
This is a repository copy of An Efficient 3D Positioning Approach to Minimize Required 
UAVs for IoT Network Coverage.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/173228/

Version: Accepted Version

Article:

Rahimi, Zahra, Sobouti, MohammadJavad, Ghanbari, Reza et al. (4 more authors) (2022) 
An Efficient 3D Positioning Approach to Minimize Required UAVs for IoT Network 
Coverage. IEEE Internet of Things Journal. pp. 558-571. ISSN 2327-4662

https://doi.org/10.1109/JIOT.2021.3084521

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/JIOT.2021.3084521
https://eprints.whiterose.ac.uk/id/eprint/173228/
https://eprints.whiterose.ac.uk/


1

An Efficient 3D Positioning Approach to Minimize

Required UAVs for IoT Network Coverage
Zahra Rahimi, Mohammad Javad Sobouti, Reza Ghanbari, Seyed Amin Hosseini Seno, Amir Hossein

Mohajerzadeh, Hamed Ahmadi, Senior Member, IEEE, and Halim Yanikomeroglu, Fellow, IEEE

Abstract—Using Unmanned Aerial Vehicles (UAVs) to cover
users in wireless networks has increased in recent years. De-
ploying UAVs in appropriate positions is important to cover
users and nodes properly. In this paper, we propose an efficient
approach to determine the minimum number of required UAVs
and their optimal positions. To this end, we use an iterative
algorithm that updates the number of required UAVs at each
iteration. To determine the optimal position for the UAVs, we
present a mathematical model and solve it accurately after
linearizing. One of the inputs of the mathematical model is a
set of candidate points for UAV deployments in 2D space. The
mathematical model selects a set of points among candidate
points and determines the altitude of each UAV. To provide a
suitable set of candidate points, we also propose a candidate
point selection method: the MergeCells method. The simulation
results show that the proposed approach performs better than
the 3D P-median approach introduced in the literature. We also
compare different candidate point selection approaches, and we
show that the MergeCells method outperforms other methods in
terms of the number of UAVs, user data rates, and simulation
time.

Index Terms—UAV, Positioning, Optimization, Internet of
Things

I. INTRODUCTION

The use of flying platforms such as UAVs is expanding

rapidly in a wide range of wireless network applications.

With their mobility, flexibility, and adaptability to different

altitudes, UAVs are poised to become a key platform in

wireless systems [1]. UAVs as aerial Base Stations (BSs)

can be used to improve coverage, capacity, and reliability in

wireless networks. They can also be used to enable large-

scale wireless communications in next generation wireless

networks. As an example, UAVs can complement existing

cellular systems by providing additional capacity for hotspots

[2], [3].

UAVs can also provide or increase network coverage in

emergencies for public safety, where terrestrial BSs cannot be

installed or may be costly, such as in mountainous areas, at
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sea, in emergency situations, or in case of natural disasters [4].

Compared to conventional terrestrial BSs, one advantage of

using UAV BSs is their ability to provide on-the-fly communi-

cations and to establish Line-of-Sight (LoS) connections with

ground users [5]. If UAVs are properly deployed and operated,

they can provide reliable telecommunication solutions for a

variety of real-world scenarios at a reasonable cost [6].

Since the proper deployment of UAVs increases the reli-

ability of air-to-ground links and offers better coverage for

users, their optimal placement has been studied in a number

of works. In [7], for instance, we proposed an efficient

2D positioning algorithm for multiple UAVs covering many

Internet of Things (IoT) nodes. We determined the minimum

number of required UAVs by using a bisection algorithm. We

proposed a mathematical model based on P-median to find the

proper positions for the UAVs on a 2D plane where all UAVs

were at the same altitude. We also considered an identical

altitude for each UAV. As the mathematical model required

candidate points to determine the proper position of the UAVs,

we proposed a smart mesh approach, which yielded better

results than a simple mesh or on-user approach. The literature

in 2D positioning is further discussed in [7], [8].

Since UAVs operate in three dimensions, their altitude is

also an important consideration. The authors in [9] presented

an analytical model to find the optimal altitude of a UAV

to maximize area coverage. They showed that, although in-

creasing the altitude increases the LoS probability, the altitude

increase also increased signal path loss. In [10] the outage

probability at mmWave and sub-6 GHz frequency is investi-

gated for different blockage environments and UAV altitudes.

The authors first derived analytical approximate expressions

for the outage probability. The analyzed the impact of antenna

gain for two candidate frequencies on the fronthaul link. In

[11] the optimal UAV altitude is derived to maximize the

ground coverage and minimize the transmit power. Then, the

problem of maximum coverage using two UAVs is investi-

gated. The authors in [5] treated the UAV positioning problem

by decoupling the vertical and horizontal dimensions. In so

doing, they modeled the horizontal dimension problem as a

circle placement problem. To find the proper altitude in the

vertical dimension, they solved the enclosing circle problem.

They also proposed an algorithm in [12] to maximize the

coverage of users with different Quality of Service (QoS).

In [13], the authors found the optimal 3D locations of UAV-

BSs in various environments to maximize the number of

users covered, while taking network revenue into account and

proposing a computationally efficient numerical solution. The
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authors also found the optimal 3D location of a UAV-BS to

maximize the number of users whose Signal-to-Noise Ratio

(SNR) requirement is met. In [14], the authors addressed

the problem of finding the 3D location of one UAV and the

bandwidth allocation for each user to maximize the profitabil-

ity of the provided service. Since the problem was modeled

as a Mixed Integer Non-Linear Programming problem, to

overcome the complexity, a search algorithm was proposed.

The authors then examined the algorithm’s robustness after

selecting the location of the UAV and its coverage area. In

[6], the optimal 3D backhaul aware UAV positioning in both

user-centric and network-centric approaches was discussed. In

the proposed model of [6], both the total number of users and

the sum rates were maximized, in each approach.

The aforementioned works considered only a single UAV

in the placement problem, while in realistic scenarios there

may be multiple UAVs. In [15], finding optimal cell bound-

aries and locations for multiple non-interfering UAVs were

investigated. The objective of [15] was to minimize the total

transmission power of UAVs. The jointly efficient 3D place-

ment and mobility of the UAVs, device-UAV association, and

uplink power control were discussed in [16]. The optimal

UAV locations were determined in consideration of active

IoT device locations and their maximum transmission power.

The aim of the authors in [16] was to maximize the sum

transmit power of IoT devices. In [17], the optimal location

of UAVs in disaster situations and to improve public safety

was established using a brute force search. The authors in

[18] addressed the issue of deploying multiple UAVs and

expanding UAV mapping to high demand traffic areas using

a neural network-based cost function. In [19], 3D UAV-

BS placement was investigated to maximize the number of

covered users with different QoS requirements consuming

the minimum energy. It modeled the problem as a multiple

concentric circles placement problem with the objective of

maximizing the numbers of covered users. To this end, it

decoupled the UAV-BS deployment problem in the vertical

and horizontal dimensions. The authors formulated a Mixed

Integer Second Order Cone Problem (MISOCP) and proposed

an improved Multi-Population Genetic Algorithm (MPGA)

for the horizontal placement problem. The objective of [20]

was to maximize the sum-rate of users while considering the

constraints of LoS communications and fairness in serving a

required data rate to users. The authors of [20] also proposed

an algorithm to convex the proposed non-convex mathematical

model.

In [21], the authors broke the 3D UAV placement optimiza-

tion problem down into three sub-problems. First, they solved

a 2D UAV positioning using dynamic K-means clustering.

Then, using game theory, they found the most efficient altitude

for UAVs under 2D positions. Finally, they solved the problem

of associating users to UAVs. In [22], a macro BS and several

DBSs were considered. First, an algorithm was proposed to

find efficient 3D locations of DBSs, associate users to BS, and

allocate bandwidth for access and DBS backhaul. Next, DBS

locations were updated using a heuristic PSO algorithm for

more efficiency. In [23], the authors proposed a 3D deployment

scheme for minimizing the total number of UAVs to cover

all users with different QoS. To do so, first, they found the

relationship between the UAV altitude and the coverage. Then,

they proposed an algorithm that considered both altitude and

horizontal location. In [4], the minimum number of UAVs

and their optimal 3D locations to cover users was calculated

using a heuristic algorithm. The UAV thus would achieve

its coverage range by changing its altitude according to the

density of users, and in order to reduce interference with other

antennas, reducing its altitude in denser areas. It serves a lower

population density with a higher altitude.

The authors of [24] considered an uneven terrain for 3D

UAV deployment. They formulated an optimal coverage model

and optimal connectivity model which are NP-hard. To tackle

this problem, they designed a meta-heuristic PSO algorithm to

achieve a cost-effective solution. The results did not discuss

the average covered data rate, but they compared the path loss

and number of UAVs in different density scenarios. In [25]

a framework for drone-BSs network planning and latency-

minimal cell association for drone-UEs is proposed. On the

network planning side, a method based on the truncated

octahedron shapes is proposed to ensure full coverage in a

given space with the minimum number of DBSs. Also, an

optimal 3D cell association scheme is proposed for drone-UEs

latency. To do so first, the spatial distribution of drone-UEs

is estimated, then due to this distribution and the locations

of DBSs, the 3D association for drone-UEs is derived con-

sidering latency minimization using optimal transport theory.

Authors of [26] proposed a mathematical model for joint

optimization of DBS placement and IoT users’ assignment

in an IoT network scenario. The objective of the optimization

is to maximize the connectivity of the users by utilizing the

minimum number of DBSs, satisfying network constraints

such as path loss. The proposed optimization problem was NP-

hard, and the optimal solution has an exponential complexity

so the authors proposed a linearization scheme and a low

complexity algorithm to solve the problem in polynomial time.

Therefore, the results are close to the optimal solution.

To date, most of the literature that has modeled UAV

positioning has considered only a fairly limited number of con-

straints. This has meant findings have had limited usefulness

and generality. Moreover, existing studies have solved opti-

mization models with heuristic or meta heuristic algorithms

that have directly impacted the precision of the results, and

this is time consuming.

In this paper, we consider a sporting event in a rural area.

We aim to cover IoT sensors in the field and people who

participate in or attend the event. We aim to serve their

required data rate using a 5G cellular network. A potential

type of UAV that can be considered in this scenario is the

DJI S900, which the maximum altitude of its flight is 300

meters based on its characteristics [27]. In these scenarios, it

is not only the coverage of users that is important; we also

need to use as few UAVs as possible. To cover the users most

efficiently, we must use the least number of UAVs possible and

deploy them at the most effective positions and altitudes. We

also consider orthogonal frequency reuse to avoid interference

between UAVs in the network. To do this, we propose a

mathematical model for the optimal positioning of UAVs as
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aerial BSs to cover 5G users. Our proposed model minimizes

the number of UAVs required to cover at least a target

percentage of users while providing the required data rate. Our

model also selects the most effective positions to minimize the

aggregate path loss of users from UAVs. To find the optimal

positions of UAVs, the model needs some candidate points

from which to choose. As users gather in specific places during

the event, we can group them into the clusters. The center of

each cluster will be a candidate point for the mathematical

model to deploy the UAVs. In what follows, we compare the

performance of six different groups of candidate points to find

the best one. In this paper, we consider coverage and data rate

constraints together, unlike most previous works. The proposed

mathematical model determines the UAV altitudes, and we

solve the problem with an exact method. To sum up, the main

contributions of this work are as follows:

• We provide a method to determine efficient values for Z,

X , and Y coordinates (all three at the same time) using

a proposed mathematical model.

• We propose a linearization method to arrive at an exact

solution with proposed 3D positioning.

• We present two discrete and continuous methods to make

decision on the efficient value of altitude regarding the

application we are supposed to use.

• We introduce a novel clustering method to divide users

in different cluster regarding the inherent characteristics

of the UAV positioning problem.

The rest of this paper is organized as follows. In Section

II the system model of the problem is presented. Section

III focuses on the problem formulation. In Section IV, the

linearization of the proposed mathematical model is discussed.

Section V discusses how to find candidate points, and the

proposed candidate point set method is discussed. In Section

VI, the 3D expansion of P-median is introduced, and in Section

VII the efficiency of the proposed method is compared with

other methods in terms of the number of UAVs, users data

rate and simulation time.

II. SYSTEM MODEL

We consider a wireless system with a set of users who

temporarily gathered in a free space environment to watch

a sporting event. Deploying a ground BS for short-term

scenarios is not affordable, so using a UAV BS solution

would be the most economically viable option. Due to UAV

backhaul limitations, a UAV can serve a limited number of

users. Assuming the positions of the users are known, the main

question we will answer in this paper is the following:

What is the minimum number of UAVs required and their most

effective positions to cover a certain percentage of users?

The altitude of a UAV is one of the determining factors of

its coverage range. On one hand, if a UAV flies at a higher al-

titude, it will have a larger coverage range, and we will require

fewer UAVs to cover users. On the other hand, increasing the

altitude of the UAVs increases the path loss and consequently

decreases the QoS. In this work, considering a minimum and

maximum allowed altitude for UAVs (Hmin,Hmax), we find

the minimum number of required UAVs and their optimal

Fig. 1: A possible scenario of UAV positioning.

positions such that the path loss of each user does not exceed

a certain bound. Hmin can be defined as the lowest altitude

of a safe flight for the UAV. Similarly, Hmax is related to the

flying capabilities of the UAV.

We find the minimum number of UAVs required in a bi-

section algorithm. In each iteration of the algorithm, We find

the location of a fixed number of UAVs while total path loss

is minimized. If users are covered, we reduce the number of

UAVs and otherwise, we increase it .

Beside path loss, we also considered data rate in the opti-

mization model. However, the problem would become multi-

objective if we considered data rate in the objective function.

Therefore, we have included the data rate in the constraints

to guarantee the services of the users’ required data rate.

We also considered that all users have equal bandwidth and

transmission power. In the long-term we can omit the effect

of fast fading components. In slow fading, we considered path

loss as the most important attenuation component. It is worth

noting that the main goal of the paper is to determine the most

efficient number of UAVs and their 3D positions regarding the

conditions of the problem. As we know the number of DBSs

in each iteration, we find the best positions for DBSs in case

of minimizing path loss (like [28]) and satisfying data rate and

other constraints.

We have considered free space and Line-of-Sight as two

main assumptions because of two main reasons as follows:

there are other studies in this field such as [18], [20], [29] and

[30] with similar assumptions. Moreover, we have considered

outdoor events as main target application (see Figure 1)

including winter sports, marathon or soccer games, etc. In such

applications having considered Line-of-Sight and free space

for communications is reasonable.

We determine the 3D location of UAVs by solving the

mathematical model that we present in the next section.

Our proposed mathematical model determines the optimal

position of P UAVs by taking a set of candidate points (I) to

deploy UAVs. The candidate points in our proposed model are

potential coordinates for the projection of UAV positions on

the ground which are chosen among a continuous 2D space. In

section V, we explain several methods that provide candidate

points based on the position of users. The number of candidate

points as one of the effective parameters in the sample size

plays an important role in the number of decision variables,

constraints, and consequently the solving time of a sample.

In Section V, we also suggest a novel method to provide
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Fig. 2: Candidate points.

candidate points intelligently based on the density and required

data rate of users. Considering candidate points in a 2D space

compared to a 3D space reduces the sample size. Also, in this

case, decisions on the altitude of each UAV (h) are made by

the proposed model, and the model finds the exact optimal

altitude of UAVs in a continuous space.

III. PROBLEM FORMULATION

Here, we assume that a set of points (I) on the surface is

given as the set of candidate points for the UAV’s deployment.

Our model selects P points among the set of candidate points

to deploy UAVs, and it determines their proper altitudes to

minimize the total path loss such that the UAVs will cover a

specified percentage of users. Also, we formulate the problem

such that the path loss of each user dose not exceed a certain

bound. To achieve this objective, we need to know whether or

not a candidate point is selected by the mathematical model.

We define a binary decision variable mi that is 1 if the model

selects ith candidate point and takes the value 0 otherwise.

In our mathematical model, the candidate points are poten-

tial UAV shadows on the ground. So we consider the altitude

of UAVs as decision variables that the model must find (hi). If

TABLE I: Using parameters.

Parameters Description

fc Carrier frequency
C Speed of light
I Set of candidate points
J Set of users
β UAV data rate
U Number of users
α Minimum percentage of requested coverage

Hmin Minimum allowed altitude
Hmax Maximum allowed altitude

θ UAV coverage angle
P Number of UAVs to be deployed

PLmax Maximum allowed path loss in the network
M A big number
Dj Data rate required for user j
dij Distance between user j and candidate point i

the candidate point i is selected by the model, the altitude of

the UAV deployed at this point must be within the allowable

altitude range ([Hmin,Hmax]). If the candidate point i is not

selected by the model, hi will be set to 0. To calculate the

total path loss, we need to find out which user is served by

which UAV. We define the binary variable xij that is 1 if the

user j gets the service from the UAV deployed at candidate

point i and becomes 0 otherwise. Also, the continuous variable

kij indicates the path loss of user j if the user is served by

the UAV i. Since path loss is directly related to the altitude

of the UAV, we have to use an explicit path-loss formula in

the mathematical model. The advantage of this formulation

includes a significant reduction in the number of candidate

points and the identification of exact optimal altitudes for

UAVs. But the use of an explicit path-loss formula leads to a

nonlinear model. We finally propose a linear model by adding

some constraints. Known parameters and decision variables of

our model are presented in Tables I and II, respectively.

We formulate the problem as follows, the objective function

(1a) is defined to minimize the total path loss. Constraint (1b)

states that each user can only get service from one UAV.

Constraint (1c) states that user j can only get service from

candidate point i, if point i is selected as one of the UAV

deployment locations. Constraint (1d) guarantees at least α

percent coverage of users. Constraint (1e) allows each UAV

to serve as high a data rate as it can. Constraint (1f) states

that we must select P point from the candidate points which

is equal to available UAVs. Constraints (1g) and (1h) state

TABLE II: Decision variables.

Decision variable Description

xij 1, if user j is served by candidate point i,
and 0, otherwise.

mi 1, if candidate point i is selected for UAV
deploying, and 0, otherwise.

hi The altitude of UAV is deployed at the
candidate point i.

kij The path loss between user j and candidate
point i, if user j is served by candidate point
i, and 0, otherwise.

tij Auxiliary decision variable.
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that if a candidate point is selected as a UAV position on the

ground, this UAV must fly within the permissible range. Also,

the UAV altitude at this point will be zero if and only if the

candidate point i is not selected by the model. In constraint

(1i), we want to prevent the assignment of users who are not

within a UAV coverage area to that UAV.

min
∑

i∈I

∑

j∈J

kij (1a)

s.t
∑

i∈I

xij ≤ 1, ∀j ∈ J , (1b)

xij ≤ mi, ∀i ∈ I, j ∈ J , (1c)
∑

i∈I

∑

j∈J

xij ≥ α× U , (1d)

∑

j∈J

Dj × xij ≤ β ×mi, ∀i ∈ I, (1e)

∑

i∈I

mi = P , (1f)

hi ≤ Hmax ×mi, ∀i ∈ I, (1g)

hi ≥ Hmin ×mi, ∀i ∈ I, (1h)

cot(θ)× xij ≤
hi

dij
, ∀i ∈ I, j ∈ J , (1i)

(4π
fc

C
)2(d2ij + h2

i ) ≤ PLmax + (1− xij)M ,

∀i ∈ I, j ∈ J , (1j)

kij ≤ Mxij , ∀i ∈ I, j ∈ J , (1k)

kij ≥ (4π
fc

C
)2(d2ij + h2

i )xij , ∀i ∈ I, j ∈ J . (1l)

Lemma 1. Consider a UAV at candidate point i and the

altitude hi∈ [Hmin,Hmax]. The user j is within the UAV

coverage area if and only if cot(θ) < hi

dij
where θ is the

UAV coverage angle.

Proof. As we can see in Figure 3, cot(θ) = hi

RUAV
where

Fig. 3: UAV coverage.

RUAV is the UAV coverage radius. So we have the following:

User j is within the UAV coverage area

⇐⇒ dij < RUAV

⇐⇒
hi

RUAV
<

hi

dij

⇐⇒ cot(θ) <
hi

dij
.

In constraint (1i), if cot(θ) ≥ hi

dij
, xij must take the value

0 because user j is not within the UAV coverage area.

Assuming a UAV at candidate point i and the altitude hi, in

the next constraint, we want the user j not to be assigned to

the UAV i if the path loss exceeds PLmax. We rewrite this

conditional statement with problem symbols as

(4π
fc

C
)2(d2ij + h2

i ) ≥ PLmax → xij = 0. (2)

Constraint (1j) as a valid constraint in the optimization

models satisfies the above requirements. Constraint (1k) sets

the value of kij to 0 if the user j is not assigned to UAV i.

Constraint (1l) states that if user j is served by the UAV whose

shadow is on candidate point i, the value of kij must be at

least equal to the path loss of this user from the UAV. Since

the problem is to minimize the sum of kijs, the value of kij
will not be greater than the right-hand side of the inequality.

Constraints (1j) and (1l) are two nonlinear constraints in

terms of decision variables in the proposed model. Below,

we linearize these two constraints to achieve a linear model.

There are exact methods like Branch and Bound (B & B)

in theoretical optimization and powerful tools in terms of

implementation like CPLEX solver for mixed binary linear

optimization problems. We will use the CPLEX solver to solve

our model, which exploits Branch and Bound algorithms to

solve mixed-integer linear optimization problems.

IV. LINEARIZATION OF NONLINEAR CONSTRAINTS

Consider Fij(hi) = (4π fc
C
)2(d2ij + h2

i ) is the path-loss

function in terms of UAV altitude. The conditional statement

(2) can be rewritten as follows:

xij =

{

0, if Fij(hi) ≥ PLmax,
0 or 1, otherwise.

(3)

We obtain a linear conditional statement in terms of hi by

replacing Fij(hi) in (3) with its linear approximation achieved

from Taylor expansion around some h0.

Fij(hi) = Fij(hi − h0 + h0) ≈ Fij(h0) + F
′

ij(h0)(hi − h0)

= (4π
fc

C
)2(d2ij + h2

0) + (4π
fc

C
)2 × 2× h0 × (hi − h0).

Now we have

xij =







0, if (4π fc
C
)2(d2ij + h2

0)+

2h0(4π
fc
C
)2 × (hi − h0) ≥ PLmax,

0 or 1, otherwise.
(4)
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By simplifying the conditional expression we have

xij =

{

0, if hi ≥
PLmax−(4π fc

C
)2(d2

ij−h2
0)

2h0(4π
fc
C

)2
,

0 or 1, otherwise.

By defining aij =
PLmax−(4π fc

C
)2(d2

ij−h2
0)

(4π fc
C

)2×2×h0

, the conditional

expression will be simplified as follows

xij =

{

0, if hi ≥ aij ,
0 or 1, otherwise.

(5)

To form (5) as a valid constraint in mathematical program-

ming, we represent the following expression:

xij ≤
M − hi

M − aij +
1
2

, ∀i ∈ I, j ∈ J , (6)

where M is a big number. Since all components in the

definition of aij are known, constraint (6) is linear in terms

of decision variables. Also, if hi ≥ aij , the right-hand side

of the inequality in (6) is less than 1, and since xij is a

binary decision variable, it will take 0 value, and if hi < aij ,
M−hi

M−aij+
1

2

will take a value greater than 1 then xij can be 0

or 1. So we replace the constraint (1j) with (6).

As mentioned above, we used the first-order Taylor expansion

of Fij around h0 to linearize the constraints. In the following

theorem, we find the best h0 so that the total approximate

error is minimized.

Theorem 1. Suppose the linear approximation of Fij(h)
defined in Section IV at h0 is F̄ij(h). Also assume that

the domain of Fij(h) is [Hmin,Hmax]. h0 = Hmin+Hmax

2
minimizes the total approximation error.

Proof. The Taylor expansion of Fij(h) around arbitrary point

h0 is as follows:

Fij(h) = Fij(h0) + F
′

ij(h0)(h− h0) + F
′′

ij(h0)
(h− h0)

2

2
+

F
′′′

ij (h0)
(h− h0)

3

6
+ . . .

As ∀h,F
′′′

ij (h) and higher order derivatives of Fij are equal

to zero, we have

Fij(h) = Fij(h0) + F
′

ij(h0)(h− h0) + F
′′

ij(h0)
(h− h0)

2

2
.

Since F̄ij(h) is the linear approximation of Fij(h), we have

Fij(h) = F̄ij(h) + F
′′

ij(h0)
(h− h0)

2

2
.

Therefore, the approximation error in h is

Fij(h)− F̄ij(h) = F
′′

ij(h0)
(h− h0)

2

2
,

where F
′′

ij(h0) = 2(4π fc
C
)2. By defining A = (4π fc

C
)2 the

total approximation error is equal to

E(h0) =

∫ Hmax

Hmin

A(h− h0)
2 =

A(h− h0)
3

3

∣

∣

∣

∣

Hmax

Hmin

=

[

A(Hmax − h0)
3

3

]

−

[

A(Hmin − h0)
3

3

]

=

A

3
(H3

max −H3
min − 3h0(H

2
max −H2

min)+

3h2
0(Hmax −Hmin)).

The minimizer of E(h0) satisfies E
′

(h0) = 0. So we have

−3(H2
max −H2

min) + 6h0(Hmax −Hmin) = 0

=⇒ h0 =
Hmin +Hmax

2
.

Constraint (1l) also contains the multiplication of xij and

h2
i , which is a nonlinear decision expression. To linearize this

constraint, we replace the path-loss formula with its linear

approximation:

kij ≥ [(4π
fc

C
)2d2ij + h2

0 + (4π
fc

C
)2 × 2× h0 × (hi − h0)]xij .

By doing so, the nonlinear part is reduced to the multiplication

of xij and hi. We propose a linear constraint by introducing

the decision variable tij = xijhi and placing it in the above

constraint:

kij ≥ [(4π
fc

C
)2d2ij − h2

0]xij + (4π
fc

C
)2 × 2× h0 × tij . (7)

But now there are a few things to consider:

• tij must be zero if xij or hi is equal to zero. Constraints

(8) and (9) satisfy this requirement:

tij ≤ hi, ∀i ∈ I, j ∈ J , (8)

tij ≤ Hmax × xij , ∀i ∈ I, j ∈ J . (9)

• tij must be equal to hi if xij becomes 1. Constraints (8)

and (10) satisfy this requirement:

tij ≥ hi − (1− xij)Hmax, ∀i ∈ I, j ∈ J . (10)

Note that if xij = 1, constraint (9) is a redundant constraint.

By replacing constraint (1l) with inequality (7) and adding

equations (8), (9), and (10) to the mathematical model as
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constraints, we achieve a linear mathematical model. The

aggregated proposed linear model is as follows:

min
∑

i∈I

∑

j∈J

kij (11a)

s.t
∑

i∈I

xij ≤ 1, ∀j ∈ J , (11b)

xij ≤ mi, ∀i ∈ I, j ∈ J , (11c)
∑

i∈II

∑

j∈J

xij ≥ α× U , (11d)

∑

j∈J

Dj × xij ≤ β ×mi, ∀i ∈ I, (11e)

∑

i∈I

mi = P , (11f)

hi ≤ Hmax ×mi, ∀i ∈ I, (11g)

hi ≥ Hmin ×mi, ∀i ∈ I, (11h)

cot(θ)× xij ≤
hi

dij
, ∀i ∈ I, j ∈ J , (11i)

xij ≤
M − hi

M − aij +
1
2

, ∀i ∈ I, j ∈ J , (11j)

kij ≤ M × xij , ∀i ∈ I, j ∈ J , (11k)

kij ≥ [(4π
fc

C
)2d2ij − h2

0]xij + (4π
fc

C
)2 × 2× h0 × tij ,

∀i ∈ I, j ∈ J , (11l)

tij ≤ hi, ∀i ∈ I, j ∈ J ,
(11m)

tij ≤ Hmax × xij , ∀i ∈ I, j ∈ J , (11n)

tij ≥ hi − (1− xij)Hmax, ∀i ∈ I, j ∈ J . (11o)

After modeling the problem, we need to answer the follow-

ing questions:

1) What is the best set of candidate points for the model?

As seen in describing the model parameters in Table I, the

candidate points set (I) must be given to the model.

2) What is the optimal appropriate value for the number of

UAV (P)?

V. FINDING A SET OF CANDIDATE POINTS

Our proposed model requires a set of candidate points. For

this, instead of considering all the points of the space as

potential positions for UAV deployment, we provide a finite

number of points as the set of candidate points. By doing

so, the selection of P points among uncountable points is

converted to a mixed-integer optimization that seeks to select

P points from a large but finite number of candidate points.

Since the presented model is a mixed-integer optimization and

consequently an NP-hard problem, the solving time increases

exponentially by increasing the instance dimension. The num-

ber of candidate points as a problem input has a meaningful

effect on the number of constraints and variables in the model

and exact solving time. We try to reduce the problem size

by intelligently providing candidate points and then obtaining

the exact solution of the reduced problem quickly by CPLEX

solver. Here we suggest six methods to make discrete 2D space

and introduce candidate points. In the next Section, we will

generalize these methods in 3D space and provide candidate

points for the model presented in [1] to solve the problem of

UAV deployment in 3D space.

A. On user strategy

This method considers each user as a candidate for a UAV

shadow. Although the candidate points introduced by this

method provide good coverage for users, the high number of

candidate points is the weakness of this method in crowded

scenarios.

B. Clustering methods

Clustering is a machine learning technique that involves

the grouping of data points. Given a set of data points, we

can use a clustering algorithm to associate each data point

with a specific group. In theory, data points that are in the

same group should have similar features, while data points

in different groups should have dissimilar features. Here, we

cluster users by considering the coordinates of each user as

its feature. So users who are close to each other are clustered

in the same group. After clustering the users, we offer the

centroids as the set of candidate points. By doing so, we expect

that after solving the mathematical model with the candidate

points provided, the nearby users will get service from the

same UAV.

Most clustering methods require some parameters to cluster

the data. For example, in K-means and K-medoids, parameter

K is the number of clusters that must be specified [31]. Some

clustering methods, such as DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) and Mean-shift, group

the data based on density and do not need the number of clus-

ters. Instead, in the DBSCAN method, the minimum number

of neighbors and a distance threshold must be predetermined

[32]. In the Mean-shift method, output depends on window

size that must be specified before clustering [33]. Finding the

proper parameters for each method in different modes of users

distributions is challenging and time-consuming.

There is a little sensitivity to outliers in density-based

methods in the sense that the outliers have little effect on

clustering. While in K-means and K-medoids methods, an

outlier can significantly move the cluster center. Also, due to

the grouping of data based on density in these methods, there

is no predefined shape for clusters. Although this feature is

mentioned as one of the strengths of density-based methods, a

strip-shaped cluster, for example, would not be helpful in the

present application.

We compare four well-known clustering methods as strate-

gies to provide candidate points: K-means, K-medoids, DB-

SCAN, and Mean-shift.

C. MergeCells

Here, we propose the MergeCells method that does not need

to know the number of clusters and provides groups of users in

the shape of a square. The average coordinate of users within

each square will be considered as a candidate point. Since we
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Fig. 4: Finding the densest cell.

Fig. 5: States for cell expansion in the first step.

will deploy at most one UAV at each candidate point, in this

method, the clusters will be at most as large as the coverage

area of a UAV. In the MergeCells method, we attempt to group

users in such a way that the number of candidate points is not

too many. At first, we mesh the surface with small cells and

consider the average coordinates of the users within each cell

as candidate points. Then, in an iterative process, we try to

reduce the number of candidate points by merging the cells

as much as possible. In the following, we will explain this

method with the help of an example. After meshing the space

with small cells, we count the number of users within each

cell and select the densest one. If the data rate required by the

users of this cell is equal or in excess of the UAV data rate,

we would place the number of candidate points needed into

the cell using a uniform distribution and mark it as a non-

expandable cell. Otherwise, we consider four states for cell

expansion. In each case, the cell enlarges in the direction of

one corner. Four states of expansion at the first iteration for

the selected cell in Figure 4 is as Figure 5.

For each state, the number of users within the expanded cell

is counted. If the number of users exceeds the average number

of users an UAV can cover, the expansion will be labeled

as an infeasible state. Among the feasible states, we select

the densest and expand the initial cell to it (for this example

the yellow cell). Then, the expansion will be continued for

the selected state. The expansion states of the yellow cell are

shown in Figure 6.

Fig. 6: States for cell expansion in step 2.

We keep expanding the cell until either the cell has no

feasible expansion or the side length of the cell exceeds a

predetermined parameter R. In such a situation, we mark the

cell as non-expandable, stop its expansion and replace the

candidate points within this cell with the average coordinates

of its users. Parameter R is the side length of the largest

enclosed square within the coverage area of a UAV. Using

this parameter, we prevent the cell from becoming too large

and crossing the boundaries of a UAV’s coverage area. Since

the coverage area of a UAV depends on its altitude, and

this algorithm must be run before solving the model and

determining the altitude of the UAVs, we consider some values

for R, and in Section VII, we compare the numerical results

of each value.

After stopping the expansion of one cell, the next cell will

be selected among the expandable cells. We will continue the

process as long as no expandable cells remain. Since it is

possible in reality to have an overlap in UAV coverage range,

we also allow cells to overlap in this meshing. To avoid the

unreasonable cessation of cell expansion, users who are in the

coverage range of two cells are not included in the count of

covered users in the second cell. The details of this method

are described in Algorithm 1.

The finer the initial mesh in this method, the higher the

accuracy of selecting candidate points. But in practice, if the

accuracy of the candidate points is higher than the precision

of UAV’s controllability, deployment in the obtained points is

difficult to achieve.

Selecting the densest expandable cell in each iteration of the

"while" loop and selecting the densest state for cell expansion

indicates that Algorithm 1 is greedy. Although we cannot

guarantee that our greedy algorithm will find the best candidate

points, the numerical results show that it performs better than

the other mentioned methods.
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Algorithm 1 MergeCells

1- for all j ∈ Users

2- Mark j as uncovered;

3- end for

4- Mesh the space with small cells;

5- C ←− The set of cells;

6- for all c ∈ C

7- Mark c as an expandable cell;

8- Vc ←− The number of users within cell c;

9- end for

10- CandidatePoints ←− {};

11- while (There is an expandable cell)

12- CurrentCell ←− argmaxc{Vc|c is expandable};

13- J ←− The set of uncovered users within CurrentCell;

14- if(|J | > average number of users an UAV can cover)

15- K ←−
|J|×Mean data rate of users

UAV data rate
;

16- RC ←− {r1, r2, . . . , rK |ri i = 1, 2, . . . ,K is random point

17- within CurrentCell};

18- CandidatePoints ←− CandidatePoints ∪RC;

19- for all j ∈ J

20- mark j as covered;

21- end for

22- else

23- while(The side of CurrentCell < R )

24- Form the cell expansion states E1,E2,E3,E4;

25- for m = 1, 2, 3, 4

26- Jm ←− The set of users within Em;

27- DREm ←− |Jm| ×Mean data rate of users;

28- if (DREm >UAV bandwidth)

29- mark Em as an infeasible expansion;

30- end if

31- end for

32- index ←− argmaxm∈1,...,4{|Jm| |Em is a feasible expan-

sion};

33- NewCell = Eindex;

34- if(NewCell == ∅)

35- Mark CurrentCell as a non-expandable cell;

36- for all c within CurrentCell

37- Mark c as a non-expandable cell;

38- end for

39- CandidatePoint←− CandidatePoint ∪ {The average

40- coordinates of the users within CurrentCell};

41- else

42- CurrentCell←− NewCell;

43- for all j ∈ Jindex

44- mark j as covered;

45- end for

46- end if

47- end while

48- end if

49- end while

Theorem 2. The complexity of the MergeCells algorithm for

an m × n rectangle with U users is of the order O(U) +
O((R− 1)×m× n).

Proof. In this algorithm, the rectangle is divided into N =
m× n small cells. The complexity of marking and assigning

users to small cells is of the order O(U). In the second part

of the algorithm, the cell expansion is performed for each

expandable cell. Therefore cell expansion occurs O(N) times.

Adding sufficient candidate points for dense cells is of order

O(1). Non-condensed cells expand as long as they do not

violate the data rate limit or UAV coverage radius. In each

iteration of cell expansion, one unit is added to the side of the

cell. Since the UAV coverage radius is considered during the

expansion, the cell is enlarged at most R − 1 times. So the

complexity of the MergeCells algorithm is equal to O(U) +
O((R− 1)×N) = O(U) +O((R− 1)×m× n).

VI. 3D P-MEDIAN

To compare the model presented in this paper with our

previous work [7], we need to generalize the method presented

in [7] to 3D positioning. For this purpose, we must provide the

set of candidate points for the model presented in [7] from 3D

space. We use a 3D expansion of the candidate points obtained

from one of the methods mentioned in Section V as the set of

candidate points.

1) Obtain a set of points on the 2D space from one of the

methods mentioned in the previous Section.

2) For each (x, y) in this set, add the following points to the

set of candidate points:

{(x, y, z)|z ∈ Z,Hmin ≤ z ≤ Hmax},

where Hmin and Hmax are the minimum and the maximum

allowable UAV altitudes, respectively. Note that by doing so,

the altitude of the UAVs will be selected from a discrete space.

So the 3D placement of the UAVs using the model presented

in this paper is more accurate than the model presented in

[7] because we consider the altitudes of UAVs as continuous

decision variables.

As mentioned at the beginning of Section II, we search

for the smallest P in a bi-section algorithm. This algorithm

requires an upper bound and a lower bound for P. The upper

Algorithm 2 Solving UAV placement problem

1- Choose one of the methodologies to determine candidate points for

2- deploying UAVs

3- Find Pmax

4- Calculate Pmin

5- while ( Pmax − Pmin ≥ 1 )

6- p← ⌊Pmax+Pmin

2
⌋

7- Solve mathematical model using Cplex with P = p

8- if (mathematical model is feasible)

9- Pmax ← p;

10- else

11- Pmin ← p;

12- end if

13- end while
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and lower bounds are calculated in the manner described in [7].

We solve the main problem of finding the minimum number

of UAVs as well as their optimal position and altitude of each

UAV to cover α percent of users by using Algorithm 2.

VII. NUMERICAL RESULTS

In this Section, we first introduce the test system and sim-

ulation parameters. Then, we discuss and compare the results

for selecting proposed 3D optimization placement models for

UAVs using the six approaches presented on the basis of

candidate points.

A. Test system

In our simulations, we consider only one ownership for the

network provider and the centralized decision making. We also

consider a 500×500 meter area with scenarios including 300,

500, and 700 users in three different distributions from dense

to scattered using Poisson Point Process. The λ parameter is

interpreted as the average number of points per unit and it is

also called the mean density or mean rate [34][35]. In this

paper, we used the "poissrnd" Matlab function to generate

random numbers from the Poisson distribution with the mean

parameter λ. This function gets another argument which is

the number of instances that we want to create. Hence, we

created, for example 700 users with λ parameter in Poisson

distribution with separate x and y values. Therefore, the unit

of λ is users per km. The λ of the dense and median scenarios

are equal to 20, and 2, 000, respectively. The distribution

of the scattered scenario is uniform distribution. In these

optimization problems, the goal is to cover at least α percent

of users according to the quality constraints. We consider three

different α values, specifically 70, 80, and 90%. Additionally,

the average data rate required by each user is 2 Mbps, and

the distribution of the user data rate is a uniform distribution.

The backhaul data rate of each UAV is assumed to be 300
Mbps, which is the limitation of the sum of the uplink for

covered users, and their flying altitude is between 10 to 50
meters. We also consider an elevation angle of 45 degrees, so

the coverage radius would be the same as the altitude. These

assumptions are related to the DJI UAV specifications and

power consumption. These parameter values for each scenario

are shown in Table III.

Based on the implementation of the bi-section algorithm to

find the optimal P, we get the lowest necessary UAVs with

at most log
(Pmax−Pmin)
2 times execution of the optimization

model. For time consumption, we ran algorithms and CPLEX

TABLE III: Test parameters for evaluating the problem model.

Parameters Description

Region 500 × 500 m

U 300, 400, 500, 600 , 700

α 70%, 80%, 85%, 90%, 95%

β 300 Mbps

Davg 2 Mbps

Hmin 10 m

Hmax 50 m
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Fig. 7: Illustration of UAV positions.

Studio IDE, for solving the proposed mathematical model on

a system with 12 GB RAM and 2.4 GHz Core-i5 CPU.

B. Results

In the following, we compare these six approaches of can-

didate points’ selection as inputs of the optimization problem

with each other in each scenario. Figure 7 shows a snapshot of

how UAVs are deployed after solving the optimization problem

that derives candidate points with the proposed MergeCells

method.

To have informative and generalizable results in the rest

of our simulations we present results that are the average of

about 50 runs for each scenario and method. We consider three

different parameters for each clustering method, including the

MergeCells method, to find the most suitable set of candidate

points in each method. Parameters for the MergeCells method

are R = 10, R = 50 and R = 100. Besides, we assume that the

precision of controllability of UAVs is 1 m. So the dimension

of small cells is 1 m × 1 m. For the K-means and K-medoids

methods, we assume parameters based on Pmax. Parameters for

the Mean shift clustering method are bw = 2, bw = 2.5 and

bw = 3.25. For the DBSCAN clustering method, we assume

ǫ = 50 and µ = 5 as it needs.

Figure 8 compares the results of the proposed optimization

model solving the scenario of covering 90% of 700 users in

three different densities. Figure 8a shows that in each density

we need fewer UAVs using the MergeCells method compared

with other methods. The same figure also shows that the

candidate points found with K-means and K-medoids are not

suitable for dense scenarios. Moreover, the candidate points

found with the DBSCAN clustering method is not suitable

for scattered scenarios. In addition to previous results, the on-

user method could not manage to have a solution because the

number of candidate points exceeded the required capacity and

time frame to find an optimal solution.

Figure 8b compares the running time of the proposed

approach using methods that determines candidate points. In

dense scenarios, the proposed MergeCells method takes less

time to find the optimum solution. In scenarios with λ = 2, 000
although DBSCAN has a better time, the MergeCells method,
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which is in the second position, has a better result in terms of

the number of UAVs that is the main objective of this problem.

In scattered scenarios, K-means and K-medoids methods are

approximately the same in terms of simulation time, but

the MergeCells method has a better solution in terms of

the number of UAVs. As K-means and K-medoids have no

solution in dense scenarios, no users are covered and the data

rate is zero. This happens in scattered scenarios for DBSCAN

clustering. As the optimization problem tries to cover at least

90% of users, the sum data rates for covered users are nearly

the same.
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Fig. 8: The results of covering 90% of 700 users scenario.

For a better overview of the results, we compare different

methods in different scenarios. It is worth noting that the

overall results of different scenarios in terms of the number

of users are like figure 8a.

In Figure 9 the scenario of covering 90% of users with

λ = 2, 000 Poison density in terms of the number of required

UAVs and average data rates served by UAVs is compared.

Figure 9a shows that, overall, the MergeCells method re-

quires fewer UAVs compared to other methods. Despite in

the scenario with 300 users the MergeCells method is not the

best, it is as efficient as other methods with the difference less
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Fig. 9: Comparing results of methods in the scenario of

covering 90% of users with λ = 2, 000 density.

than one UAV. The on-user method is not a proper choice,

especially in the scenario with 700 users.

Figure 9b illustrates the average data rate served by each

UAV. In scenarios with 500 and 700 users, the MergeCells

method has the best results, but in the scenarios with 300 users,

the Mean-shift, K-means, and K-medoids methods have better

results. However, the difference between the MergeCells and

Mean-shift result, which is the best method in this scenario,

is less than 10 Mbps. It is also worth noting that Mean-shift

has the fourth rank in the scenario with 700 users.

Figure 10 compares the scenario of covering 700 users

λ = 2, 000 density in different percentages of coverage. In

Figure 10a this comparison is shown in terms of the number of

required UAVs. The MergeCells method has the best results in

all different alphas, whereas the on-user method has no results

and K-medoids is the worst choice in α = 70% and α = 80%
and the DBSCAN method is the worst in α = 90% scenarios.

Figure 10b compares the results in term of mean data rate

served by each UAV. In all scenarios, the MergeCells method

has the best results. Because the difference between covering

70% and 90% of users is not more than 140 users total, the

sum data rate served is equal to 280 Mbps on average, which
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is less than one UAV backhaul. By the way, more than one

UAV is needed if we aim to cover 10% more users. Therefore,

the average data rate served by each UAV decreases while

covering a greater percentage of users.

 = 70%  = 80%  = 85%  = 90%  = 95%

Percent of Covered Users

0

5

10

15

20

25

N
u
m

b
e
r 

o
f 
R

e
q
u
ie

re
d
 U

A
V

s

MergeCell

Kmeans

Kmedoids

MeanShift

DBSCAN

(a) Number of required UAVs.

 = 70%  = 80%  = 85%  = 90%  = 95%

Percent of Covered Users

0

50

100

150

200

250

M
e

a
n

 D
a

ta
 R

a
te

 S
e

rv
e

d
 b

y
 E

a
c
h

 U
A

V
 (

M
b

p
s
)

MergeCell

Kmeans

Kmedoids

MeanShift

DBSCAN

(b) Mean date rate served by each UAV.

Fig. 10: Comparing results of methods in the scenario of

covering 700 users with λ = 2, 000 density.

Overall, the MergeCells method has better results in terms

of the number of UAVs, simulation time, and mean data rate

served by each UAV. We considered three different parameters

for the maximum width of the cell to reach the best parameter

for the MergeCells method. Figure 11a shows that both R = 50
and R = 100 have approximately the same results in terms of

the number of UAVs, but the average data rate result of running

the optimization problem using the MergeCells method with

a parameter of R = 100 is less than R = 50 in λ = 2, 000 and

scattered densities as shown in Figure 11b.

As discussed in Section III, we proposed a mathematical

model to solve the positioning problem. Figure 12 shows the

results of the proposed model in comparison with the model

of [7] with the scenario of covering 90% of 700 users. The

number of UAVs required results in our proposed model being

less than the 3D P-median [7] one as Figure 12a illustrated.

The mean data rate served by each UAV using our proposed

model is greater than the results of the 3D P-median in every
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Fig. 11: Comparing different parameters of the MergeCells

method in the scenario of covering 80% of 700 users.

other scenario due to the total data rate of UAVs is fixed and

the more number of UAVs causes less average data rate.

It should be mentioned that as shown in 12b because the

proposed model itself decides the altitude of UAVs instead of

searching the set of Z coordinator candidate points where the

3D P-median solution does, the running time of the proposed

model is much less than the running time of the 3D P-median

one.

VIII. CONCLUSION

In this paper, we proposed a mathematical model for 3D

UAV positioning to cover IoT nodes and wireless users.

One of the main advantages of the proposed model is the

determination of the most efficient altitude of the UAVs.

To solve the model, we needed some candidate points to

determine UAV positions. Therefore, we also proposed the

MergeCells method to find candidate points for the proposed

model. since the simulation time of our proposed model is not

complex, if the position of the users changes significantly, the

proposed solution must be run again. Re-running is not needed

until the number of covered users by a UAV or the percentage
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of covered users change. A user may have moved a lot but not

yet out of the UAV coverage. As discussed in the Numerical

Results Section, the results of the MergeCells method were

better overall than other candidate point methods, despite the

number of required UAVs, mean UAV data rate served, and

the running time. Also, the results of the proposed model are

significantly better than the 3D P-median.
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