UNIVERSITYW

This is a repository copy of Local nets of von Neumann algebras in the Sine-Gordon
model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159871/

Version: Published Version

Article:

Bahns, Dorothea, Fredenhagen, Klaus and Rejzner, Kasia orcid.org/0000-0001-7101-5806
(2021) Local nets of von Neumann algebras in the Sine-Gordon model. Communications
in Mathematical Physics. ISSN 1432-0916

https://doi.org/10.1007/s00220-021-03961-y

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/




Commun. Math. Phys. . Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-03961-y Mathematical

Physics
)]

Check for
updates

Local Nets of Von Neumann Algebras in the Sine—-Gordon
Model

Dorothea Bahns', Klaus Fredenhagen”, Kasia Rejzner>

1 Mathematisches Institut, Georg-August-Universitdt Gottingen, Bunsenstr. 3-5, D-37073 Géttingen,

Germany. E-mail: dbahns @ mathematik.uni-goettingen.de
2 11 Institut fiir Theoretische Physik, Universitdt Hamburg, Hamburg, Germany. E-mail: klaus.fredenhagen @desy.de
3 Department of Mathematics, University of York, York, UK. E-mail: kasia.rejzner@york.ac.uk

Received: 18 December 2017 / Accepted: 15 January 2021
© The Author(s) 2021

Abstract: The Haag—Kastler net of local von Neumann algebras is constructed in the
ultraviolet finite regime of the Sine—Gordon model, and its equivalence with the massive
Thirring model is proved. In contrast to other authors, we do not add an auxiliary mass
term, and we work completely in Lorentzian signature. The construction is based on the
functional formalism for perturbative Algebraic Quantum Field Theory together with
estimates originally derived within Constructive Quantum Field Theory and adapted to
Lorentzian signature. The paper extends previous work by two of us.
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1. Introduction

The classical Sine—Gordon model is one of the most interesting integrable field theories,
and its quantization has been treated since long by many authors (see e.g. [14]). One strat-
egy is the ansatz with factorizing S-matrices, where the integrable structure is exploited.
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The corresponding local fields are approached in the so-called form factor program,
which, however, has problems in proving the convergence of the arising series [20,30].
A direct construction of the local von Neumann algebras has been successfully carried
out for similar models by Lechner [21], based on ideas of Schroer [28] and Buchholz,
in analogy with [6]. For models closer to the Sine—Gordon model, where this construc-
tion is not directly applicable, encouraging results have been found by Cadamuro and
Tanimoto [9].

Another strategy is the construction of the model by methods of Constructive Quan-
tum Field Theory. This was performed by Frohlich and Seiler [16,17] within the frame-
work of Euclidean Quantum Field Theory. But their methods required the introduction
of an extra mass term, or alternatively, a spatial cutoff, due to the infrared problems of
the massless free scalar field. It turned out to be difficult to remove the mass term at the
end, and also the integrable structure was not visible in their construction. In the more
recent paper by Benfatto et al. [3] the equivalence to the Thirring model was shown for
the Euclidean theory using a finite volume cutoff.

In an earlier paper [2], two of us showed that the perturbative expansion of the S-
matrix with a spacetime cutoff, as well as that of the corresponding interacting fields,
converge. This was achieved in the framework of perturbative Algebraic Quantum Field
Theory (pAQFT) [27], i.e. on the level of functionals on the theory’s configuration
space, without a particular choice of a state (viz. a representation on a Hilbert space).
In this paper, we extend these results in the following way. Since the vacuum state of
the massless free scalar field is not a regular state on the Weyl algebra of the field,
we use a representation introduced by Derezinski and Meissner [12], quite similar to
the representation used in early day string theory. We show that in this representation
the S-matrix (as a generating functional for time ordered products of the interaction
Lagrangian) is unitary and satisfies Bogoliubov’s causal factorization condition. Our
main result is the construction of a family of unitary operators—the relative S-matrices—
which generate the local algebras of observables of the model (Sect. 3.2).

We then discuss the equivalence with the massive Thirring model, first observed
by Coleman [11]. In the functional formalism, we give an explicit construction of the
massless Thirring model within the theory of the massless free scalar field. The equiva-
lence of the massive case with the Sine—-Gordon model then becomes evident since the
interaction Lagrangians coincide.

The paper is organized as follows: We first review the Derezinski-Meissner represen-
tation of the free massless scalar field and prove that, as a representation of the canonical
commutation relations of time zero fields and their conjugate momenta, it is locally
quasiequivalent to the vacuum representations of the massive free scalar fields. The lo-
cal quasiequivalence between massive theories of different masses was shown long ago
by Eckmann and Frohlich [13]. The expectation is that the Sine-Gordon theory is mas-
sive, and the result on its local quasiequivalence with the massive free theory suggests
that indeed, the local von Neumann algebras generated by the relative S-matrices in the
Derezinski-Meissner representation coincide with those which one would obtain in a
vacuum representation of the model that however still needs to be constructed.

In the following section we review and extend the construction of local S-matrices
from [2] and prove that they are unitary operators satisfying Bogoliubov’s causal factor-
ization relation. We construct bounded operators of the interacting theory corresponding
to time ordered exponentials of the field and of vertex operators.

In the last section we discuss the relation to the Thirring model by a rigorous version
of a construction originally described by Mandelstam [23] (see also [18] for a detailed
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description). For this purpose, we extend the theory of the free massless scalar field @ by
adding a dual field ® with 8, ® = —¢_,,d" ®. In this extended theory fermionic fields can
be defined which satisfy the field equation of the massless Thirring model. Moreover, the
interaction Lagrangian of the Sine-Gordon model is shown to agree with the fermionic
mass term. Therefore, the convergence result of the previous section immediately implies
the convergence of the mass expansion of the Thirring model, both in the representation
induced by the Derezinski-Meissner representation, and in the vacuum representation
of the massless Thirring model used in Coleman’s original argument.

2. Free Massless Scalar Field in 2 Dimensions

The free massless field in 2 dimensions is probably the simplest field theory one can
think of. The equation of motion
¢ =0 (2.1)

with the d’ Alembertian (wave operator) [ has the general solution
¢, X) = oLt +X) + Pr(1 — X) (2.2)

with arbitrary functions ¢y and ¢g.

Surprisingly, the corresponding quantum field theory has some features which do not
fit into the standard formalism of quantum field theory. There, quantization of a free
field theory usually starts by interpreting the solutions with positive frequency as wave
functions of particles. The Fourier transform of these wave functions are supported on
the positive mass shell in momentum space. By using the (up to normalization) unique
Lorentz invariant measure on the mass shell one equips the space of wave functions with
a positive definite scalar product and obtains the Hilbert space of single particle states.
The quantum field can then be defined in terms of annihilation and creation operators
on the Fock space over the single particle space.

In 2 dimensions, however, the only Lorentz invariant measure on the positive light
cone (the mass shell for zero mass) is the Dirac measure concentrated at p = 0. As a
consequence, the standard construction breaks down, which often is interpreted as saying
that the massless scalar field in 2 dimensions does not exist. Indeed, the Wightman axioms
cannot be satisfied, and also the Osterwalder-Schrader axioms for the euclidean version
cannot be fulfilled.

The problem disappears when one looks instead at the derivatives of the field. For
them the standard quantization on a Fock space exists. In order to include also the
field itself it is useful to adopt the algebraic point of view of first constructing the
algebra of quantum fields and to investigate in a second step the states (defined as
normalized positive functionals on the algebra) or, equivalently, the representations on
Hilbert spaces. As a result, one finds, that the algebra of the free field exists, but does
not possess a vacuum state (whose existence is one of the Wightman axioms). So the
problems mentioned above find their natural explanation in the fact that the state space
does not have the properties expected from our experience with other free scalar fields
(massive or in higher dimensions).

These facts seem to be well known among experts. There is, however, a lack of
explicit examples of states for the free field satisfying some natural requirements. From
our experience with field theories on generic Lorentzian spacetimes a good class of
states are quasifree states where the 2-point function satisfies the so-called Hadamard
condition. We are aware of only two places where such states were explicitly constructed:
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one is the diploma thesis of Sebastian Schubert [29], where he found a surprisingly simple
example of a Hadamard 2-point function. The other place is a paper of Derezinski and
Meissner [12], where they explicitly construct a representation on a separable Hilbert
space. Actually, Schubert’s states are vector states in this representation.

2.1. The algebra. As customary in pAQFT, we start from the space of smooth field
configurations £(M) = C*°(M], R) on two-dimensional Minkowski space M. To fix the
notation, let D(M) = C2° (M, R) be the space of compactly supported smooth functions
and Dgen (M), the space of compactly supported densities (test densities). Here, £ and
D are endowed with the usual topologies.

The field equation induces a Poisson structure on the configuration space, given by
the difference A of the advanced and the retarded propagator of the operator P = —[J
(i.e. minus the d’Alembertian) on £(M) and

AG,y)=—300" =)0 — x—yh+10(=x"+)y" —x—y), (23

x = x%,x),y = (% y) € M. A induces a linear map (also denoted by A) from
DgenM) to Eso1 (M) € E(M) the space of smooth solutions of the equation P¢ = 0,
by taking the convolution (in the sense of distributions), formally denoted by

Af(x) = / A FG) . f € Daen(M).
:

The Poisson bracket of two smooth functionals F, G on £(M), which have compact
spacetime support and smooth first functional derivatives %, % € Dyen (M), is then

(F,G) = / oF (AE> - <F<1>, AG(”>,
8¢ 3¢

where the notation (., .) emphasizes the duality between Dgep and £.

The algebra of the quantum field is defined by deformation quantization, by looking
for a family of associative products 3 of functionals on £(M) such that in the limit
h— 0

Fx, G —> FG (2.4)

and |
—(F %G = G*n F) — {F, G}. (2.5)
l

An example for such a xj-product is the Weyl-Moyal product
o h”
(FxG)gpl=>) —

n=0

(F™101. G 2)® 6™ 1g1). 2.6)

defined as a formal power series in /i for regular functionals F, G € Freg(M), that is,
the space of functionals on £(M) whose functional derivatives exist and are compactly
supported smooth densities, F ™ [¢], G™[$] € Dgen (M").

Other star products are obtained by adding a symmetric bisolution of P to %A.
Poincaré invariant symmetric bisolutions are multiples of

Hy(%, ) = =~ In2l(x — )2]) @.7)
K’ 4
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with the Lorentz square ( )> and with a mass scale ; which is a dimensionful quantity
which takes positive values measured in inverse length.
It turns out that the sums

i 1 .
Wi =38+ Hy = ——In (12(=(c =) +ine” = %) |

satisfy the so-called Hadamard condition, i.e. their wavefront sets fulfill the microlocal
spectrum condition [26]. Considered as distributions in the difference variable this means
that their wave front sets are

WF(W,,) = {(x,k) € T*M]|x - x =0, (k,x) =0,k € V, \ 0},

where M, at every point x, is identified with its tangent space and V,. denotes the closed
forward lightcone in momentum space. The corresponding star products

o0

hl’l
Fa G912 Y — (F™191 WG [9)) 2.:8)

n=0 "

are defined on a larger class of functionals, including in particular the local ones. An
appropriate class is formed by the so-called microcausal functionals F' € F.. These
are functionals F where all functional derivatives F exist as symmetric distributional
densities whose wavefront sets satisfy the condition

WE(F™)ynM" x (V," UV_") = @. (2.9)

On the space of regular functionals, all these products are equivalent. To see this, consider
the linear invertible map oy, : Freg[[nl] — Fregl[R]],

. hp
OlHH —=e?2 Hy s

where, in terms of formal integral kernels

. 82 82
P, = <H"’ W> N / B 55 satn
Then
ozHﬂ(F *G) = OtHMF *y otHMG.

Via the linear isomorphism

52

h u./
~ax [ D52
b

B =, -H, =€
the star products x;, are mutually equivalent not only on the regular functionals, but on
the larger space of microcausal functionals F,.[[/]]. This is due to the fact that H,,, — H,
is smooth.

We can identify the elements of the algebra (Freg[[A]], *) with normal ordered func-
tionals

iy = (o) N (F). (2.10)
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with F' € Freg[[R]]. They satisty the relation
Fipy %Gy =F %, Gy (2.11)
We now enlarge the algebra by elements : F:,, with ' € F,. with the relations

Fip+:Gry = F+Giy, AMiFiy=AF,, (Fij = F:y (2.12)
and (2.11) for the product and obtain a *-algebra 2. This extension may be understood
as a completion in a suitable topology as discussed in [2]. In general, the elements of 2
can no longer be interpreted as functionals.

In the following we set © = 1. This means that the normal ordered elements are
dimensionful objects which get numerical values only after the choice of a length unit.
To simplify the notation we write : F: | = :F:.

Now, given g € Dgen(M), a € R, we consider the so-called vertex operators V,(g)
as normal ordered version of the functionals

va(g) 1 ¢ > /ei‘"”(“ g(x). (2.13)
i.e. Vo(g) = :v.(g):. Note that, by normal ordering at © = 1, the vertex operators get
mass dimension 72—‘]‘:.

The functional derivatives of the functionals of v,(g) are given by

(va(8) ™[], h®") = i"a" v, (h"g)

and satisfy the WF set condition (2.9) imposed for microcausal functionals. The star
products of vertex operators converge if hla|? < 4,

(vay (g1) *1 vay (82)) [¢] (2.14)
Sy il n .
= (Z o () f (In(=(x = y) - (x = y) +ie(” = y%) "1 (x)gz(we'(“1"’“)””@”)
= n! 4
(2.13)
= f (== y) - (6 — y) +ie@® — 30) "H2 gy (x)ga ()l @O+ ), (2.16)

The interaction Lagrangian of the Sine—~Gordon model is given in terms of vertex oper-
ators by

1
Vg) =5 (Va(®) +V-a(g)) .

witha > 0.
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2.2. States. States are defined as normalized positive linear forms on the algebra. An
interesting class of states are the quasifree ones. They are labeled by a symmetric real
valued bisolution H of the field equation which dominates A in the sense that

(f, Ag)* < 4(f, Hf)(g, Hg) 2.17)

for real valued test densities f, g. Here H induces, as before A, a linear map from test
densities to smooth solutions. Given such H, every field configuration ¢ induces a state
via the prescription
wH,¢(F) =ag—p (F)] (2.18)
The bi-distribution H,, given by (2.7) satisfies the inequality (2.17) and ( f, H, f) > 0
only for test densities whose integral vanishes. Hence, in [29], Schubert modified H,,
by choosing a test density ¥ € Dgen (M) with integral 1 and setting for r > 0,

1 2
H(x,y) = Hy(x,y) — Hy¥(x) — H, ¢ (y) + f VH,. Y+ ﬁAW(X)AIP(Y) + %

(2.19)
H is again a bi-solution, and since it differs from H,, only by a smooth function, it
satisfies the Hadamard condition. Contrary to H,, it is positive semi-definite. Before
proving that indeed, it satisfies (2.17), we introduce some notation. In the following, we
use the Dirac bra-ket notation by writing

If){glh) = f(g. ) (2.20)

whenever g and £ are in duality to each other. We also introduce the projection Py :
Dgen (M) — Dden (M),

Py =1—|y)(1] (2.21)
and its transpose (acting on £(M) C Déen(M)) P$ cEM) — EM),
Py =1—]1){y]. (2.22)
In this notation, we have
1 r2
H=PJHMP¢+ﬁ|Aw)(Aw|+?|1)(l| (2.23)
and
A:PJAP¢+|A¢)(1|—|1)<AW| , (2.24)

both understood as maps Dgen (M) — E(M).
Lemma 1. The bi-distribution H satisfies the condition (2.17).

Proof. Tt suffices to show that for real valued test densities f and g the matrix

(fLHf) (f. lAg>)
A= 2 2.25
((f, 1Ag) (3. Hg) (229)

is positive semidefinite.

From the formulas above, we see that A can be written as a sum of two matrices,
where the first matrix is obtained by replacing H by PJ H, Py and A by PJ APy . This
matrix is positive semidefinite, since H,, satisfies the condition (2.17) and (f, H, f) = 0
for test densities with vanishing integral. The second matrix has nonnegative trace and
determinant and is therefore also positive semidefinite. Hence A as a sum of two positive
semidefinite matrices is positive semidefinite. O
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2.3. Derezinski-Meissner Representation. Inspired by a construction known from string
theory, in [12] Derezinski and Meissner construct a representation of the free field on
the Hilbert space

H="Ho® L*(R) (2.26)

where Hj is the usual Fock space for field derivatives and where L2(R) is a Hilbert
space that describes the missing degree of freedom. On this Hilbert space, the field ® is
represented by

Py (f) =y (P(f) =Py )@ 1+1®q(l, f) = 1Q p(f, AY). (2.27)

Here, f is a test density, ¥ is a test density with total integral 1 as in Schubert’s construc-
tion above, Py, is the corresponding projection operator (2.21), and ¢ is the canonical
free massless field on Fock space, restricted to test densities with vanishing total inte-
gral, and ¢ and p are the standard position and momentum operators in the Schrodinger
representation,

p&k) = k&),
a
k) =ih—&(k),
q §(k) = ihz&(k)
where & € L%(R).
We briefly recall that (2.27) is indeed a representation of the free massless field.

First of all, the field equation L@y, (f) = &y (L f) = 0 is satisfied, since (L0 f) = 0,
JOf =0and AOf = 0. For the commutator we find

1 1 1
E[Cl’x//(f), Dy (g)] =£[¢(P¢f), e(Pyg)l @1+ 7 ®la. PI=(L f){g. AY) + (1, &)(f. AY))

=(f. Ag) — (L, f){, Ag) — (f, Ag)(L, &) + (1, f) (¥, Ay)(L, g)
— (L f){g. Ay + (1, &)(f. Av),

hence by the antisymmetry of A it follows that

[Py (f), Py ()] =ih{f, Ag).

Observe that we have changed the notation compared to [12]. Our ¢ corresponds to
the p of [12], and our p to their — x. Moreover, the functions og, ;, of DM are obtained
from Schubert’s i in terms of their Fourier transforms by

Grik) = / 60T () | by (k) = / ey (). (2.28)
To see the connection with Schubert’s states we consider
QRL=QyRN €H (2.29)

where €, is the ground state vector of the harmonic oscillator of mass m and with
frequency w = # and € is the Fock vacuum. A short calculation shows that the
resulting 2-point tunction is the one which Schubert constructed,

(2, Py (x)Dy (y)2) = H(x,y) + %A(x, y). (2.30)
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To interpret the operators p and ¢ in terms of the field, we first observe that

Oy =1®q. 2.31)

p can be interpreted as the charge of the current d,, @, which is conserved due to the
field equation. More precisely, we prove the following lemma:

Lemma 2. Let x°, x' be compactly supported test functions satisfying i x()dt =1
and x ' (x) = 1forallxwith|x| < 1, andfor» > 0, set x;.(t, X) = —A2xO(At) x ' (A2x) drdx.
Then

0 = / By (1, )1 x (M) x ' (A2x) didx = Dy (x1) (2.32)
approximates the charge associated to 8, Py, and 1 ® p is the total charge, in the sense

that for alla € R . _
s — lim %9 = 1 @ /7. (2.33)
r—0

Proof. The idea to approximate charges in this manner goes back to Requardt [25].
Since [ x, = 0 we have

0 =9()®1-1® P/Xx (Ay). (2.34)

First we show that for sufficiently small A > 0, O = ¢(x5) ® 1 + 1 ® p. Inserting the
formulas for A and y; into the integral in the last term yields

1 .
-3 / Ax00nx' %) (O —t —x' +x) — Ot —t' —x+x)) Y (¢, x') drdxdt'dx .

(2.35)
We perform the 7-integral and obtain

1
=-3 / A (XO(A(—/ —x+x)+ x°0( +x — x/))) x ')y (', X)) dxdt'dx’
(2.36)
and, after a suitable substitution,

= _% / )LXO()LS) (Xl()»2(—t/ +x — s)+ Xl(kz(x’ —¢ +s))) W(f,, X/) dsdt' dx..
(2.37)

For A sufficiently small x! assumes the value 1 for all + € A 'suppx® and (', X') €
suppy . Thus the integral is

—/dsxo(s)/dt’dx’w(t’,x’) =1 (2.38)

It remains to prove that ¢/*¢2) converges strongly to 1 for A — 0.

This follows from the strong continuity of Weyl operators in the Fock representation.
Namely, ¢(x1)S20 converges to zero in the limit A — 0, as shown by the following
computation. Let” denote the Fourier transform, then

dp d — 1 —~ — —
/ﬁ|XA(|P|7P)|2=/|[Tp||)\PXO(}L ‘|p|>|2|k—2xl<§2>|2=x2/dp|p|x°(x|p|>|2|xl(p>|2+0
(2.39)

in the limit A — 0, since ;\O(M p|) tends to 1 for all p, and the integrand is bounded by
an integrable function which does not depend on X. O
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Proposition 3. The DM representation is irreducible.

Proof. We use the fact that B(H) is the weak closure of the algebra generated by the
Weyl operators, ) o
W(f:a, B) = e”ﬂ(f) ® emqﬂﬂl’ (2.40)

with test densities f with [ f = Oand, B € R. This means that they form an irreducible
set of operators on H, i.e. they have trivial commutant in B(H). Hence, the claim follows
once we show that these operators are in the weak closure of the image of 7y,. To see
that this is true, choose a compactly supported test density x; as above in Lemma 2 such
that for sufficiently small A > 0, we have f x2 Ay = —1. Then

nw(eiq>(f+0”/f+(ﬁ+ffAllf)XA)) =W(f+(B+ / SAY) s e, B) (2.41)

and by the strong continuity of Weyl operators in the Fock representation the statement
follows.
O

It follows in particular that the states given by (2.29) are pure.
Regarding the dependence of the representation on the choice of v, we reproduce
the result of [12] in our notation.

Lemma 4. Let , Y denote test densities with total integral 1. Then
Ad(Vy e P = oD vy (2.42)

with ' D _
Vxﬁ,x// — ¢ 9Ep—3p [vAay LE=U — . (2.43)

Proof. To simplify notation, we use p, g, ¢ instead of 1 ® p, 1 ® ¢, ¢ ® 1 for the
operators on H. We use the factorization

AP oS =V [ D ita [ f=p [ fAY) (2.44)
and compute
Ad(el@©P)y (gw(f—& J f)) — (eimf—xﬁ I h=ip [8(F= [ f)) , (2.45)
Ad(e/@©P)) (ezm Jr=pJ fA&)) — @ f=p [ faD+ie® [ f (2.46)
and y .
Ad(@P°) (@] F=p 18y _ pitaf f=p [ fAV=2p2 [ ) (2.47)
The proposition follows by combining these formulas. O

We now analyze the symmetries of the theory. Clearly, the net of local algebras
transforms covariantly under the the conformal group

G = Diff*(R) x Diff*(R). (2.48)

Let x4+ € Diff*(R) and let x be the corresponding conformal transformation,

1 1
X)) =x %) = (G +%) + X0 = %)), S0 +X) = X (1 =X))). (249)



Local Nets of Von Neumann Algebras...

The corresponding automorphism «, acts on the field ¢ by a, (¢ (x)) = ¢(x(x)). In
the DM representation with respect to ¥ we find

Py (x(x)) = 90x) = ¥) +q — pAY (x(x)) (2.50)

Proposition 5. There exists a strongly continuous projective representation Uy, of the
subgroup Gq of compactly supported conformal transformations x which implements
the automorphisms oy and has central charge ¢ = 1.

Proof. Let U be the projective representation of Go on Hy which implements the con-
formal transformations on the derivative of the field (see e.g. [8]). We find

AdU OO Py (¥) = 9By x) — x+V) +q — pAY (x) (2.51)

with the push forward x. defined as the pull back of the inverse,

xe = (% (2.52)
We have Ay (x) = (Ax«¥)(x(x)), hence
oy = Ad(Vy,yy U(X)). (2.53)

We now check that x + V,_y 4 is a cocycle on the conformal group G with respect
toU.Leta) = Ad(U(x)) and x1, x2 € G. Then

0
Vi %, Vioww) = Vv Vi, G = Yoaxsvw (2.54)

We conclude that x = V,, 4 U (x) = Uy (x) is a projective representation of G with
the same central charge as U. This representation, however, is not irreducible since p is
in the commutant. Actually, it is a direct integral over the spectrum of p of irreducible
representations labeled by the charge O = p. O

2.4. Local normality. We now show that the DM representation, considered as a rep-
resentation of the exponentiated CCR algebra (the Weyl algebra) of time zero fields,
is locally normal with respect to the representations induced by vacuum states for the
massive situation. This means that the restrictions of these representations to fields in a
compact region are quasiequivalent. We recall that two representations 7 and 7" of some
C*-algebra 2l are quasiequivalent if 7 (A) — 7/(A), A € 2 extends to an isomorphism
of the weak closures.

While local normality holds for different nonzero masses as shown by Frohlich and
Eckmann [13], this is not the case for the vacuum representation in the massless case.
The local normality of the DM representation with respect to the massive ones now
indicates that it is possible to construct the local observable algebras of massive models
(such as presumably the Sine—~Gordon model) in this representation. In older approaches
to the construction of the Sine—-Gordon model, one had to introduce a volume cutoff or
an auxiliary mass term to avoid the infrared singularities of the vacuum representation
of the massless field and therefore lost control over the local von Neumann algebras.

The DM representation is induced by the Schubert state, hence a state that is quasifree.
Since this is also true for the vacuum state in the massive case, we can use the (necessary
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and sufficient) Araki-Yamagami criterion for quasiequivalence of representations that
are induced by quasifree states [1].

For this purpose we consider the direct sum L(R) = D(R, C) & D(R, C) of two
spaces of smooth compactly supported complex-valued test functions endowed with
complex conjugation as the antilinear involution and with the hermitian form

y(f.g) = f (Frgr — Togr) dx. (2.55)

The restriction of y to the real subspace is the symplectic form known from other
formulations of the CCR algebra. According to [1], local quasiequivalence of the rep-
resentations induced by the vacuum (of mass m) and the Schubert state is equivalent to
the following set of conditions

(1) the symmetrized scalar products {, ), sym and (, ) s sym,induced by the massive vacu-
um of mass m > 0 (subscript m) and by the Schubert state (subscript S), respectively,
induce the same topology on L(/), for any compact interval / C R, and

(2) the square roots of the operators that define the respective 2-point functions in terms
of e.g. (, )m,sym (by the Riesz representation theorem) on L (/) differ by a Hilbert
Schmidt operator.

We first calculate the scalar products. The detailed argument, together with all the
relevant conventions, is presented in the “Appendix”.
The vacuum state of the massive theory induces the positive definite scalar product

Fogin =3 [ (o7 Rt +ofata) dicr by (1)

where @ = o (k) = vk? + m2, the frequency on the positive mass shell. The Schubert
state for the massless scalar field induces the scalar product

s =1 | <|k|—5% —i|k|%ﬁ> (K172 Pyg1 +ilkI22) dk
+4 [T - buTix [oo+ bueay

with Py (h) =h— f h for h € D(R), analogously to (2.21), with ¥ replaced by a real
testfunction on R (not R?) with total integral 1. This is readily calculated in the usual
way from the time zero field and momentum (see “Appendix”).

Note that indeed, the integrand in k in the formula for (, )5 is not singular in k = 0
since for any & € D(R), there is a constant C > 0 which depends on 1 and the support

of Pyh, such that [Py (k)| < C k| [Ihll,1 g,
Pyh(k)| = | / ¢ Pyh(x)dx| = | f (™ — 1) Pyh(x)dx|

=< Ik ( sup IXI) / [Pyh(x)ldx < C K| |l 1wy (2.56)
xesupp Py h

where C = (Supxesupp Pyh |x|) (1+]1¥ || L1 (wr))- Observe that in the first line we subtracted
a term that is 0 and in last step we used the triangle inequality.
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This scalar product, as the massive one, is positive definite, since ( f, f)s = 0 implies
f> = 0 and Py fi = 0, and the latter in turn implies f; = ( f f1dx)¥r and hence
f f] dx =0.

The symmetrized scalar products then are

(f &sym =3 (£ &)1+ (&, fy) forl=m.$
such that

(f-8hi = (. &)1sym + 5v(f.g) forl=m.S.
Explicitly, we thus have
(- P = 4 [ (07 1AP + 0l 2) ak @57)
and

—_ A 2 l
(U P)soom = [ (WTIPTE +KIAR) s D[ x| [ wsax
(2.58)

Lemma 6. (, ), sym and (, )s sym induce the same topology on L(I) for any compact
interval I C R.

Proof. Without loss of generality, we assume suppyr C [ for the density i defining the

representation.
We write

<f’ g)m,sym = <f11 gl)l + (fZa 82)2
with

(a,b)| = %/&(k)a)(k)’ll}(k)dk
and

(a,b)r = %/a(k)a)(k)ﬁ(k) dk.
and denote the corresponding Sobolev norms || ||; and || ||2.

Let x be a testfunction with x (x) = 1 for x € I. Then the scalar product (-, -)s sym
on L([I) can be written in terms these products as

(fs &)s.sym = (f1, Agi)1 + (f2, Bg2)2 (2.59)
with ©
A= PJEP¢+r2|wx)(wx| (2.60)
and
gk _ 1 -1
= —+Slo” YN o™ Yl (2.61)
w r

where the bra-ket notation refers to the respective scalar products, and where w, |—‘l‘()‘ etc.
stands for the operator given by multiplication in momentum space.
‘We have to show that A and B are bounded and invertible.
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A is bounded. x is smooth, hence its Fourier transform is quickly decreasing and thus
llox|? = [w(&)|Z(K)|*>dk < oco. Therefore, the rank one operator |wx)(wx| is
bounded. Regarding the first summand in A, first observe that Py is bounded, and
ﬁ is bounded for |k| > m. For |k| < m, observe that for any & € D(I), we have the

estimate (2.56), i.e. Iflp\h(k)l < C K| [|2]l 1 (r) for some C > 0. The claim follows

when we have shown that the L!-norm of /4 is bounded by a multiple of ||z||1. To see
this, we use that x = 1 on I, and conclude

/ |h(x)|dx = / Ih()x )dx = ([h], 2)12 = 2(|hl, @x)1 < 2llkl1lox |

by Plancherel and by the Cauchy-Schwarz inequality.
A > ¢l for some ¢ > 0 Since w(k) > |k| we have

A > PJPw +r2|a)x)(a)xl.
Furthermore,
[1hll = [|Pyh +2{wx, K1Yl < [|Pyhll + 21 {@x, Bl 1]

for any h € D(I). Hence

20191}

3 DUIPYRIIT +2r% (3, i ?) < const(h, Ah)y.

1113 < max(2,

B is bounded. This is obvious since |k| < w (k) and ||$¢||1 < 00.
B > ¢l for some ¢ > 0 We show that on L2(I) the inequality

k| > cw
holds for some ¢ > 0. For this purpose we consider the operator
H =x>+ K|

on L%(R). In momentum space (where x = ihdy), this is the Schrodinger operator
for a 1d particle in a potential |Kk|. Its ground state energy a is the first zero of the
derivative of the Airy function, multiplied by —1. Arguing as in [5] we conclude that
for h € L*(R) with ||h]| = 1 the inequality

const

(h, |klh) = ————————=
(h, (x —a)*h)

hold. For & € L?(I) we obtain the estimate

2const

(h, [klh) =
7]

But then there exists another constant such that

|k| > const(|]k| +m) > const w.
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Lemma 7. Denote by C,, and Cg the operators defining the 2-point functions given by
a massive vacuum state and the Schubert state, respectively, with respect to the scalar
product (, -, ) sym, 1-e.

(fs 8m = {fs Cn&)m.sym

and

(f. 8)s = ([, Cs@m.sym-

The square roots of these operators differ by a Hilbert-Schmidt operator.

Proof. We first observe that

and

with A and B the bounded operators (2.60) and (2.61) from the proof of the lemma
above. By a lemma due to Buchholz [7], the square roots of C,, and Cy differ by a
Hilbert-Schmidt operator if C,,, — Cg is of trace class, so we are done when we show
that A — 1 and B — 1 are trace class operators.

A — 1 is trace class. Since the remaining term is a finite-rank operator, it suffices to
show that /w|k|~! — 1 Py is a Hilbert-Schmidt operator on H;(/), the completion
of D(I) with respect to the scalar product (-, -)1 from the proof above.

This is certainly the case if

1
k|~ — o™ Py xo?

is Hilbert-Schmidt on L2(R). Here, x is understood as a multiplication operator in
position space, which turns into a convolution operator in Fourier space. Hence, the
integral kernel of A’ in Fourier space is

Ak, p) = VK — o (7 (k — p) — ¥ (K) 7 (p)w? (p).

The claim follows once we show that the function (k, p) — A’(Kk, p) is square
integrable. For |k| > m this is obvious, hence we restrict the function to |k| < m.
We split the difference in the middle of the term above in the form

A&k —p)— PR3P =1 —P&)xE&—p) + P& K K—p) — £(P)

and obtain a decomposition of A’ into two terms. Both terms are square integrable.

For the first term we exploit 1&(0) =1, hence |1 — 1/7(k)| < const|k|, and for the
second we use the mean value theorem and the fact that x and all its derivatives are
rapidly decreasing, such that

d c
@ +K) = Z@)| < Kl supg;.y| =X (P + AK)| < K| -y
Posr=1Tgp (Ipl = m| + DV

for |k| < m.
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B — 1 is trace class. Proceeding as in the previous case consider the integral kernel

B'(k.p) = VoK) — K| (k — po(p) 2.

We set ¢ = k — p and have to show that the map

k. q) = Vok) — K| (@ok—q) 2

is square integrable. We consider first the k integral. We have

mZ

w (k) — K| = o) 11K’

therefore the k integral is polynomial bounded in q,

/ %:c':;' dk < constln (1 +1q]).

Since x decreases quickly, the square integrability follows.

3. Interacting Local Net of the Sine-Gordon Model

3.1. Formal S-matrix in the DM representation. We will now see how in the DM repre-
sentation, using a certain class of states, we can further improve the estimates from [2]
on the S-matrix and the interacting fields of the Sine-Gordon model.

3.1.1. Convergence Our starting point is the abstract algebra 2 generated by vertex
operators, as defined in [2]. These operators are the ones occuring in the S-matrix of the
Sine—Gordon model, which is

SOV (@) =Y L )" Tu((Va(g) + V_a(@)®

= ;A” %(%)n(%)n :ZO (Z)T?,(Va(g)®k ® V_u(g)®(n—k))’

= S (V(8)

(3.62)

for g € Dyen(M). Here, 7, abbreviates the n-th order time ordered product, which
(following [2] and using the notation introduced in Sect. 2.1) is given by

TV (@) ® - @ Vy, (2) = T (v, @ -+ ® v, (8%"):,
where

IzHH (Um R ® Ua,,) (g®n)

/ P @O+ 40, D (i) = Yi<icjn @it A (xi.X)) ¢ (x), (3.63)

= i, ()
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and
AL y) = =g In(=p*(x = y)* — i) (3.64)

is the Feynman propagator. We obtain
TV, ® -+ ® V,, )(g®") = f @O PE)); (1) g @) (3.65)

Let us first consider operators of the form

:ei(a1®(h)+~-+an¢'(h)): s (366)
with a; = £a in the DM representation. We have

. . 1
:eICD(h): u = ez@(h)eﬂh,HHh}

and therefore

(R0 ® &,y (/P2 ) Q0 @ £)] < e W1l (g, 0P Q) (&, o101 =P JHAY gy
< I G B [ ey - iy
(3.67)

where €2 is the Fock vacuum and & € L? (R). It follows that for an operator (3.66), the
last factor in the estimate (3.67) takes the form

/dms(p)s(p = Yiai [h)]
Before proving convergence, we explain how to extend the DM representation to
operator-valued distributions of the form

-l @ (@) =P 1))+ +an (P () =P (yn)).

To this end, it suffices to consider a sequence of (h)m With By = Z;Zl(hm (xj) —

him(yj))s [ hm = 1 for all m, that approximates the measure » ;_(8y, — dy,) in the
sense of distributions with fixed compact support. Then the last factor in the estimate
(3.67) is actually ||£]|? and for the expectation value we thus obtain the estimate

(R ® &, 7y (e’ 2591 PEN=20N o) @ £)] < ||€] 2. (3.68)

Proposition 8. Let  be a test density with total integral 1 and consider the represen-
tation 1y, of the field on H = Ho ® L%(R) from [12], which we recounted above in
equation (2.27). Let f € D(M), Qq the Fock vacuum and & € L*(R) with ||&|| = 1.
Then

. . 1—p
172y (Sa (V (@) (PN @ £l < C"(n!) 7

where 1 < p < % and C > 0 depends on g, a and p.
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Proof. We use the expansion above of S, (V (g)) into a sum of time ordered products of
vertex operators and compute their absolute squares

T (Ve ® - ®@ Vg ) @) * Ty(Vay @ -+ ® V) (82

ng®n()_c)g®n(l) ol 20,4 (@G =B (y)).

5 haiaj 5 ﬁa;aj n 5 haia_/-
[T1 —xp?1 % 1 =y 175 [ 1 =y~ =
i<j ij=1
Xei(2i<j ajaj(Ap(xi —Xj)—AD(yi—yj))—% Z,’-szl Axi—y;j))

with the Dirac propagator
1
Ap = E(AR +Ap).

Their contribution to the norm can be estimated by

170y (Tn(Vay ® -+ @ Vi, ) (g¥"N)7ry (¢ *UN) Q0 @ &2
5 hu;aj 2 haiuj n 5 ﬁzl[aj
s/|g®"(z_c>g®”(z>1"[|<x,- — x| =y [ e =y
i<j i,j=1
X|<QO ® S’ JTw(Iei Z_j a.i(d)(xj)_q)(Y_/)):)QO ® EH

since both A and A p are real valued.
To estimate the expectation value in the last line, we use (3.68), and considering &
with ||&|| = 1, we obtain the bound

1709 (Zn (Vay ® -+ @ Vi, ) ¥y (6 P00 @ &2

haja; haja; n haja;
< f 182" @ () [T 1 — 2?17 10 — 92173 [ 10—y~
i<j i,j=1
In the expansion of S,,(V (g)) into time ordered products of smeared vertex operators
only coefficients a; = Za occur. We rename the coordinates such that x; and y; are
exchanged if a; = —a. We observe that the estimate is independent of the signs of the
coefficients a; and find

172 (Sa (V (@) 7y (" P20 @ £

1) % %) 1
5(;) /|g®2"(a_c,z>1"[|<xi—x,->2|4n i =y 1% [T 1 = y?1

i<j ij=1

up to re-ordering the arguments of g®2. We can now use the results of [2] (where an
older estimate of Frohlich [17] in the Euclidean theory was adapted to the Minkowski
signature) and find!

i f 1-p
17y (Su(V (@)))7y (6 ®UN Q0 @ || < C™(n!) P

! The crucial point here is that we have an equal number of x; and y;, hence the above expression can be
written as a Cauchy determinant. A Vandermonde determinant, which is much harder to estimate, does not
occur. This is in contrast to the estimates in [2], which were performed in a general state, not necessarily a
vector state.
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where | < p < % and C > Odependson g,aand p. O

As a consequence of this estimate, the expansion of the S-matrix S(AV (g)) converges
in the representation 7y, strongly on the dense domain D which is spanned by vectors

of the form 7y (¢!®))Q ® & and defines an operator S(AV (g))y -
Proposition 9. S(AV (g))y is unitary.

Proof. The formal power series S(AV (g)) is unitary. This means that

D SiSu=80= Y SuSp

n+m=k n+m=k
with
S =8, (V(g)).
We have for W € D

SOV @)y WP =D A (ry (Su(V ()W, 7y (S (V ()W)

n,m

=Y AWy (Y SESmw) = [|W]]*,
k

n+m=k

hence S(AV (g))y is isometric and has a unique extension to an isometry on H. Ana-
loguous arguments can be used for the adjoint power series and yield that also the adjoint
of S(AV (g))y is an isometry. This proves the claim.

O

3.2. Construction of local observables. In this section we construct local algebras of
observables for the Sine-Gordon model. We set i = 1.

We follow the prescription given in [15] on how to construct the interacting local net
of observables, given a family of unitaries that are interpreted as local S-matrices, which
we recall here.

Let 2 = I'.(E — M) be the space of test objects over M (compactly supported
sections of some vector bundle E over M). Consider unitaries S(f), f € 2 with
S(0) = 1, which generate a *-subalgebra of 2 and satisfy for f, g, h € 2 Bogoliubov’s
factorization relation

S(f+g+h) =S(f+)S@)'S(g+h) (3.69)

if the past J_ of supph does not intersect supp f (or, equivalently, if the future J; of
supp f does not intersect supph).

Definition 10. Define the relative S-matrices as

> Se(f) =S 'S+ 1) (3.70)

Definition 11 [15]. The Haag—Kastler net 2, of the interacting theory is then defined by
the local algebras 2, (O) which are generated by the relative S-matrices S, ( /), supp f C
0.
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Note that g plays a role of cutoff function that labels local interactions and S (f) is
interpreted as the retarded observable under the influence of the interaction labeled by
g. Next we take the algebraic adiabatic limit.

Definition 12 [15]. Let G € I'(E — M) (no support restriction). Set
[Glo = {g € Z|g = G on a neighborhood of J.(O) N J_(O)}.
We consider the 2-valued maps

Sc,0(f) :[Glo 3 g = Sg(f) € A
Thelocal algebra 2 (O) is defined to be the algebra generated by S o (f), suppf C O.

The interpretation as “adiabatic limit” follows from the fact that G can be set to be
constant and this corresponds to removing the cutoff from the interaction.

Theorem 13 [15]. The net A (O) with G = const satisfies the Haag—Kastler axioms
Isotony, Covariance and Locality, i.e.
Isotony: For each inclusion O1 C Oy there exists an injective homomorphism

i0,0, : A6 (O1) — Ac(O)

such that io,0, 0 i0,0, =00,
Covariance: For each Poincaré transformation L there exist isomorphisms

af? : AG(0) - Ac(LO)
such that
Oy . . Oy
o2 0io,0, =iLo,L0, oA .
Locality: If Oy, O, are spacelike separated subsets of O, then
lioo, Rc(O1), i0o, e (02))] = {0}
Time-Slice-Axiom: Let O C O; be globally hyperbolic regions such that O contains

a Cauchy surface of O». Then the homomorphism i©,©, is an isomorphism.

3.2.1. Local S-matrices of the Sine—-Gordon model We start with specifying the label
set of test objects. We concentrate on three classes of interacting fields: the scalar field
® itself, the interaction Lagrangian cos a® and the term sina® occuring in the field
equation. This amounts to consider test objects

(g.h) € 7=DWM,C) & DM, R).
and to define amap L : 9 — Fioc by
L(g,h) =v4(8) +v_n(g) + D(h).

In particular, for g real valued, :L(g, 0): is the interaction term of the Sine—Gordon
model. Using the functional formalism, we define the S-matrices as

o]

o0
S(g,hy =T &M =% " Li"T,(L(g, 1):®") = ) " T (L(g, ®"):.
n=0 n=0
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In Proposition 9 we have already shown that S(g, &)y is a well defined unitary operator
for g real valued and 4 = 0, so it remains to prove that the same holds for arbitrary
S(g, h)y, (g, h) € 2. The estimate for complex valued g and & = 0 is identical. To
include the general case, we use the fact that on the level of formal power series we have

Tl Lgh: _ S(g,0) -1 T i PR

where

Tl _ eiCD(h)e%(h,ADh).

Proposition 14. For all (g, h) € 2, S(g, h)y is a well defined unitary operator on the
Hilbert space H.

Proof. We have
ol i ai®@), P i Y ai® (i) i Ph) oi Y ai Aph(xi)
Inserting this formula into the estimate for
177y (Ta L (g, 0:5") -7 &' ® My ("0 @ 6117

we can repeat the arguments which show convergence of the sum of norms and also the
unitarity of the sum.
0

We have shown the existence of S(f), f € Z; for the construction of the interacting
net we still need to show that they satisfy the factorization relation. We use the following
general fact.

Proposition 15. Let D C D C 'H be dense subspaces. Consider bounded operators O
on 'H which are defined by series of endomorphisms O, of D which converge together
with their adjoints strongly on D, i.e. the sequences OV =Y 2 0,V and O*¥ =
Y o2 o OFW both converge innormforall W € D.Let O, O', O" be three such operators
with the property that

> 0,0, =0].
n+m=k
Then OO’ = O".
Proof. Let W, W' € D. Then

(W, 00'%) =(0*W, 0'¥) =) (0xV, 0, %) =) (¥, 0,0,V

n,m n,m

=D (V. D 0,0,,9) =) (W, 0/w) = (¥, 0"V)
k

n+m=k k

Since D is dense, the proposition follows. O
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To prove the factorization relation it now suffices to show that also the x-products of S-
matrices and their adjoints converge in the representation 7y, . This amounts to the same
estimates as above. By the proposition it then follows that also the relations between the
corresponding unitary operators hold.

We finally define a net of von Neumann algebras associated to the Sine—Gordon
model. For a fixed bounded region O we choose some g € Gp with G = const and
consider the seminorms

[[Allw,g = (W, A(g)W)]

The set of seminorms does not depend on the choice of g. We therefore can complete
each algebra 2 (O) and obtain a net of von Neumann algebras with normal embeddings.

4. Relation to the Thirring model

The (massless) Thirring model is a theory of a massless Dirac field in 2 dimensions with a
current-current interaction. It is closely related to the massless scalar field. Nevertheless,
its history is quite involved, with a lot of partially contradicting treatments. Especially
fascinating is that this relation extends to a corresponding relation between the massless
Sine-Gordon model and the massive Thirring model, first described by Coleman [11].
Usually one even claims equivalence between these theories, but this remains vague in
the absence of a precise definition of equivalence (see [3] for the state of the art).

One problem treated in the literature which induced a lot of confusion is the absence
of a vacuum state for the massless scalar field. If the vacuum is replaced by the Poincaré
invariant linear, but non-positive functional induced by the 2-point function H,,, one has
difficulties to prove the positivity of the Wightman functions of the Thirring model, as
pointed out by Wightman [31] and finally solved by Carey et al [10].

Starting point of our construction, on the other hand, is the realization of the massless
scalar field in terms of functionals on the space of smooth functions on Minkowski space.
We will show that in this framework, the construction of the observable algebras of the
Sine—Gordon model also yields the observables of the massive Thirring model. The local
algebras of the massive Thirring model, however, are proper subalgebras of the algebra
of the Sine—Gordon model. _

In addition to the field ®, we need a dual field ® that satisfies the relation 9, ® =
—€,,3" ® with the antisymmetric symbol ¢, with €y; = 1. Instead of imposing con-
ditions on the field configurations which guarantee the existence of ¢, we double the
configuration space and consider functionals of pairs of smooth functions (¢, ¢) which
are a priori independent from each other. Later we divide out the subspace Z of function-
als vanishing on pairs which are solutions of the wave equation and satisfy the condition

A = —€,09"9.

0 0

In terms of the lightcone variables # = x% + x! and v = x® — x! this means

W = 0, 9 = —dy0. 4.71)

We then introduce a x-product which extends the Weyl-Moyal x-product of the theory
of a single massless field such that 7 becomes an ideal. We set

Bx) * B(y) — D) D(y) = %m, »)
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and
D (x) * D(y) = &><x)d>(y>+%A(x,y>, (4.72)
D(x) * B(y) = Px)D(y) — %Mv, x), (4.73)

with
Alx, y) = %(@(—u) +O©)). (4.74)
where here and in the following, x —y = %(u +v, u —v). We see that @ is not relatively

local to ®. One could modify A by adding a constant. The chosen version later turns
out to be convenient.

It is now easy to find functionals with fermionic commutation relations. For this
purpose we pass from the Weyl-Moyal %-product * to the Wick x-product =, which is
induced by the linear isomorphism e!'#

FayG=c"r(e"Fx e TnG),

with

Here, we have

The operator e "' performs the normal ordering of functionals of the field,
Fiy = e Tn (F)

for regular functionals F. As in Sect. 2, we set u = 1 and obtain dimensionful normal
ordered functionals. The Wick *-product can be extended to all local functionals of
the fields ¢ and ¢. Note that H is not Lorentz invariant. Therefore normal ordering
is changed by Lorentz transformations, and we obtain the adapted action of Lorentz
transformations

o 82

(oa@) :F)(p, §) =€ 5% :Fi(¢ o A(D), ¢ o A(D))
with

cosh 6 sinh 6
AO) = (sinh@ cosh9> ’

Exponential functions of linear combinations of the scalar fields (“‘vertex operators’)
transform as

oAG) Pl @PHP()), _ e%e ol @P(AOX)+BD(AE)X).
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For their x-product we obtain

A @POHBD)). i@ P D). _ i (@P)+FR )+ DN+ D (1))

. @+p)@+8") . @=p)'=p) i@p —d'p)
X(iu+e) 4 (iv+e) an e & .

(4.75)
and thus
P @PHBD()). . i@ P D). i (@ P+ D). i @)+ ().
x e~H@U+BEAG )i @B A+ (4 76)
Since, for spacelike separated arguments, A vanishes and A assumes the values 0 and

1, we see that the vertex operators anticommute if af’, o’ = +7.
We thus set for given o > 0

Y (x) = —i ()72 1 @O0, (4.77)
Y (x) = (2) "2 sl (aPWE @), (4.78)

and consider them as dimensionful fields, as in Sect. 2. The prefactor —i for ¥, will
turn out later to be convenient for a simple choice of y-matrices (see [23]).

These fields and their adjoints anticommute according to (4.76). Moreover, they
transform under Lorentz transformation as

oAy (x) = eI YL (AO)X).

Specialization to o = /. We now show that the case « = /7 corresponds to free
chiral massless Fermi fields. The anticommutation relations are

W), ¥} = 0 = {¥_(0). ¥y-(M} .
e (), y-M} = 0 = YL, ¥yZ(»},

and
(W7 (), Y () = 2 VTEPWOROIOWIEON: 501y = 5(u)
since by (4.71), ® + ® does not depend on v, and analogously
{WZ), ¥-(} =8().
Moreover, again by (4.71), we have for « = /7,

s (x) = i (P (x) + 9y P (X)) e (x) = 0
- (x) = i (=0, P(x) + % P(X) s (x) = 0

From the operator product expansions of these Fermi fields, we can reconstruct the
derivatives of @,

lim Y00 xYa(y) = @)~ G+ 07! = =7 20,0 (x)

and

ylggwi(x) «Y_(y) — @) Niu+ o) = 7710, (x)
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and likewise, exponential functions of ® by
YE@) % P (x) = 5 VT
and
1 .
Vi) xy_(x) = — T INTRM),
2

Generic « > 0. Again, we aim to replace the classical currents ¥}y by suitably
renormalized normal products, by replacing the pointwise product by a quantum product
at non-coinciding points, calculating the operator product expansion, subtracting the

singular terms and taking the limit of coinciding points. For generic o > 0, the situation

is however more complicated than above, because a ®+%- ® will generally depend on both
lightcone variables u and v, rendering the operator product expansion more complicated.
We thus start from the time ordered product, and based on (4.75), we obtain

Vi) T P (y)
a_7)2

=) iu+e) N (—uv+ie)” 7(1:e_i(“(q)(x)_(b(y))J'%(&)O‘)_&’(y)):.

‘We then set

)2

N(Wf¢+):=’}i_l)l})( Z Yix) ¢ Y ()(— uv+le)+ —Qm) Niu+e)~ 1)

v==%u
(4.79)

to obtain
" o 1
N(W+1//+) = (E + %)au(b(x)o

Observe that here we consider a mean of a product in spacelike and in timelike separted
points.
Analogously, we obtain

o 1
NW Iy )(x) = —(5= + =)0, P(x).
2 2«
For the mixed products we find
x_d? 1 .
Ny = lim | — )23 7T g » g () = e 200 (480)
y—>Xx b3
and
N ) o= lim | — yP 185 g () % () = e 22900
y—>x
Equations of the motion For the equations of motion, we find

By (x) = i (ot — gxau@(x))m(x) 4.81)
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and .
Y- (x) = —i(x — ;)(3L4<I>(X))W— (). (4.82)

We want to interpret these equations as the field equations of the Thirring model. We

consider
_( ¥
V= (U

as a Dirac field. As discussed before, Lorentz transformations act on these fields as

)

eI (A@®)¥)
The conjugate Dirac field can be defined by
V=i vyt =iy

with the matrix

For y! we choose

Then the 2-vector with entries ¥° and y! transforms under Lorentz transformations as
a point in 2d-Minkowski space.
The field equation in the classical Thirring model is

V#(ia/t - g(%)’/ﬂ/f))l/f =0. (4.83)

Inserting the above definitions we find the coupled system of equations

10,y — =gV VY-
iy Ye =g Yy

For the quantum theory we have to replace the classical currents j, , = ¥ivy+ by
suitably normalized normal products N (¥} v+) such that the charge associated to the
fields ¥+ is equal to —1. Then
) o ) o
Ju=—0P, jy=——0,P (4.84)
b4 b4

hence the equations of motion (4.81,4.82) coincide with the equations of motion for the
Thirring model (4.83) with the coupling constant

g=">—m. (4.85)
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The interaction term of the Sine—Gordon model coincides with a mass term in the Thirring
model,

:cos BO(x): = T N(Wr)(x)
with

T _o?
N @) () = Tim [0c = 3)* 13775 (P00 Y- () + Y2 * 94 ()

and o« = B/2. This observation is the basis for Coleman’s argument for the equivalence
of both models. We conclude:

Remark 16. The construction of the observable algebras of the Sine—~Gordon model also
yields the observables of the massive Thirring model. The local algebras of the massive
Thirring model, however, are proper subalgebras of the algebra of the Sine—Gordon
model, as they consist only of elements which are invariant under the automorphism
induced by ¢ — ¢ +27/B.

We close this section with a few comments on the relation of our results to previous
work.?
Critical indices In analogy to [3, Theorem 1.1], we define the the critical indices by the
leading terms in the operator product expansion. In our framework, we thus start from
equation (4.79) and read off

(@—3)°
=
For the mixed products (4.80), we get
2
N = =
* 2

These indices satisfy the relations that were already found in [4, (1.17) and (1.18)]
2

4y —y = & (4.86)
b4
(where our « corresponds to %(x in [4]) and
(1+n2)? =1+n2. (4.87)

These relations hold in the massless Thirring model. But they remain true in the
massive case, due to the facts that the time ordered product does not involve any renor-
malization and that the perturbation series converges.

Ward identities The extension of the time ordered product to the dual field is obstructed
by the fact that, by 4.72 and 4.73, it is not relatively local to the original scalar field.
Therefore, we define the time ordered product for the Fermi fields and the derivatives of
¢. To indicate that the time ordered product is not defined for the fields themselves we
use the notation

Dp = 0,9.

2 We would like to thank the refereee for pointing out [3] and [4] to us.
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We exploit the fact that 3, A = 3, A and 9,A = —3, A (cf. (2.3) and (4.74)) and define
Fior ¢p(x) = Fixgppu(x)

for functionals F, whose support suppF does not intersect the past of x, as well as
Fior ¢p(x) = @u(x) x F:

if suppF does not intersect the future of x. We find

1) 8
Fiop @y =:F:x ¢, —1 ——+ —)F 0,A —
T ¢u(x) * ¢y (x) l/y(&b(y) + 5¢>(y)) Ay —x)

and

8 )
Fior @y =:F:x ¢, —1 —— — —)F 0,A —
T $u(x) * ¢y (X) l/y(&ﬁ(y) 8¢(y)) Ay —x)

For :F: =y,
Yo = —i(Q7) "2 @EO): = (2m) 71 e e 5D, (4.88)

(cf. 4.77 and 4.78) we calculate explicitly

1
Y (x) -7 Qu(y) — Y (x) * Py (y) = Z(ia+g)8(u)®(—v)wi(w ,

1
V() 7 Gp(y) — Y (x) % b (y) = Z(ia—gw(v)@(—uwi(x) ,

with %(u +v,u —v) = x — y in light cone coordinates.
We obtain

Y () -7 Oupy — 3y Pu) (V) — Yt (X) * (3 by — Fyp) (y) = +%5(x —»Y+(y) (4.89)
and
Y (x) -7 (Budy +0pPy) (¥) — Y (X) * (3 Py + 0y ) (¥) = ?%5()6 = WY+L(y). (4.90)

We define the current by
. o
Ju = —;euva"q& , 4.91)

ie.
) o ) o
Ju=—bu, jy=——0¢v, (4.92)
b4 T

and get for the time ordered product with the divergence 9, j* = 2(9y j, + 0y ju) of the
current

2
Y (x) 7 9 jH () = _?a‘p:t(x) * (Bupy — Pu)(y) — 8(x — Y)Y+ (x).  (4.93)

The term involving the x-product vanishes after identification of ¢, = 9,¢ and ¢, = 9, ¢
and we obtain the usual Ward identity.
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We repeat the calculation for the axial current j lf = 20,¢ and end up with

2 2
Vi () 7 0, (G (y) = ;“wim x (upy + Do) (¥) T %8()6 — ().

By the field equation for ¢, the term involving the *-product again vanishes and we
obtain the Ward identity with the so-called anomaly coefficient

a =

o? Vg
T g+m
with the coupling constant g of the Thirring model (according to (4.85)).

In order to compare this with the convention in [4], we choose a different normaliza-

tion of the current which is motivated by the operator expansion

= Dae=tas Dy
Ju =G T g/ = U T a )

and analogously, j, = %(1 + %) Jv- In this case, the anomaly coefficients become

1 T 1 o?
= —(l+—=), @ ==(1+—). 4.94
a 2( a2) a 2( ) (4.94)

The coupling constant A in [4] appears in the field equation in the form
n Ay
y(o -2y =0,
hence
b4
A1+ —) =4g.
o

Hence, the anomaly coefficients @’ and @’ as functions of A are

47 -, 47
= , a = .
4 — A 4 + A

i
a

(4.95)

in agreement with the equations in [3,4].

After introduction of the interaction 2 :cos2w¢:, the Ward identity of the vector
current does not change, and the term involving the x-product remains 0. For the axial
current we obtain (for Y = ¢_)

20%m

2
‘sin 2a¢;m> (y) = wim(x»%(D¢>(y>+°‘;a(x—y)wim<x).

(4.96)
The first term on the right hand side vanishes after insertion of the free field equation
and one gets the expected form of the axial anomaly.

Yint(X)-1 <8u (jiﬁt)u +

T
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5. Conclusion and Outlook

We constructed the net of local observable algebras (Haag—Kastler net) for the 2 dimen-
sional Sine—Gordon model in the ultraviolet finite regime. In spite of many previous
works on this model (see [3] for an overview), this is, to the best of our knowledge,
the first complete construction. It was obtained within the formalism of perturbative
Algebraic Quantum Field Theory. The von Neumann algebras associated to bounded
regions are subalgebras of the algebra of the free massless scalar field in the Derezinski-
Meissner [12] representation. In this representation there is neither a vacuum state for the
free field (because of infrared problems) nor a vacuum state for the Sine-Gordon model
(due to Haag’s Theorem). We proved that locally (i.e. restricted to local subalgebras) the
representation (considered as a representation of the Weyl algebra of time-zero fields)
is quasiequivalent to the vacuum representations of massive scalar fields. It is therefore
to be expected that this remains true for the vacuum representation of the Sine—Gordon
model. We also showed that the formalism of pAQFT allows a treatment of the relation
to the massive Thirring model where the formulae known from previous work [23] get
a mathematically precize meaning.

Our work opens the perspective to investigate this model in more detail. We expect
that the integrable structure of the classical model shows up in the existence of infinitely
many conserved currents, as suggested from perturbation theory [22]. We already showed
that the DM representation has a 1-parameter family of superselection sectors, and a
countable subset should represent the charged sectors of the Thirring model.

The major open problem is the existence of a vacuum representation. The problem
to overcome is the slow decay of correlations in a framework starting from the massless
field. In spirit, this is similar to a problem also pointed out by Hollands and Wald [19],
who suggested that the perturbation series for the operator product expansion (OPE)
coefficients of a QFT might converge, but that it is less clear how to construct states
perturbatively. A partial answer was given by Park [24] who was able to construct
the Wightman functions of the derivatives and of the cosine and sine of the scalar
field. It is presently not known whether this argument can be extended to the local von
Neumann algebras. We expect that a locally normal vacuum state exists. Also other
similar special 2-dimensional models such as the Gross-Neveu model or P (¢)>-theory
should be investigated in this spirit.

Once the vacuum representation is constructed, one could try to prove the factorization
condition for the S-matrix in the Sine—-Gordon model. It would be important to relate
our construction to the form factor program [30] and to the Lechner program [21] for
the construction of the model. We hope to come back to these problems in future work.
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Appendix A. Explicit Formulae

Scalar products and time-zero fields In this section we recall some basic facts about
the Fock representation of the massive scalar field and compare these with analogous
structures in the DM representation.

Let us start with fixing some notation. Let f € S(R, C). Define the smeared creation
and annihilation operators by

a(f) = f ak)fK)ydk, a'(f) = / a’ (k) £ (k) dk .
with the commutation relations
la(f),a’(g)] = / f&gk)dk.

Introduce a measure w,, : R — R, w, (K) = VK2 + m2.
In the massive case, for f1, f> € D(R, C) we define

1 _ ~ _ A
b (f1) = ﬁw*(wmmm +alon? 1)),

1 ~ ~
T (f2) = —z(a*(iw}n/ 2h) +ation’ f).

%

where we use the following definitions of the Fourier transform and its inverse:

~ 1 .

fk) = Ner / e ™ f(x)dx,
v 1 .

fx) = Nz / ™ £ (K)dk .

Hence, explicitly, the time-zero fields are represented by the following operator-valued
distributions:
b (X) = %%t (k) + e“‘xa(k)) dk

1 1
ﬁfm(

T (X) = % / y “’”’z(k) (e*“‘xaf(k) _ e"k"a(k)) dk

For the time-zero field and time-zero momentum in the DM representation we apply
the representation 7y, given by formula (2.27) to ®(f) where f = §;,—¢ f1(X)dtdx and
f= 8;=0f1 (x)dtdx and where we choose a test density ¥ of the form §;—o¥1 (X)dtdx
and by abuse of notation denote y; again by . This gives

Bs(f1) =@ (8i=0Py f1) @ 1+ 1@ q(1, f1) = ¢o(Py f1) + 1 @ q(1., f1)
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for the time-zero field, and

ws(f1) = ¢ (Si=0f1) — 1 ® p{f1, ¥) = mo(f1) — 1 ® p{f1, V)

for the time-zero momentum.
Now let f = (f1, f2) € L(R) = DR, C) & D(R, C). Define a family of operators

Bi(f) =¢i(f1) +m(f2),

where [ =m, S.
We obtain the products (., .);, I = m, S by a straightforward calculation from

(f. 8); = wr(Bi(f)Bi(g)) forl =m,S.

For the convenience of the reader, we spell out some details in the case / = S. Recall
that

ws(Bs(f)Bs(9)) = (2, Bs(f)Bs(2)R) .
where Q2 = Qg ® 2, as in (2.29). Hence
ws(Bs(f)Bs(g)) = (R, (¢s(f1) + ws(f2) (@s(g1) + 75(82))R)

:%/(—P¢f1+l\/_f2> <—ngl+l«/_82)

Qr,q29r>/ﬁ /gl +<Qr,p29r>/fztﬂ/gzw
+<Qr, (qp/ﬁ/gzw+pq/f2¢/g1> Qr>

Note that wyp = |k|. Inserting expectation values of q2, pz, qp, and rearranging, we
obtain
_l = . 17
(f.8)s = %f <|k| 2Py fi - lIkI2f2> (K72 Pygi +ilki? 6 ) ak

+5 / rfi — Ly fr)dx / (rg1 + Lyrgo)dy .
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