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Filling Voids in Elevation Models using a Shadow

Constrained Convolutional Neural Network
Guoshuai Dong, Weimin Huang, Senior Member, IEEE, William A. P. Smith, Senior

Member, IEEE, and Peng Ren, Senior Member, IEEE

Abstract—We explore the use of convolutional neural networks
(CNNs) for filling voids in digital elevation models (DEM). We
propose a baseline approach using a fully convolutional network
to predict complete from incomplete DEMs which is trained in a
supervised fashion. We then extend this to a shadow constrained
CNN (SCCNN) by introducing additional loss functions that
encourage the restored DEM to adhere to geometric constraints
implied by cast shadows. At training time, we use automatically
extracted cast shadow maps and known sun directions to compute
the shadow-based supervisory signal in addition to the direct
DEM supervision. At test time, our network directly predicts
restored DEMs from an incomplete DEM. One key advantage
of our SCCNN model is that it is characterized by both CNN
data inference and geometric shadow cues. It thus avoids the
data restoration which may violate shadowing conditions. Both
our baseline CNN and SCCNN outperform the inverse distance
weighting (IWD) based interpolation method, with the shadow
supervision enabling SCCNN to obtain the best performance.

Index Terms—Convolutional neural network, shadow geometry
constraint, shadow map

I. INTRODUCTION

IN 2000, the National Aeronautics and Space Adminis-

tration (NASA) collected radar data covering more than

80% of the global land surface through the Shuttle Radar

Topography Mission (SRTM) [1]. The SRTM data was used

to build digital elevation models (DEMs). DEMs play an

important role in various fields such as geological mapping

[2] and natural disaster monitoring [3]. Therefore, there is

a high requirement on the accuracy and completeness of

DEM data. However, there are a large number of voids (areas

with unknown elevation) in the SRTM data, especially in

mountainous areas. This is because it is difficult for radar

to image steep terrain. These void regions account for 0.3%

of the total surveyed area [4], [5] but are concentrated in

mountainous regions. It is therefore important to develop

void-filling strategies for these areas. Most existing void-

filling schemes are based on interpolation. Reuter et al. [6]

introduced terrain restoration methods including the filling and

feathering approach, the IWD based interpolation method, etc.
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However, these methods require the information from auxiliary

DEM sources to improve the accuracy of restored results.

Milan et al. [7] used an auxiliary DEM to fill mountainous

missing data. However, the limitation of this method is that it

cannot be extended to the DEM data with different resolutions

and auxiliary DEM data are not always available. Hogan et

al. [8] improved interpolation results according to geometric

constraints provided by shadows. However, shadow geometric

constraints obtained from shadows provide relatively sparse

information and the method is accompanied by a nonconvex

optimization problem which is difficult to compute and may

fall into a local optimum. Ling et al. [9] employed satellite

images to obtain the topographic information of valleys for

interpolation. However, it is almost not scalable to other

mountainous situations except valleys for the method.

Most existing interpolation based methods do not consider

the global information contained in the non-void regions

nor are they capable of correcting errors outside of the

void regions. These limitations can possibly be addressed

by exploiting deep learning models, e.g. convolutional neural

networks (CNNs) [10], which are capable of learning the space

of plausible DEMs. Hence, for our baseline method we train

a void filling CNN in a supervised fashion using complete

DEMs as the target output. However, such an approach is

dependent on the quantity and quality of complete DEMs that

can be provided. The training samples themselves may contain

errors or may be produced by a separate void filling procedure

and so may lead to restorations that violate geometric con-

straints. One such geometric constraint arises from observing

cast shadows in terrain imagery. We make a preliminary

attempt to introduce additional cast shadow supervision. This

shadow constrained convolutional neural network (SCCNN)

encourages the restored DEMs to adhere to shadow geometry

constraints, potentially leading to improvements even in the

non-void regions. Compared with existing interpolation based

methods, our SCCNN model learns a powerful representation

of DEMs and can thus comprehensively characterize the

relationship between missing data and valid data. It does not

need auxiliary DEMs and avoids the problem of ambiguous

resolutions from different DEMs. Furthermore, in contrast to

our baseline CNN, our SCCNN encourages the restored data

to satisfy shadowing rules and thus further improves accuracy

and robustness. The deep nets presented in [11] are among

the first for deep learning based DEM restoration. Specif-

ically, they consist of multiple neural nets, i.e., generators

and discriminators. In contrast, our method only exploits one

neural net and is structurally less sophisticated. Furthermore,
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Fig. 1: DEM void filling with a CNN (blue rectangle) and shadow constrained CNN (SCCNN) red rectangle.

our method characterizes the shadow cues which are not

considered in [11].

II. VOID FILLING WITH A CNN

We propose to train a fully convolutional network

(i.e., image-to-image with no fully connected layers) that

takes an incomplete DEM as input (with elevation in void

regions set to zero) and outputs a complete DEM of the same

resolution. We use the U-Net architecture [12] that comprises

a contractive convolutional encoder and a deconvolutional

decoder with skip connections between encoder and decoder

layers of the same spatial resolution. These skip connections

are crucial for transferring high frequency detail from input to

output. The U-Net architecture has proven very powerful on

a wide range of image-to-image tasks.

At a DEM location x ∈ X , where X ⊂ R
2 is the set of

pixel locations in the DEM, we denote the altitude predicted

by the CNN as Ĥ(x) and the corresponding altitude in the

complete training DEM by H(x). We train the CNN using

two widely used loss functions. First the ℓ1 norm:

Lℓ1 =
∑

x

|Ĥ(x)−H(x)|, (1)

and second the Kullback-Liebler (KL) divergence:

LKL = −
∑

x

H(x) log
Ĥ(x)

H(x)
. (2)

See Fig. 1 (blue) for an illustration of this approach.

Although this CNN model is straightforward, it has a sig-

nificant advantage over purely interpolation-based approaches.

By training on large datasets, it is able to learn general

characteristics of elevation data and fill voids in a way that

is consistent with data it has previously seen. We show this

in our evaluation. However, convolution and pooling layers in

the CNN are local operations and so it cannot learn (spatially)

long range dependencies. Moreover, the completed DEM may

not be consistent with other cues. In particular, we now show

how to exploit geometric constraints provided by cast shadows.

III. SHADOW GEOMETRY

Any region with large altitude variations (i.e., mountainous

areas) contains locations where the sun is occluded when

not directly overhead. These cast shadow regions provide

informative geometric cues that can aid DEM void filling. The

basic geometry of shadowing is illustrated in Fig. 2.
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Fig. 2: Shadow geometry in a 2D slice through a DEM parallel

to the light direction.

We treat the sun as a point source and denote by θ the angle

between the light direction and the ground plane, i.e., θ =
arccos(s3) where s ∈ R

3 is the unit length sun direction.

Consider a 2D slice through the DEM that is parallel to both

the light direction and the up vector (as in Fig. 2). We define

pairs of locations (xen, xex) ∈ Xsbound ⊂ X×X as the shadow

entrance and exit points respectively with Xsbound containing

all pairs of shadow boundary locations. The shadow ceiling is

the line connecting the shadow entrance and exit points. It is

clear that the shadow ceiling and light direction are parallel,

which satisfies:

H(xen)−H(xex)

||xen − xex||
= tan(θ). (3)

The region below the shadow ceiling lies in cast shadow

and we denote this shadow area as the set of locations Xs.

For a point in the shadow area xs ∈ Xs, the elevation of the

shadow ceiling at this location, denoted c(xs, H), is given by:

c(xs, H) =
H(xex)‖xs − xen‖+H(xen)‖xs − xex‖

‖xs − xen‖+ ‖xs − xex‖
. (4)
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Fig. 3: Shadow segmentation.

For any location xs within a shadow area, the altitude at

that point, H(xs), must be lower than the ceiling elevation

c(xs, H). This observation provides the first shadow constraint

(C1): ∀xs ∈ Xs, H(xs) < c(xs, H).
In addition, the terrain must be convex along the light source

direction at a shadow entrance point. Specifically, the second

directional derivative of H along direction s̄ = Ps/‖Ps‖
must be negative where P = [eTx e

T
y ]

T ∈ R
2×3 and Ps is

the orthogonal projection of s onto the ground plane. Using

a finite difference approximation of the second derivative we

obtain:

H ′′

s̄ (x) ≈ H(x+ s̄) +H(x− s̄)− 2H(s̄). (5)

The convexity constraint results in the second shadow con-

straint (C2): ∀(xen, xex) ∈ Xsbound, H
′′

s̄ (xen) < 0.

IV. CAST SHADOW SUPERVISION

We now show how to reframe the shadow constraints from

the previous section as differentiable loss functions for use

within a machine learning scheme.

A. Shadow Segmentation

We begin by explaining how we automatically detect

shadow areas in terrain imagery. We employ the multi-band

thresholding technique [8] to perform shadow segmentation.

Specifically, we use three bands (near infrared, mid-infrared

and thermal infrared bands) of multispectral satellite images

from Landsat-5. Let Ik(x) denote the normalized pixel inten-

sity at x in the k-th band. The segmentation indicator F (x) is

formulated as:

F (x) =

K
∏

k=1

(1− Ik(x))
σk , (6)

where σk is an empirical parameter. A shadow threshold η is

applied to the segmentation indicator F (x), resulting in the

shadow region set Xs:

x =

{

∈ Xs, if F (x) > η;
/∈ Xs, otherwise.

(7)

Computing this for every pixel leads to a binary shadow

map of the same size as the image, as shown in Fig. 3.

The segmentation error is less than 10% which is empirically

validated to be acceptable for shadow characterization [8].

B. Cast shadow loss functions

We now represent the shadow geometric constraints in the

form of loss functions. Specifically, we design functions that

take on a large value when a shadow constraint is violated and

are otherwise zero. Hence, the first shadow constraint (C1)

leads to a big loss in the case that a restored altitude in a

shadow area is higher than the corresponding shadow ceiling

elevation. We use an indicator function to characterize (C1) as

follows:

ε[Ĥ(xs)− c(xs, Ĥ)] =

{

1, if Ĥ(xs) > c(xs, Ĥ);
0, otherwise.

(8)

We use the indicator function (8) to enhance the disagreement

penalty between the restored DEM and the true DEM, and

obtain the shadow ceiling loss function Lc with respect to

(C1) as follows:

Lc =
∑

xs ∈ Xs

|Ĥ(xs)−H(xs)| · ε[Ĥ(xs)− c(xs, Ĥ)]. (9)

According to the second shadow constraint (C2), we impose

a large loss if the restored shadow entrance point is located at a

valley rather than a peak. Following (5), we define a convexity

characterization function t(Ĥ,H) as:

t(Ĥ,H) =
Ĥ(xen + 1) + Ĥ(xen − 1)

2
−H(xen), (10)

and another indicator function as follows:

ε(t(Ĥ,H)) =

{

1, if t(Ĥ,H) > 0;
0, otherwise.

(11)

This results in a value of 1 if the restoration violates (C2) and

0 otherwise. We use this in the shadow entrance curvature loss

function Lv with respect to (C2) as follows:

Lv =
∑

xen ∈ Xen

ε(t(Ĥ)) · [|Ĥ(xen + 1)−H(xen + 1)|+

|Ĥ(xen − 1)−H(xen − 1)|].

(12)

The shadow entrance and exit points determine the shadow

ceiling in (C1). The shadow entrance points are a dominant

factor in (C2). Therefore, both the shadow entrance and exit

points are significant for restoring DEM. We thus enhance

disagreement at the shadow entrance and exit and define the

shadow boundary loss function Lb as follows:

Lb =
∑

xen ∈ Xen

|Ĥ(xen)−H(xen)|+
∑

xex ∈ Xex

|Ĥ(xex)−H(xex)|,

(13)
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V. SHADOW CONSTRAINED CNN

Our baseline CNN may produce results violating shadow

formation mechanisms. To avoid this problem, we now incor-

porate geometric shadow constraints, i.e., the loss functions

(9), (12) and (13), into a CNN to achieve shadow guided

training. Such a scheme is referred as shadow constrained

convolutional neural network (SCCNN), which is illustrated

in Fig. 1 (red).

We retain the KL divergence and ℓ1 losses to obtain the

overall loss function for our SCCNN as follows:

L=α|Ĥ −H|+ βDKL(Ĥ|H) + γcLc + γvLv + γbLb.
(14)

The parameters α, β, γc, γv and γb balance the effects of

different terms in the overall loss function. The SCCNN model

takes incomplete DEM data as inputs and complete DEM

data as targets with shadow maps as guiding knowledge. It

employs the same U-net deep structure as the original CNN.

The SCCNN model learns the transition between valid DEM

data and void DEM data with disagreement losses enhanced

by geometric shadow constraints, which enable the SCCNN

to encode certain knowledge of shadow cues. Therefore,

unlike the original CNN which is only driven by training

data, our SCCNN not only learns from valid data but also

follows geometric rules. It thus potentially has more effective

restoration performance than a straightforward CNN.

VI. EMPIRICAL VALIDATION

We use rectangular mountainous areas of western China,

i.e., from 29◦N85◦E to 28◦N86◦E, as the investigated region.

We obtain remote sensing data of the investigated region from

the SRTM version 21, which contains plenty of voids espe-

cially in mountainous areas. We use the data from the SRTM

version 2 as incomplete DEM data. We use the corresponding

data from the SRTM version 4, which does not contain voids

[13], as ground truth DEM data. Shadow maps are segmented

from the satellite images of Landsat-5 for the same region.

In our experiment, we empirically compare the void filling

results obtained from the IWD based interpolation method [6]

, the baseline CNN and the proposed SCCNN. We use 36 non-

overlapping scenes to evaluate different methods. For the two

learning models, i.e., CNN and SCCNN, cross validations are

performed by using 33 scenes and 3 scenes for training and

testing, respectively.

A. Qualitative evaluations

Fig. 4 illustrates the void filling results obtained from the

IWD based interpolation method, the CNN and the SCCNN.

The first row in Fig. 4 displays the incomplete DEM data.

The second, third and fourth rows illustrate the void filling

results by using different methods. The bottom row shows the

ground truth DEM data. The regions inside red boxes illustrate

detailed contrastive restoration results obtained from different

methods. We observe that the results from the SCCNN model

agree best with the ground truth DEM data among the three

methods.

1https://dds.cr.usgs.gov/srtm/version2 1/SRTM3/

Incomplete DEM 

data

CNN

SCCNN

Ground truth

IDW based 

interpolation

Fig. 4: Void filling results from different methods.

In order to further illustrate the performance difference

qualitatively, we examine the sectional views of a restored

mountain curve along 85◦34′E at around 28◦31′N . The cor-

responding sectional views of the restored mountain curve are

shown in Fig. 5. The top row shows the full sectional view

and the bottom row displays the zoomed in restored curves

with respect to one shadow area. It is clear that the SCCNN

outperforms both the IWD based interpolation method and the

CNN methods.

B. Quantitative evaluations

TABLE I: Peak signal to noise ratio (PSNR).

Images Interpolation CNN SCCNN

28
◦
31

′
N85

◦
34

′
E 38.48dB 42.41dB 43.00dB

28
◦
23

′
N85

◦
09

′
E 37.18dB 37.19dB 38.58dB

28
◦
21

′
N85

◦
29

′
E 37.53dB 37.88dB 38.25dB

TABLE II: Root mean square error (RMSE).

Images Interpolation CNN SCCNN

28
◦
31

′
N85

◦
34

′
E 133.75m 84.26m 80.16m

28
◦
23

′
N85

◦
09

′
E 155.31m 151.88m 130.45m

28
◦
21

′
N85

◦
29

′
E 149.33m 144.89m 138.39m

We use both peak signal to noise ratio (PSNR) and root

mean square error (RMSE) for quantitatively evaluating the

restoration accuracy. A larger PSNR value reflects better

accuracy. On the other hand, a smaller RMSE reflects better
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Fig. 5: A cross section comparing incomplete, ground truth and three restoration results.

accuracy. Table I shows the PSNR values of the IWD based

interpolation method, the baseline CNN and the SCCNN.

We observe from Table I that both the CNN and the SCCNN

significantly outperform the IWD based interpolation method.

The key effective factor is that the two deep learning methods

characterize and learn the varying heuristics of mountains from

the training data, and in contrast the IWD based interpolation

method does not explore the training data but just employs test

data for restoration. Additionally, benefiting from incorporat-

ing the geometric shadow constraints into training the model,

the SCCNN outperforms the baseline CNN.

Table II shows the RMSE values of different methods.

Similar to those in Table I, both CNN and SCCNN exhibit

much better RMSE than the IWD based interpolation method,

and our SCCNN obtains the best RMSE among the three

methods.

VII. CONCLUSIONS

We have presented a shadow constrained convolutional

neural network (SCCNN) for filling the mountainous voids of

a digital elevation map (DEM) and thus obtained the restored

DEM. Compared with straightforward deep learning models

such as convolutional neural networks (CNN), the proposed

SCCNN model is characterized by geometric shadow con-

straints. Unlike the pure data driven strategy conducted via the

straightforward CNN, the geometric shadow constraints endow

our SCCNN with certain knowledge of shadow cues. The

geometric shadow constraints incorporated into the SCCNN

are in favor of restoring DEMs following the shadow cues.

Therefore, the SCCNN potentially avoids the restoration which

violates the geological shadowing rules. Empirical compar-

isons confirm that the SCCNN outperforms the IWD based

interpolation method and the CNN based methods. In the

future, we will investigate how to incorporate the shadow cues

into more comprehensive deep learning methods such as the

generative model in [11].
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