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LGL-GNN: Learning Global and Local
Information for Graph Neural Network
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Abstract. In this article, we have developed a graph convolutional net-
work model LGL that can learn global and local information at the same
time for effective graph classification tasks. Our idea is to concatenate
the convolution results of the deep graph convolutional network and
the motif-based subgraph convolutional network layer by layer, and give
attention weights to global features and local features. We hope that
this method can alleviate the over-smoothing problem when the depth
of the neural networks increases, and the introduction of motif for lo-
cal convolution can better learn local neighborhood features with strong
connectivity. Finally, our experiments on standard graph classification
benchmarks prove the effectiveness of the model.
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1 Introduction

In recent years, deep learning has achieved outstanding performance in many
fields such as computer vision and natural language processing. The existing
deep learning models can handle structured data such as images and speech
well, but they are difficult to apply to graph data directly. However, in real
life, there are a large number of non-European data represented in the form of
graphs. For example, graphs can be abstracted from social networks, citation
networks, protein-interaction networks and other scenarios. Graph is not only
ubiquitous, but also can flexibly describe the complex relationships between
real things and has a strong structured expression ability. These advantages
have inspired researchers to further expand their research horizons to the field
of deep learning and graph. However, unlike image data with a regular grid
structure, each node in the graph has a different number of neighbor nodes, so
basic convolution and pooling operations cannot be used, which poses a huge
challenge to the existing convolutional neural network.

When extending CNN to the irregular grid structure of graph, two main
strategies are adopted, a) Spectral-based [1,2] and b) Spatial-based [3–5] meth-
ods. Most existing GCNs are designed under these two strategies. Specifically,
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Spectral-based GCN defines convolution operations based on spectral graph the-
ory. This method requires graphs to have the same size of structure and is usu-
ally used for vertex classification tasks. Spatial-based GCN approximates the
spectral convolution operation by defining the layer-by-layer propagation of a
node-based one-hop neighborhood. It is not limited to the same size of graph
structure, and can be used for graph classification tasks. Although the Spatial-
based GCN model can handle graph classification problems, the particularity of
the graph structure still brings some difficult problems to GCN. One of the most
difficult problems is over-smoothing [6, 7] . As the number of network layers in-
creases and the number of iterations increases, the representation of each node
tends to converge to the same value, which means that the global information of
the entire graph is synchronized to every node, rather than the local structural
features we expect.

To overcome the problem of over-smoothing, there are roughly two ways of
thinking at present. On the one hand, the SortPooling layer is used to replace
SumPooling. The SumPooling layer directly aggregates the learned local vertex
features from graph convolution operations into global features. It is difficult to
learn rich local vertex topological information from global features, resulting in
poor classification results. M. Zhang et al. [8] proposed a novel Deep Graph
Convolutional Neural Network (DGCNN), which uses a novel SortPooling layer
to sort the extracted multi-scale vertex features instead of summing. DGCNN
pays more attention to local vertex features, but only retains the top specified
number of vertices when sorting, which may cause a lot of information to be
lost. On the other hand, convolve the local subgraph of the node. Z. Zhang et
al. [9] designed a local convolution operation based on a subtree. Since the
local subgraph only retains the information of the nodes closer to the root node,
the design of the graph convolution operation on the subgraph can limit the
information interaction with remote nodes, but also loses global information.

The LGL model we proposed is inspired by the simultaneous attention and
fusion of global and local information. While using the graph convolutional layer
to learn global information, the subgraph convolutional layer is used to learn lo-
cal node features, and the attention mechanism is introduced to give different
weights to them. The framework of the proposed LGL is shown in Fig. 1. Specif-
ically, the main contributions of this paper are summarized as follows:

First, we designed a new local convolution operation based on motif. Motif
is a subgraph that appears frequently in graph. Each node in motif has strong
connectivity. The using of motif can effectively capture high-quality local neigh-
borhood information.

Second, We have developed a novel hybrid graph convolutional network
model for graph classification, which is the LGL model. The LGL model uses
the depth graph convolutional network and the subgraph convolutional network
to learn global information and local information respectively, and the attention
mechanism gives weight to both.

Third, we evaluate the performance of the proposed LGL model on graph
classification tasks by means of experience. Experiments on benchmarks demon-
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strate the effectiveness of the proposed method, when compared to state-of-the-
art methods.

2 Related Works

In this section, we briefly review some important related work of LGL model,
including the Deep Graph Convolutional Neural Network (DGCNN) [8], the
Subgraph Convolutional Neural Networks (SCN) [9] and motif.

Deep Graph Convolutional Neural Network Given a graph G with n

nodes, X ∈ R
n×c is the node feature vectors and A ∈ R

n×n is the graph
adjacency matrix. Spatially-based Deep Graph Convolutional Neural Network
(DGCNN) [8] model [8] takes the following graph convolution operation

Z = f(D̃−1
ÃXW), (1)

where Ã = A+ I means that graph is added to the self-loops, D̃ is its diagonal
degree matrix, W̃ ∈ R

c×c′ is a matrix of trainable convolution parameters, f is
a nonlinear activation function, and Z is the output after convolution operation.

For the graph convolution operation defined by Eq. 1, XW maps the features
of each node from the c dimension to the c′ dimension, ÃY(Y := XW) spreads
the features information of each node to the neighboring nodes and the node
itself, thus realizing the aggregation of nodes information. However, the distance
between any two nodes in the graph is relatively close, and it takes only a few
steps from one node to another, so when the number of convolutions increases,
the problem of over-smoothing appears.

Subgraph Convolutional Neural Network Different from DGCNN, Quantum-
based Subgraph Sonvolutional Neural Networks (QS-CNNs) model [9] extract
the neighborhood subgraph of each node through quantum walks, and use graph
grafting and graph pruning to generate an m-ary tree for each node. The leaf
nodes of the m-ary tree are further replaced by their own neighboring m-ary
trees, and this process is performed recursively until a K-level and m-ary tree is
constructed for each node. Since QS-CNNs generates a K-level extended subtree
for each node, it can effectively learn the local connection structure information
of the node.

Motif Motif has a long history in network research. The concept of motif was
first introduced in 2002 [10] , which represents the frequently repeated patterns
in complex networks and is the building block of complex networks. Some work
[11–13] proves that motif plays an important role in understanding and capturing
higher-order structure information of the biological networks, social networks,
academic networks, and so on. Capturing the motif structure and its interaction
can improve the quality of network embedding. But the current research basically
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Fig. 1. We use SCN and GCN to perform 3-layer convolution on graph respectively, and
splice the convolved features as shown in the figure. Then the spliced   features are sorted
into a grid structure, which can be directly subjected to 1-dimensional convolution.
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ignores the capture and application of Motif. Several common motifs are shown
in Fig. 2.

Fig. 2. Several Common Motifs

3 Proposed LGGNN model

In this section, we first give the overall framework of the proposed model LGL.
Subsequently, we introduce the subgraph convolutional layer based on motif, and
the feature fusion between subgraph convolutional layer and deep convolutional
layer based on attention mechanism.

A. Framework We develop a novel hybrid convolution structure based on GCN
and SCN. Specifically, both GCN and SCN performed the convolution operation
three times, and we spliced   the features of the convolutional layer as shown in Fig.
1. Each node in SCN only aggregates adjacent motif neighbors, representing the
local node information of the graph, and GCN is based on the one-hop neighbor
propagation of the node, including the global topological characteristics of the
graph. Hybrid graph convolution operation can be described by the following
formula:

Z
(l) = f(αg(l)

D̃
−1

ÃXW ⊕ αs(l)
D̃m

−1
MXWm), (2)

where Ã = A+ I means that graph is added to the self-loops, M is motif adja-
cency matrix, W̃ ∈ R

c×c′ and W̃m ∈ R
c×c′ are matrix of trainable convolution

parameters, αg(l) and αs(l) are the attention weights of the GCN and SCN lay-
ers, f is a nonlinear activation function, and Z is the output after convolution
operation.

B. Motif-based SCN In order to better learn the strong connection relation-
ship between nodes, we introduced motif and designed SCN based on motif.
Specifically, SCN includes four key steps: (1) rank nodes according to their de-
gree; (2) find neighbors based on motif for each node; (3) map the subgraph
to the tree: construct a m-ary tree for each node. The leaf nodes of the i-level
m-ary tree are replaced by the neighboring m-ary trees, and a K-level m-ary tree
is recursively constructed for each node; (4) arrange the tree into a regular grid
structure.
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Fig. 3. For the root node (dark blue), find its motif neighbor (light blue, pink) as the
leaf node of the root node. Then take the leaf node as the root node, continue to find
the leaf node based on the motif pattern, and iterate continuously until it grows into
a K-layer m-ary tree. Finally, the trees are arranged into a grid structure.

C. Attention Layer Similar to the attention equation mentioned by Vaswan
et al. [14] ,we introduce attention to the splicing process of GCN layer and SCN
layer:

Attention(l)(S(l),G(l)) = softmax(S(l)
W

(l)
s ⊕G

(l)
W

(l)
g ) (3)

where S
(l)

∈ R
N×d is the last output of SCN, D(l)

∈ R
N×d is the last output

of GCN, d denotes the dimensions of each vertex and W
(l)
s ∈ R

d×d and W
(l)
g ∈

R
d×dout are two learnable matrices.

4 Experimental Results

We set up the experiments on benchmark datasets to evaluate the solid perfor-
mance of the proposed LGL model against both state-of-the-art graph kernels
and other deep learning methods on graph classification problems.

Datasets We conducted the experiments using three bioinformatics datasets:
MUTAG, PROTEINS, PTC-MR and one social networks datasets: IMDB-B.
The details of the datasets are shown in Table.1.
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Table 1. Information of the Benchmark Datasets

Datasets Graphs Classes Avg.Nodes Avg.Edges Labels Description
MUTAG 188 2 17.93 19.79 7 Bioinformatics
PROTEINS 1113 2 39.06 72.82 3 Bioinformatics
PTC-MR 344 2 14.29 14.69 19 Bioinformatics
IMDB-B 1000 2 19.77 96.53 - Social

Experimental Setting We compare the performance of the proposed LGL
model on graph classification tasks with a) four alternative state-of-the-art graph
kernels and b) five alternative state-of-the-art deep learning approaches for
graphs. To be specific, the graph kernels include 1) the Weisfeiler-Lehman sub-
tree kernel (WLSK) [15], 2) the shortest path graph kernel (SPGK) [16], 3)
the random walk graph kernel (RWGK) [17], and 4) the graphlet count kernel
(GK) [18]. The deep learning methods include 1) the deep graph convolutional
neural network (DGCNN) [8], 2) the quantum-based subgraph convolutional
neural networks (Qs-CNNs) [9], 3) the backtrackless aligned-spatial graph con-
volutional networks [19], 4) the deep graphlet kernel(DGK) [20], and 5) the
diffusion convolutional neural network((DCNN) [21].

Table 2. Classification Accuracy (In%± Standard Error) for Comparisons

Datasets MUTAG PROTEINS PTC-MR IMDB-B
WLSK 82.88±0.57 73.52±0.43 58.26±0.47 71.88±0.77
SPGK 83.38±0.81 75.10±0.50 55.52±0.46 71.26±1.04
RWGK 80.77±0.72 74.20±0.40 55.91±0.37 67.94±0.77

GK 81.66±2.11 71.67±0.55 52.26±1.41 65.87±0.98
DGCNN 85.83±1.66 75.54±0.94 58.59±2.47 70.03±0.86
Qs-CNNs 93.13±4.67 78.80±4.63 65.99±4.43 -
BASGCN 90.05±0.82 76.05±0.57 61.51±0.77 74.00±0.87

DGK 82.66±1.45 71.68±0.50 57.32±1.13 66.96±0.56
DCNN 66.98 61.29±1.60 58.09±0.53 49.06±1.37
LGL 90.16±1.39 78.41±0.82 65.74±1.80 66.51±1.51

For the evaluation, we adjust a number of hyperparameters to get the best
performance of each dataset, as shown in Table.3 . In SCN, we set up two motifs,
triangle and 4-cycle, to capture the neighbors of nodes, and construct 2-ary and
3-ary trees respectively. For our model, we perform 10-fold cross-validation to
compute the classification accuracy, with nine training folds and one validating
fold. For each dataset, we repeat the experiment 10 times and report the average
classification accuracy and standard errors in Table.2.

For the alternative graph kernels and deep learning methods except Qs-
CNNs, we report the best results collected and experimented by Bai et al. [22].
We report the best results for Qs-CNNs from the original paper [9]. Classifica-
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tion accuracy and standard error of each competing approach are also shown in
Table.2.

Table 3. Hyperparameters settings for each dataset.

Parameters K m Motif conv conv1d fc fc_num batch lr L2norm dropout
MUTAG 5 2 triangle 256 32 64 2 64 0.01 0 0.1
PROTEINS 4 3 4-cycle 32 32 256 3 16 0.0003 0 0
PTC-MR 4 3 4-cycle 256 32 128 2 32 0.01 0 0
IMDB-B 4 2 triangle 256 32 64 2 64 0.01 0 0

Experimental Results and Discussions Table.2 indicates that the proposed
LGL model can significantly outperform either the competing graph kernel meth-
ods or the deep learning methods for graph classification.

Overall, the reasons for the effectiveness of our method are threefold. First
of all, as mentioned earlier, most deep learning methods for graph classification
cannot well avoid the problems of oversmoothing and retention of rich global
and local information. On the contrary, the proposed LGL can alleviate these
problems and get better representation learning. Second, the graph kernels with
C-SVM classifier are shallow learning methods, while the proposed LGL model
can provide an end-to-end deep learning architecture. Thus LGL model can
learn better graph characteristics. Third, the use of motif to extract strongly
connected neighbor information for nodes simplifies the steps of quantum walk
in Qs-CNNs. The splicing of the results of local subgraph convolution and deep
graph convolution has achieved a performance exceeding DGCNN. This empir-
ically proves the effectiveness of the proposed LGL model.

5 Conclusions

In this paper, we have shown how to construct motif-based subgraph convolu-
tion network for a graph and how to make use of both the global topological
arrangement information and local connectivity structures within a graph. Ex-
perimental results on graph classification show our LGL model is superior to a
number of baseline methods.

It is interesting to notice that different practical problems have different
requirements for global and local information. For example, social networks may
rely more on the near-end neighbors of nodes, but the properties of chemical
molecules may depend on some remote nodes. In addition, the choice of motif
also greatly affects the effect of graph classification. Our future plan is to explore
the impact of more types of motifs on the experimental results, and a better way
to gather global and local information.
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