
This is a repository copy of Safety Case Generation by Model-based Engineering:State of 
the Art and a Proposal.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/172352/

Version: Accepted Version

Proceedings Paper:
Yan, Fang, Foster, Simon orcid.org/0000-0002-9889-9514 and Habli, Ibrahim 
orcid.org/0000-0003-2736-8238 (2021) Safety Case Generation by Model-based 
Engineering:State of the Art and a Proposal. In: The Eleventh International Conference on 
Performance, Safety and Robustness in Complex Systems and Applications, proceedings. 
The Eleventh International Conference on Performance, Safety and Robustness in 
Complex Systems and Applications, 18-22 Apr 2021 International Academy, Research, 
and Industry Association , PRT , pp. 4-7. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/172352/
https://eprints.whiterose.ac.uk/


Safety Case Generation by Model-based Engineering: State of the Art and a Proposal

Fang Yan, Simon Foster, Ibrahim Habli

Department of Computer Science

University of York

York, UK

email: firstname.lastname@york.ac.uk

Abstract—The paper is a review to evaluate the current
techniques for safety case generation using Model-based Engi-
neering. Safety cases provide an explicit and structured means
for assessing and assuring the safety of complex systems. For
systems developed with Model-based Engineering, safety cases
can be constructed with system models as input and should
evolve hand-in-hand with system models when the system up-
dates. Model-based Engineering can provide automatic means
for the generation to improve efficiency. But there is not a full
automation solution to cover the entire generation process. This
paper investigates state-of-the-art of Model-based Engineering
applications to safety case generation, explores the challenges
and gaps, and proposes a solution framework to address the gaps
through the model transformation within the Eclipse Modeling
Framework.

Keywords-safety case; assurance case; model-based engi-

neering; generation; model.

I. INTRODUCTION

Safety Cases (SC) are defined as compelling arguments,

supported by evidence, that systems operate as intended for

defined applications in defined environments [1]. They pro-

vide a systematic way to argue the safety properties. SCs

are important to the operation of safety-critical systems and

recommended in some safety standards, such as ISO 26262

[2].

Many robotics and autonomous systems are safety-critical,

such as autonomous cars, unmanned aerial vehicles, and

medical robots. Their operational environments are relatively

open and not sufficiently predictable during design. This

may necessitate the system evolution, i.e., the redesign or

replacement of system functions/components, during runtime

at a higher frequency than traditional safety-critical systems.

SCs are constructed alongside the system development

process. One of the issues for SC generation is the repeated

workload from SC evolution due to system development

iteration. Therefore, an automatic way for SC generation and

co-evolution with system design is desired. SCs need to evolve

when the systems are subjected to updates. This evolution is

really an instance of the more general problem of generation,

and so if we tackle the latter, we can more easily tackle the

former. Therefore, We discuss the generation process in the

paper.

In terms of the technical solution for generation automation,

we explore Model-based Engineering (MBE). MBE has been

well-adopted for system development thanks to its efficient

tool support, and its applications have expanded into the

surrounding aspects including SC generation. MBE techniques

bring the capabilities of validation, model checking, simula-

tion, model to model transformations, etc. From the published

work, we can tell that the MBE applications on SC generation

vary in terms of the techniques exploited, the generation

phases applied to, and the extent of automation, etc. However,

there is not an MBE solution to guide the whole engineering

process of SC generation. The purpose of this paper is to

understand the state-of-the-art of MBE applications on SC

generation, to evaluate the automation degree of the solutions,

and to point out the research gaps and the possible research

directions. A new technical solution is proposed at the end to

provide a framework to address the gaps. We only focus on

the work that treats SCs as models, i.e., the whole set of SCs

can be manipulated with MBE techniques.

Section II introduces the main background of the paper.

Section III investigates the state-of-the-art of MBE based

SC generation methods. Section IV evaluates these MBE

solutions, identifies the open gaps, and proposes a new MBE

solution. We conclude in Section V.

II. BACKGROUND

A. Safety Case Notations

The widely used SC notations are the structured graphical

forms, including Goal Structuring Notation (GSN) [1] and

Claims-Arguments-Evidence (CAE) [3]. Many tools for SC

generation and management are compliant with GSN. But

most of them are not suitable for MBE applications due to

the lack of a model-based foundation.

Structured Assurance Case Meta-Model (SACM) [4] is

a standard for SC development and exchange released by

Object Management Group (OMG). It specifies a metamodel

composed of three concepts: argumentation, artifact, and ter-

minology. SACM can support a variety of notations including

GSN and CAE. SACM version 2.1 was published in 2020. As

a new standard, SACM has little application in industry yet.

However, it enables MBE techniques to be applied to SCs. We

envisage future applications of SACM with possible toolchain

support.

B. Model-based Engineering

To generate and manipulate SCs as models, metamodels

of SC are indispensable. The most prominent modelling

frameworks are the Eclipse Modeling Framework (EMF) [5],

offering the metamodelling language Ecore, and the Meta

Object Facility (MOF) [6], a standard metamodelling language

defined by OMG.



III. MODEL-BASED SC GENERATION

A. A common SC generation practice

From a practical point of view, a common SC process is

threefold, as shown in Fig. 1, including SC pattern design,

instantiable data management, and pattern instantiation.

Property analysis
Verification and 

Validation methods

SC pattern design

Instantiable data 

identification

Data relationship

Pattern instantiation

Fig. 1. A common process for SC generation

The concept of SC pattern is introduced by Kelly in [7].

It is an abstract structure containing placeholders that can

be instantiated by concrete argument elements. For example,

hazards with placeholders {Hazard} in patterns need to be

replaced by the specific hazard content. It is a good practice

for reusing SC structures.

To implement the instantiation, we need to manage the

instantiable data. That is to identify the data required for

SCs, and the relationships between the data elements and also

between the data and SC elements. For example, a regulatory

requirement may require that all hazards are mitigated. Thus,

this requirement and all the hazards are instantiable data

and the traceability between them shall be built. Further, the

regulatory requirements may fit into the top claim of SCs, the

hazards shall be used for lower claims to support the top claim.

The SC process progresses along with system development,

and takes the system data as input, such as regulations,

hazards, safety requirements, architecture, specification and

design, validation and verification plan and results. To feed the

system data into the pattern is the process of instantiation. This

can be either manual or automatic depending on the data form

and the tool support. If the intention is an automatic instanti-

ation by tool, machine-readable instantiation data is required.

Similar to the instantiation process, the data processing can be

either manual or automatic through MBE as well. Based on

the process above, different possibilities to use MBE for SC

generation automation are discussed in the rest of this section.

B. SC generation by pattern instantiation

In this section, we discuss a common way to exploit MBE

in SC generations following the process in Section III-A.

The idea is to generate SC pattern models compliant with a

metamodel, manually build the mapping between instantiable

data and SC pattern nodes, then to instantiate the pattern

automatically through MBE. The method includes following

steps.

Step 1, to build a SC metamodel. This is usually done by

building a GSN-based metamodel, or extending the SACM

metamodel to be compliant with GSN.

Step 2, to design the SC pattern according to the system

nature and create the pattern models using the SC metamodel.

Step 3, to identify and organize the instantiable data as

a data table. The data may include hazards, causes, safety

requirements, system requirements, tests, etc. The data types

and the inter-relationships among data are defined in the table.

The data can be either in a structured or unstructured manner.

Step 4, to manually establish the mapping between the

nodes of SC pattern and the elements of the data tables.

Step 5, to instantiate the pattern models according to the

mapping table of Step 4 and to output the SC models. The

way to instantiate is first to identify the node in the pattern to

be instantiated and the corresponding data for the node from

the mapping table, then to fill the data into the pattern nodes.

The SC pattern is represented as models which allows

the generation of SC models by automatic instantiation, and

the subsequent model management capabilities, e.g., model

validation, model query, and model comparison. However,

since the data mapping table is generated manually, every time

the source data in Step 3 is changed, e.g., a hazard is added or

a safety requirement is deleted, the mapping needs a manual

upgrade. This will bring high workload due to the frequent

system design modifications.

Denney and Pai [8] have developed an automatic tool Advo-

CATE based on this process for SC generation, management,

and evaluation with the Eclipse EMF. The AC metamodel is

created based GSN with a formal syntax. However, this is

not a fully automated process as the logical mapping between

SC nodes and system data are identified manually in the

instantiable data processing phase.

The approach of Hawkins et al. [9] follows the same Step

1 and Step 2 as in [8], but exploits model weaving [10] to

establish the mapping between instantiable data models and

SC pattern models at the metamodel level. Model weaving

is used to build relationships between elements of different

metamodels, and can be realized manually or automatically

by model transformation. The process differs from the method

above in Step 3 to 5 as follows.

Step 3, to identify the instantiable models, such as system

models, system error models.

Step 4, to establish the relationship between the elements

of SC pattern and the elements of the instantiable models at

their metamodel level within a weaving model.

Step 5, to instantiate through the weaving model execution

and to output the SC models. The way to instantiate is first

to identify the elements to be instantiated in the pattern,

then to find the corresponding system model element through

weaving model. For example, the “component goal” in SC

pattern is the “process” element in Architecture Analysis and

Design Language (AADL) models. So, the “process” models

are extracted from the package of the whole system models

and filled into the “component goal” in SCs.

Compared with [8], one of the advantages of the model

weaving method is that the instantiable data can be extracted

from the system models automatically. Secondly, the automatic

co-evolution is enabled because the links between SC elements

and system models are built between the metamodels instead



of specific system data therefore can be updated automatically

when the system design changes.

However, the method is limited to the systems developed

with MBE because the data that has no metamodel supports

cannot be processed by model weaving. We refer to this

kind of data as ”unstructured” in the paper. Also, with the

claims instantiated only by system models, the SC generated

is incomplete. A SC structure usually starts from abstract prop-

erty goal, goes down to the hazards and safety requirements,

and then is related to system models representing functional

requirements and design. Since the first three of data above are

usually unstructured and cannot be processed by MBE directly,

the corresponding claims are not covered by this method.

C. Integrated SC generation by system model query

This method is to generate SC models by system model

query. The query language and the environment are both

integrated with the system development environment. The

query codes for SC generation are generated manually, but

the codes can be reused as a library, thus the co-evolution

of the SC models and system models can be automated. The

method includes the following steps.

Step 1, to design a Domain Specific Language (DSL)

specific to a certain system modelling language for SC claim

generation in a formal manner and for system model query.

Step 2, to formally define the top-level claim using DSL

within the system development environment.

Step 3, to design model query rules for the top-level claim

using DSL, and return the query results as the SC evidence.

The claim formalization and the system query are imple-

mented in the same environment of system modelling. This

allows the tight coupling of SCs with system models and

ensures the automatic consistency of the two when design

changes. Resolute [11] is a DSL designed for creating SCs

for AADL models following the steps above. The limitation is

that the DSL is specific to AADL and not applicable to other

modelling languages. Also, since SCs are highly integrated

with system models, the claims do not involve the unstructured

data including such as hazard and hazard causes, etc. Thus,

the SCs generated are incomplete.

D. SC generation by claim formalization and refinement

In this method, SC claims are formalized as a series of

mathematical assertions about a system model equipped with

a formal semantics. While the system models are refined, the

concrete low level claims are inferred from top level assertion

in parallel. The main benefit of the method is that the inference

from top level to lower level claims can be verified by rigorous

mathematical refinement checking. The method includes three

steps.

Step 1, to formalize the top claim as an assertion “M |= G

under A”, where M is the system model, A is an assumption

on environment, G is the guarantee on system model. This

assertion denotes that the system models satisfy the guarantee

if the assumption is valid.

Step 2, to decompose the top claim by model refinement,

i.e., by refining the system model through system development,

weakening the assumptions, and decomposing or adding guar-

antees. Thus, the lower level claims are inferred as a set of

“M*|= G* under A*” where * means “refined”.

Step 3, to verify the correctness and completeness of the

refinement by Formal Method (FM) verification. This activity

assures the completeness of the SC structure generated through

model refinement in a rigorously mathematical way.

Besides the benefit of the rigorous verification, the in-

tegration of the system models with SC claims supports

the automatic co-evolution of SC whenever system design

changes. However, since the top level claims are usually

abstract, engineering review is a more appropriate way for de-

composition validation, and the formalization and refinement

checking would add no extra value. Additionally, the tight

coupling of SCs with system models requires that both the

SC and system be modelled in a formal way, and this requires

the expertise of formal methods.

Gleirscher et al. [12] proposes this solution and formalize

the claims using differential dynamic logic. The refinement

checking is demonstrated in Isabelle/HOL [13]. Diskin et al.

[14] applied the similar concepts for SC construction using

data refinement. To reduce the need for FM expertise, Block

Diagrams (BD) are used to guide the system model refinement

from the perspective of the system architecture. However, for

the further detailed system implementation, FM expertise is

still unavoidable.

IV. EVALUATION AND PROPOSAL

From Section III, we can see that the SC generation by

automatic pattern instantiation [8] provides a solution for

construction of a complete SC. But the instantiable data

process is not automated. This will bring a high workload of

SC update when system data change. Also, the system model is

not well integrated with SCs. On the other hand, the integration

of the system models into SCs [9] [11] [12] [14] brings

the benefit of automatic co-evolution of the SCs and system

models. However, these system model-based solutions only

create the lower structure of SCs because the upper structure

of SC does not involve the concrete system design but the

unstructured hazard analysis data. Moreover, the model query

[11] provides an automatic traceability from system model to

SCs, but the application is constrained to a certain system

modelling language. The method of claim formalization and

refinement [12] [14] requires FM expertise which may block

the way of the engineering practical application.

To summarize, there is not an automatic solution fully

covering the SC generation process with a wide application

scope. The gaps lie mainly in: (1) a lack of an automatic way

to process the unstructured instantiable data for MBE manip-

ulation; (2) the missing of integration of upper SC structure

derived from hazard analysis and the lower SC structure from

system models; (3) a narrowed scope of applicability to the

system development techniques.

To close the gaps, we propose an SACM compliant frame-

work for SC generation combining the pattern instantiation

based method and system model query based method. The



method is to be applied within the Eclipse EMF framework.

The instantiable data, the system design, and SCs are all

handled as EMF models. For a use case study, RoboChart

[15] is chosen as the system modelling language which is

designed in Eclipse and can be exported as EMF models. The

framework includes following steps as shown in Fig. 2.

Hazard analysis results

Data metamodel design

EOL 

transformation

Structured data 

models

SC pattern design
ETL 

transformation

Upper structure 

of SC

System modelling Query rule Lower structure 

of SC

Step 4

SC model 

integration

Step 1

Step 2

Step 3

Fig. 2. A common process for SC generation

Step 1, the structured data model generation from hazard

analysis result. In order to manipulate the unstructured data

with MBE, we need first to design the unified metamodel in

Ecore for the hazard analysis data in different format, then

convert automatically the unstructured data to the EMF models

through Epsilon Object Language (EOL) [16].

Step 2, to generate upper structure of SCs by instantiation

of EMF models of hazard analysis data. We need to design the

SC pattern according to the system property, and then design

the instantiation rule with Epsilon Transformation Language

(ETL) [16] to link the elements in the SC pattern with the

instantiable EMF models. Here, we refer to the model weaving

method [9]. But we do not need to create a standalone pattern

model as the pattern has been integrated into the instantiation

rule. Also, there is no need to design a specific SC metamodel

as we use SACM as the SC metamodel.

Step 3, to generate the lower structure of SCs by querying

system design models. We refer the model query concept in

[11] in this step. The query rule is designed based on the

property to be argued, and needs to obey the metamodels of

RoboChart and SC, and the SC pattern. The difference from

[11] is that we execute the query in Eclipse instead of a specific

system development environment that is only applicable to

certain system modelling language such as the Open Source

AADL Tool Environment (OSATE) for AADL. This indepen-

dence from the specific system modelling environment will

allow the wider scope of the applicability.

Step 4, the integration of the SC structures. We create and

insert an identifier keyword in the raw data of hazard analysis,

instantiation rule of Step 2, and the query rule of Step 3.

Through this identifier, the position in SC structure where

system model query is required can be automatically identified

and used to link the two parts of the SC structures as a whole.

Our framework can provide an automatic solution cov-

ering the entire SC generation. Compared with Section 3,

our framework may automate the data processing, streamline

the process by removing the pattern modelling and the SC

metamodel design. It also closes the gap by integrating the

SC structures generated from both structured and unstructured

data. The proposal may have a wide scope of applicability

as it can be applied to any system as long as the models

can be converted into EMF models. Moreover, the utilisation

of SACM metamodel instead of GSN-based metamodel may

make our solution compatible with the upcoming SACM based

tools in future.

V. CONCLUSION AND FUTURE WORK

SCs are generated and evolve along with the system devel-

opment. The automation of SC process reduces the workload

and chances of errors. We believe MBE is a solution for this

purpose. The paper discusses different MBE methods of SC

generation and the automation capability of each method. The

research gaps are identified as lacking of automatic processing

of raw instantiable data, and of a solution for generating a

complete SC from both structured and unstructured system

data. We propose an SACM compliant framework for SC

generation to close the gap. In future, we will apply our

approach to an autonomous underwater vehicle, and revise the

framework based on the implementation results.

ACKNOWLEDGMENT

This research is funded by the EU Horizon 2020 Euro-

pean Training Network “Safer Autonomous Systems” (Grant

Agreement 812788) and the EPSRC-UKRI fellowship project

CyPhyAssure (Grant EP/S001190/1).

REFERENCES

[1] Assurance Case Working Group, “GSN Community Standard. Version
2,” 2018.

[2] ISO, “ISO 26262 Road vehicles–Functional Safety, Version 1,” 2011.
[3] “Claims-Argument-Evidence-Adelard LLP,” https://www.adelard.com/

asce/choosing-asce/cae.html, online; accessed 6th March, 2021.
[4] Object Management Group (OMG), “Structured Assurance Case Meta-

model (SACM), Version 2.1 beta,” 2020.
[5] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse

modeling framework. Pearson Education, 2008.
[6] OMG, “Meta object facility (mof) core specification,” 2019.
[7] T. P. Kelly and J. A. McDermid, “Safety case construction and reuse

using patterns,” in Safe Comp 97. Springer, 1997, pp. 55–69.
[8] E. Denney and G. Pai, “Tool support for assurance case development,”

Automated Software Engineering, vol. 25, no. 3, pp. 435–499, 2018.
[9] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving an

Assurance Case from Design: A Model-Based Approach,” in 2015 IEEE

16th International Symposium on High Assurance Systems Engineering.
IEEE, 2015, pp. 110–117.

[10] M. D. Del Fabro, J. Bézivin, and P. Valduriez, “Weaving models with the
eclipse amw plugin,” in Eclipse Modeling Symposium, Eclipse Summit

Europe, vol. 2006, 2006, pp. 37–44.
[11] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen, “Resolute: an

assurance case language for architecture models,” in ACM SIGAda Ada

Letters, vol. 34, no. 3. ACM, 2014, pp. 19–28.
[12] M. Gleirscher, S. Foster, and Y. Nemouchi, “Evolution of Formal Model-

Based Assurance Cases for Autonomous Robots,” Lecture Notes in

Computer Science, vol. 11724 LNCS, pp. 87–104, 2019.
[13] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof

assistant for higher-order logic. Springer Science & Business Media,
2002, vol. 2283.

[14] Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, and M. Law-
ford, “Assurance via model transformations and their hierarchical refine-
ment,” in Proc. the 21th ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, 2018, pp. 426–436.
[15] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Wood-

cock, “Robochart: modelling and verification of the functional behaviour
of robotic applications,” Software & Systems Modeling, vol. 18, no. 5,
pp. 3097–3149, 2019.

[16] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation
language,” in International Conference on Theory and Practice of Model

Transformations. Springer, 2008, pp. 46–60.


