into different regions of the latent space, as shown in Fig. 11.

In order to measure the representation learning ability, we

consider using a simple classifier on the latent representations

extracted by various models. For the mixture model, we firstly

extract features from each component and then concatenate

these features into a single vector. The classifier is trained

on the latent representations of the training data and then

evaluated on a different dataset. We consider initially a simple

network consisting of two layers as a basic classifier. The

classification results, after training on the latent representa-

tions, are provided in Table IV, where we only compare with

the best models, InfoVAE and MSVI, according to the results

from the previous section. The results show that the proposed

approach outperforms other methods by a large margin on

CIFAR10 database. We achieve better results than the mixture

model MSVI [18] which actually uses more parameters. This

shows that the proposed model is able to provide a rich data

representation. We also compare with the recently proposed

GUIDE model [62].

TABLE IV
CLASSIFICATION RESULTS OF VARIOUS METHODS.

Dataset InfoVAE MSVI MVAE-GS MVAE-Gua GUIDE

CIFAR10 42.92 49.48 52.13 51.78 -
MNIST 96.73 97.15 98.04 97.59 98.15

We also investigate the performance of three classic clas-

sifiers: Multilayer Perceptron (MLP), Linear Support Vector

Machines (SVM) and K-nearest neighbours (KNN), which are

trained on the latent representations extracted by each VAE

component of the MVAE model. The results are reported in

Table V, where C1 denotes that the classifier is trained on

the representation extracted by the first component of MVAE-

GS. This result demonstrates that the proposed model embeds

data into several distinct latent subspaces, which enhances the

performance in classification tasks.

TABLE V
THE RESULTS BY THREE CLASSIFIERS TRAINED ON THE LATENT

VARIABLES INFERRED BY THE ENCODER WITH GAUSSIAN DROPOUT.

Classifier Mixture C1 C2 C3 C4 VAE

MLP 98.04 96.94 96.87 96.85 96.97 97.21
Linear SVM 95.62 93.65 93.81 93.83 93.67 93.81
KNN 97.25 96.91 96.98 96.85 96.15 96.51

G. Selecting the number of VAE components

The use of component dropout, defining the appropriate

number of MVAE components, as discussed in Sections III-C

and III-D, reduces the overfitting to the training set while

also easing the requirements on computation and architecture

complexity. The dropout masking vector m, depends on the

dropout rate p, which is learned during the training stage.

We train the MVAE mixture model changing the initial

number of VAE components by adopting different dropout

mechanisms. The reconstruction error results for the MNIST

dataset, when considering the selection of VAE components

using the Gaussian dropout (MVAE-Gau) from (18), and the

Gumbel-Softmax dropout (MVAE-GS) using equation (24) as

the objective function, are provided in Table VI. The “Selected

K” column represents the average number of VAE components

required by the model calculated over all trials. When using

the Gumbel-softmax trick from (21) to generate the dropout

masking parameters mi, i = 1, . . . ,K for MVAE-GS we

consider a threshold of 0.1, while removing all components

with lower mi’s. When considering the MVAE-Gau algorithm,

we set the threshold as 0.8 on the dropout masking parameter

mi, given that the sampling takes place from a Gaussian

distribution with the mean of 1. We observe that the mixture

model with all its components provides a lower MSE error

than the MVAE model with dropout, except for the MVAE-

Gau model. This is due to the fact that the proposed dropout

method reduces overfitting. Furthermore, we also consider a

mixture model with a single component, K = 1 as well as

using a single VAE sharing the same network architecture

and hyperparameters with the MVAE mixture model. It can

be observed from Table VI that the performance of the

mixture model with a single component is worse than all other

architectures considered.

TABLE VI
THE RECONSTRUCTION ERROR ON THE MNIST DATASET WHEN USING

COMPONENT DROPOUT.

Model Initial No Selected K MSE
of Components

4 3.07 7.35
4 4 7.42

MVAE-GS 6 4.05 7.30

6 6 7.41
1 1 10.35

4 4 9.52
MVAE-Gau 6 3.45 7.53

6 6 7.89
1 1 12.62

Single VAE 1 1 9.07
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Fig. 14. The variation of the objective function LMV AE−GS during the
training.

In the following we train a mixture model by setting initially

K = 6 components and considering the VAE component

dropout implemented using the Gumbel-Softmax approach

(MVAE-GS), on four datasets: MNIST, MNIST-Fashion, CI-

FAR10 and CelebA. We consider 100 training epochs for the

first three datasets. For the CelebA dataset, we measure the

dropout rate for every 100 batches during one epoch. The

variation of the objective function LMVAE−GS from equation

(24), during the training for these databases, is shown in

Figures 14a-d for each of the four databases: MNIST, MNIST

Fashion, CIFAR10 and CelebA, respectively. The variation of

the dropout p for MVAE-GS algorithm is provided in Fig. 15a

for MNIST, Fashion and CIFAR10 databases. We observe that

p initially increases quickly, while afterwards it becomes rather

stable during the training for each of the first 3 databases.

The result for CelebA database is shown in Fig. 15b, where a

single epoch is considered for training, because this dataset

is larger and more complex than the others. The dropout

masking parameters mi, i = 1, . . . ,K depend on the dropout

p, according to equation (22) for MVAE-GS. We consider a

threshold of 0.1, on the estimated dropout parameter p, for

removing a VAE component. The results for MNIST, Fashion

and CIFAR10 are shown in Fig. 16a while for CelebA database

are provided in Fig. 16b. It can be observed that MVAE

requires more components for modelling and generating the

images corresponding to the CIFAR10 dataset, when compared

to the other datasets because this dataset contains more diverse

images, displaying complex information, compared to the

MNIST and MNIST Fashion databases.

H. Data generation diversity by each VAE component in

MVAE

In order to show that each component learns different

characteristics of the data, we train the MVAE model with

K = 6 components on the CelebA dataset. Then we sample
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a random vector from a Gaussian distribution, which is used

as the input for each sub-decoder. The output of each sub-

decoder is then fed into the final decoder, which outputs the

generated images x′. In Figures 17a-f, we show on each row

the face images generated by each of the VAE components

i = 1, . . . , 6, where the images from each column correspond

to the same input random vector, sampled from a Gaussian

distribution. From the results from Figures 17 we can observe

that each component outputs different human faces or different

appearances for the same face thus showing the ability for

MVAE to generate diverse images.

VI. CONCLUSIONS

In this research study we propose a mixing deep learning

model using collections of variational encoders and sub-

decoders, called the Mixture of Variational Autoencoders

(MVAE). The latent space of each VAE component captures

specific characteristics of data in different ways providing rich

latent representations benefiting many tasks. These properties

result in enhanced abilities for data generation by MVAE

model. Each sub-decoder has a simple design consisting of

a single layer network benefiting from quick training, while

the mix-decoder is implemented by a deeper CNN. The

separability between the latent spaces, corresponding to each

VAE, is enforced by using the d-variable Hilbert-Schmidt

independence (dHSIC) criterion. Each component of MVAE

models a distinct latent space, avoiding the overfitting which

occurs in other models. We also consider a component dropout

mechanism in order to select the appropriate number of VAE

components in MVAE. The training of MVAE involves the

estimation of the parameters for the encoders, sub-decoders,

implementing the dHSIC criterion, the Dirichlet sampling

for the mixing weights, the component dropout procedure

and the mix-decoder parameters into an end-to-end training

procedure using stochastic gradient descent (SGD). A variety

of data manipulations, including interpolations in the joint

latent spaces of the VAE components, show the capabilities

of the proposed MVAE model.
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