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Highlights

 Soil moisture is a key predictor of bacterial wilt disease (BWD) across China.

 Other soil properties have lesser role and are locally associated to BWD.

 Soil moisture can causally drive BWD in greenhouse experiment.

 Water management strategies could potentially be used in BWD control.
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33 Summary

34 Soil-borne plant diseases cause major economic losses globally. This is partly because their 

35 epidemiology is difficult to predict in agricultural fields, where multiple environmental factors 

36 could determine disease outcomes. Here we used a combination of field sampling and direct 

37 experimentation to identify key abiotic and biotic soil properties that can predict the 

38 occurrence of bacterial wilt caused by pathogenic Ralstonia solanacearum. By analysing 139 

39 tomato rhizosphere soils samples isolated from six provinces in China, we first show a clear 

40 link between soil properties, pathogen density and plant health. Specifically, disease 

41 outcomes were positively associated with soil moisture, bacterial abundance and bacterial 

42 community composition. Based on soil properties alone, random forest machine learning 

43 algorithm could predict disease outcomes correctly in 75% of cases, with soil moisture being 

44 the most significant predictor. The importance of soil moisture was validated causally in a 

45 controlled greenhouse experiment, where the highest disease incidence was observed at 60% 

46 of maximum water holding capacity. Together, our results show that local soil properties can 

47 predict disease occurrence across a wider agricultural landscape, and that management of 
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48 soil moisture could potentially offer a straightforward method for reducing crop losses to R. 

49 solanacearum.

50

51 Keywords

52 Bacterial wilt disease; Soil moisture; Soil physicochemical properties; Rhizosphere bacterial 

53 communities; Ralstonia solanacearum; Random forest algorithm

54
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56 1 Introduction

57 Multiple physicochemical and biotic environmental factors have long been known to be 

58 important for plant disease outbreaks, as suggested by the conceptual Disease Triangle model 

59 (McNew, 1960). For example, soil moisture (Aung et al., 2018), pH (Rahman and Othman, 

60 2020), nutrient availability (Berg and Koskella, 2018) and microbial communities (Trivedi et 

61 al., 2020) all influence the severity of soil-borne diseases. Furthermore, temperature can 

62 directly affect pathogen densities (Wei et al., 2015a; Pimentel and Ayres, 2018) or the 

63 strength of interactions between pathogen and its competitors (Wei et al., 2017; Velásquez 

64 et al., 2018) with important consequences for the disease occurrence. However, while the 

65 significance of environment has been long recognised (Cheng et al., 2019), we still poorly 

66 understand the relative importance of different factors, or their combinations, for the disease 

67 outcomes. Furthermore, the effects of soil properties are often studied locally within one 

68 specific agricultural area making it difficult to extrapolate results up to a level of a country or 

69 a continent (Janvier et al., 2007; Orr and Nelson, 2018). To study this, we used China-wide 

70 (area of 1.3 million Km2) sampling of tomato plant rhizosphere to identify key abiotic and 

71 biotic soil properties associated with bacterial wilt disease occurrence, and experimentally 

72 tested if one of the most important factors, soil moisture, could causally drive bacterial wilt 

73 disease incidence in a greenhouse experiment.

74 Ralstonia solanacearum bacterium is a causative agent of notorious bacterial wilt 

75 disease that leads to a systemic wilting of plants (Hayward, 1991). It can infect multiple 

76 important crops belonging to the Solanaceae family (e.g. potato, tomato and tobacco) and 

77 has a global distribution (Mansfield et al., 2012). Previous studies have identified associations 

78 with multiple soil physicochemical factors and R. solanacearum infections both in the field 

79 and greenhouse experiments (Hayward, 1991; Jiang et al., 2017; Wei et al., 2018; Siregar et 
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80 al., 2020). For example, R. solanacearum-infected plants have previously been associated 

81 with increased soil moisture (Jiang, 2016), acidic pH (Li et al., 2017a) and high nitrogen 

82 availability (Dalsing et al., 2015; Y. Gu et al., 2020Gu et al., 2020a). These environmental 

83 factors could affect bacterial wilt occurrence directly by favouring the growth of the pathogen, 

84 as R. solanacearum needs to reach certain threshold density in the soil to express key 

85 virulence factors that are triggered by quorum sensing signalling (Genin and Denny, 2012; 

86 Peyraud et al., 2016, 2018). Alternatively, soil properties could have indirect effects on the 

87 pathogen via plants or associated plant rhizosphere microbiome. Plants have evolved 

88 sophisticated defence mechanisms against pathogens, and recent evidence suggests that 

89 environmental factors can directly affect plant immunity and defence hormone pathways 

90 (Velásquez et al., 2018). Rhizosphere microbiome also plays a crucial role in forming the first 

91 line of defence against invading pathogens, often considerably shaping the disease severity 

92 (Kwak et al., 2018; Wei et al., 2019, 2020). In general, diverse microbial communities can limit 

93 pathogen growth due to intense competition for nutrients, space and other resources (Wei 

94 et al., 2015b; S. Gu et al., 2020Gu et al., 2020b), or because they are likely to contain highly 

95 antagonistic species that can directly inhibit the pathogen for example by secreting 

96 antimicrobial molecules (Raza et al., 2016a, 2016b). Crucially, soil properties often determine 

97 the composition and diversity of rhizosphere microbiome and could hence indirectly affect 

98 the likelihood of R. solanacearum infections.

99 Understanding the potential role of soil properties in R. solanacearum infections is 

100 especially important because bacterial wilt dynamics often show high temporal and spatial 

101 variability both between and within fields (Wei et al., 2017, 2018). Previous work has shown 

102 that between-field variability could be driven by local fluctuations in temperature and 

103 humidity (Wei et al., 2017), while within-field variation could be explained by spatial 
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104 differences in soil physicochemical properties or the composition of microbial communities, 

105 which both have been associated with disease outcomes previously (Wei et al., 2018, 2019; 

106 Lee et al., 2021). However, it is unclear which soil properties are relatively more important 

107 than the others, and if the previously observed patterns hold across a wider geographical area 

108 with varying local environmental conditions. To study this, we focused on six geographically 

109 separated tomato fields in China (area of 1.3 million Km2) to explore the role of within- and 

110 between-field variation in abiotic and biotic soil properties for bacterial wilt disease 

111 occurrence. We first collected and analysed 139 rhizosphere soil samples originating from 

112 healthy and diseased plants at every field and identified significant associations between the 

113 disease outcome, pathogen densities and different soil properties. Second, machine learning 

114 algorithm was used to identify the relatively most important soil properties associated with 

115 the bacterial wilt disease, whose importance was directly tested in a greenhouse experiment. 

116 It was found that despite considerable between-field variation, healthy and diseased plants 

117 were consistently associated with certain soil properties, which could predict bacterial wilt 

118 disease occurrence with 75% accuracy. Soil moisture, bacterial community composition and 

119 bacterial abundances were the most important predictors of disease by incidence based ona 

120 random forest model, and. Furthermore, soil moisture content treatment at 60% of maximum 

121 water holding capacity led to the highest levels of disease incidence in a controlled 

122 greenhouse experiment. Together, our findings suggest that local variation in abiotic and 

123 biotic soil properties can reliably predict bacterial wilt disease outcomes across large 

124 agricultural area.

125
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126 2 Experimental Procedures

127 2.1 Sampling sites and collection of plant soil samples

128 Soil samples were collected from tomato fields at six locations in Changsha of Hunan province 

129 (112°58′E, 28°11′N), Ningbo of Zhejiang province (121°67'E, 29°91'N), Nanchang of Jiangxi 

130 province (115°51′E, 28°41′N), Nanjing of Jiangsu province (18°57'E, 32°03'N), Nanning of 

131 Guangxi province (108°21′E, 22°49′N) and Wuhan of Hubei province (114.31′E 30.52′N) during 

132 tomato bacterial wilt disease outbreaks in the summer 2015. The sampled fields in Central 

133 (Hubei and Hunan), Eastern (Jiangsu, and Zhejiang) and Southern (Guangxi) China recurrently 

134 experience R. solanacearum outbreaks (Jiang et al., 2017) and had suffered from bacterial 

135 wilt disease epidemics between 3 to 15 years based on communication with the local farmers. 

136 Within each sampling site, common local tomato cultivars were used: Solanum lycopersicum 

137 cv. “Hengkang #1” in Changsha, “CTX 201” in Nignbo, “Hezuo 906” in Nanachang, “Guihong 

138 #1”, “Jipin” in Nanjing and “Huafan #13” in Wuhan. At each sampling site, around 12 

139 symptomatic (diseased) and 12 asymptomatic (healthy) tomato plants were chosen randomly 

140 based on the presence and absence of visible disease symptoms and randomly sampled at 

141 the early fruiting stage resulting in( a total of 139 rhizosphere samples). Excess root soil was 

142 discarded by gently shaking and the remaining soil attached on the root surfaces was 

143 collected and considered as the rhizosphere soil (Wei et al., 2011). Around 10 g of fresh 

144 rhizosphere soil per plant was sampled and divided into two sealed 5 mL Eppendorf tubes to 

145 retain natural soil properties.  One tube was cryopreserved in 5 mL of 30% glycerol at –80 °C 

146 to analyse biotic properties of rhizosphere samples (pathogen and total bacteria densities and 

147 microbial community diversity and composition). Another tube was used for determining soil 

148 physicochemical (abiotic) properties as described in the following section.

149
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150 2.2 Determination of abiotic and biotic soil properties

151 2.2.1 Abiotic properties

152 Abiotic physiochemical properties included soil moisture content (Moisture, %), pH, available 

153 phosphorus (P, mg·kg-1), available potassium (K, mg·kg-1), water-soluble carbon (C, mg·kg-1) 

154 and total nitrogen (N, mg·kg-1). The difference in fresh and air-dried soil sample weight was 

155 used as a proxy of soil moisture for each rhizosphere sample. Soil pH was measured in a 20% 

156 water (w/w) suspension (Li et al., 2017a) using a pH meter (PB-10, Sartorius, Germany). 

157 Available P and K were extracted with hydrochloric acid and ammonium fluoride and 

158 measured using molybdenum blue method (Pansu and Gautheyrou, 2006). The water-soluble 

159 carbon and total N were determined by following a previous protocol (Pansu and Gautheyrou, 

160 2006) using a multi C/N analyzer 3000 (Analytik Jena AG, Germany).

161

162 2.2.2 Biotic properties

163 The total DNA was exacted from ∼0.25 g of cryopreserved rhizosphere soil using PowerSoil 

164 DNA Isolation Kit (Mobio Laboratories, Carlsbad, CA, USA) following the manufacturer´s 

165 protocol. DNA quality and concentration were checked using a NanoDrop 1000 

166 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Soil DNA was subjected to 16S 

167 ribosomal RNA (rRNA) Illumina amplicon sequencing to determine the diversity and 

168 composition of bacterial communities at Shanghai Biozeron Biological Technology Co. Ltd. 

169 The V4 hypervariable region of the 16S rRNA gene was amplified with the primer pair 563F 

170 (5′-AYTGGGYDTAAAGVG-3′) and 802R (5′-TACNVGGGTATCTAATCC-3′). All sequences were 

171 processed with QIIME (Caporaso et al., 2010). The OTU similarity cut-off was assigned at 97% 

172 identity level using USEARCH (Edgar, 2010). OTUs were assigned to corresponding bacterial 

173 taxa using the Ribosomal Database Project (RDP) database with the online version of the RDP 
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174 classifier (Cole et al., 2014). The microbial community diversity was determined as Shannon 

175 diversity index (Shannon) and Chao1 richness index (Shannon) using the vegan R package 

176 (Dixon, 2003) after removing R. solanacearum OTUs (Wei et al., 2018). Microbial community 

177 composition was quantified as a dissimilarity index (Bray-Curtis) based on average Bray-Curtis 

178 distance of each sample from each other at the OTU level. The pathogen and total bacterial 

179 densities were examined with qPCR using R. solanacearum-specific primer Rsol_fliC 

180 (Schönfeld et al., 2003) and general bacterial primer pair Eub338/Eub518 (Fierer et al., 2005). 

181 SYBR Premix Ex Taq Kit (TaKaRa Biotech. Co, Japan) was used following the manufacturers’ 

182 protocol, and each sample was measured in triplicate using a 7500 Fast Real-Time PCR System 

183 (Applied Biosystems, CA, USA).

184

185 2.3 Establishing causality between soil moisture and bacterial wilt incidence in tomato

186 A greenhouse experiment was conducted in Yixing of Jiangsu province to test whether soil 

187 moisture can predictably drive the development of bacterial wilt disease under controlled 

188 environmental conditions. Experimental soils that were free of R. solanacearum were 

189 collected from a riverside of Zhangzhu town in Yixing: no R. solanacearum growth was 

190 detected using semi-selective agar medium (Wei et al., 2018). Tomato seeds (S. lycopersicum 

191 cv. “Jipin”) were surface-sterilized with NaClO (3%; v:v) and germinated on moist filter paper 

192 for 2 days before sowing in sterilized nursery substrate (Huaian Agricultural Technology 

193 Development Ltd). Tomato seedlings were transplanted into plastic pots with five kg of 

194 homogenized dry soils at four-leaf stage. The soil moisture content was manipulated using 

195 five treatments with 40%, 50%, 60%, 70%, and 80% of maximum water holding capacity, and 

196 twelve replicate pots were used per treatment. This moisture range covered dry (40%) and 

197 flooded (80%) soils. Plants were acclimated in greenhouse conditions for three weeks before 
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198 pathogen inoculation and then grown in the same conditions until the end of the experiment 

199 (constant temperature of 30 °C ± 3 °C, relative air humidity of 80%, and 14 h of light and 10 h 

200 of dark daily cycle). Water content was kept constant in each treatment by adding sterile 

201 water to each pot  during acclimatization period before the infection and until the end of the 

202 experiment after the infectionaccordingly. After three weeks of acclimatization, R. 

203 solanacearum pathogen strain QL-Rs1115 (a strong virulent reference strain) was inoculated 

204 to all pots using soil drenching method with resulting in final concentration of 5.0 × 106 

205 CFU·g−1 soil (Wei et al., 2011). The same amount of water (10 mL) was used with all the pots, 

206 which led to only momentary increase in water holding capacity in some of the low moisture 

207 treatments during the drenching. The disease development was monitored on a daily basis 

208 and quantified as a disease index on a scale ranging from 0 to 4 where one whole number 

209 change corresponds to 25% increase in the proportion of wilted leaves per plant (Schandry, 

210 2017).

211

212 2.4 Data analyses

213 2.4.1 Comparing differences in abiotic and biotic properties of healthy and diseased plant 

214 rhizosphere samples

215 All measured abiotic and biotic properties were normalized between the range 0 – 1 using 

216 min-max normalization before statistical analyses (Patro and Sahu, 2015). Nonparametric 

217 Wilcoxon rank sum test (Wilcoxon test) was used to compare differences between healthy 

218 and diseased plant rhizosphere soil samples (Cuzick, 1985). The microbial community 

219 composition was ordinated by principal coordinates analysis (PCoA) using Bray-Curtis 

220 distance and differences between healthy and diseased plant rhizosphere soil samples were 

221 compared using the nonparametric permutational multivariate analysis of variance 
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222 (PERMANOVA, P < 0.05, 999 permutations) using Adonis function in R vegan package (Dixon, 

223 2003). Principal component analysis (PCA), based on the Euclidean distance of the range 

224 normalized values for overall abiotic and biotic properties, was used to visualize differences 

225 between healthy and diseased plants (FactoMineR R package (Lê et al., 2008); statistical 

226 significance tested using nonparametric PERMANOVA (P < 0.05) with 999 permutations using 

227 Adonis function in R vegan package (Dixon, 2003)).

228

229 2.4.2 Identifying key abiotic and biotic predictors for pathogen abundance and plant health

230 To identify key abiotic and biotic predictors for pathogen abundance, we build up a model 

231 using multiple linear regression function in R stats package (R Core Team, 2020) to predict R. 

232 solanacearum densities based on all measured soil properties. The relative importance of 

233 different predictors werewas estimated based on their significance for the model 

234 performance (% of R2) using Anova (R Core Team, 2020) and relweights functions in R 

235 (Kabacoff, 2015). To understand the relationship between environmental variables and 

236 disease incidence, we used Random forest approach using randomForest package in R as 

237 follows (Cutler and Wiener, 2018). We first randomly selected 80% of the entire 139 sample 

238 dataset as a training set (n = 111) to generate a classification model for predicting plant health 

239 status (healthy vs. diseased) based on soil abiotic (moisture, pH, P, K, C, N) and biotic 

240 properties including Chao1, Shannon and Bray-Curtis metrices of the bacterial community in 

241 tomato rhizosphere soils. Tenfold cross-validation was performed 10 times using the rfcv 

242 function to select appropriate number of predictor properties whose importance and cross-

243 validation curves were visualized by using the R ggplot2 package (Wickham et al., 2020). 

244 Remaining 20% of samples (n = 28) were used as a test set to predict plant health based on 

245 the abiotic and biotic rhizosphere soil properties.
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246

247 2.4.3 Analysis of disease dynamics in a greenhouse experiment

248 The effect of soil moisture on disease dynamics was analysed based on temporal 

249 changes in disease index values using a logistic growth curve (Schandry, 2017). The disease 

250 dynamics curves were fitted individually for each plant using gcFitModel function in R grofit-

251 package (Kahm et al., 2010). As described previously (Wei et al., 2015b), this fit could be 

252 divided into three variables describing different stages of disease development: 1) lag phase 

253 referred to as the delay time of disease symptom onset after inoculation of the pathogen 

254 (early infection stage); 2) disease rate referred to as the exponential increase of disease 

255 progression (exponential infection stage); 3) area under progression of the disease dynamics 

256 curve (AUDPC) referred to as the overall severity of wilt disease (late infection stage). Shapiro-

257 Wilk and Bartlett’s tests were used to test the normality and homogeneity of the fitted 

258 variables using the R stats-package. If the data matrix followed a normal distribution with 

259 homogeneous variances, ANOVA and post hoc Tukey's HSD tests were used to compare 

260 differences between different soil moisture groups (P < 0.05) using R multcomp-package 

261 (Hothorn et al., 2020). Otherwise, non-parametric Kruskal-Wallis and post hoc Dunn’s tests 

262 were used for statistical analyses using R agricolae package (Mendiburu, 2020). 

263
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264 3 Results

265 3.1 Rhizosphere soil properties vary between healthy and diseased plants

266 We first compared the abiotic physiochemical and biotic rhizosphere soil properties (Table 1) 

267 of diseased and healthy tomato plants across six sampled provinces in China (Fig. 1a, CS: 

268 Changsha; NB: Ningbo; NC: Nanchang; NJ: Nanjing; NN: Nanning; WH: Wuhan). Pathogen 

269 densities were on average 15.79 times higher in diseased compared to healthy plants (P < 

270 0.0001, Wilcoxon test, Supp. Fig. 1-2), and also the other rhizosphere soil properties differed 

271 between diseased and healthy plants (Fig. 1, Supp. Fig. 1-2). Specifically, diseased plants were 

272 characterized by 1.15 times higher soil moisture (P = 0.001), and 10.53 times higher total 

273 bacterial densities (P = 0.0002) compared to the healthy plants (Wilcoxon test; Fig 1b and 

274 Supp. Fig. 1-2). While other physiochemical soil properties, or microbial community diversity, 

275 did not differ between the diseased and healthy plants (P > 0.05; Wilcoxon test; Fig 1b, Supp. 

276 Fig. 1-2), PCoA analysis revealed that microbial community composition varied depending on 

277 the plant health status (R2 = 0.10, P = 0.002) and between provinces (R2 = 0.56, P = 0.001, 

278 PERMANOVA; Fig. 1c and Supp. Fig. 3). Moreover, differences in microbial community 

279 composition between the healthy and diseased plants were location-specific: significant 

280 differences were found in CS, NB, NJ and NN (P > 0.05) but not in NC or WH provinces (P < 

281 0.05, PERMANOVA; Supp. Fig. 3). Moreover, when analysed together using PCA, abiotic 

282 physicochemical and biotic soil properties differed between provinces (R2 = 0.62, P = 0.001), 

283 and between healthy and diseased plants within each province (R2 = 0.09, P = 0.001, 

284 PERMANOVA; Fig. 1d and Supp. Fig. 4). Together, these results suggest that diseased and 

285 healthy plants were associated with distinct soil properties despite clear between-province 

286 variation in environmental conditions.

287
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288 3.2 Soil moisture is the relatively most important factor distinguishing diseased and healthy 

289 plant samples

290 To compare the relative importance of different soil properties, we used correlation analysis 

291 and machine learning. We found statistically significant relationships between abiotic 

292 physicochemical and biotic parameters and R. solanacearum pathogen densities in case of all 

293 variables except for P and K availability (P > 0.05, Fig. 2a and Supp. Fig. 5). Specifically, 

294 pathogen densities correlated negatively with N availability (R2 = 0.24, P = 0.005) and average 

295 Bray-Curtis dissimilarity (average Bray-Curtis distance of microbial community composition 

296 from other 139 samples, R2 = 0.28, P = 0.001). In contrast, pathogen densities were positively 

297 associated with total bacterial densities (R2 = 0.60, P < 0.0001), soil moisture (R2 = 0.55, P < 

298 0.0001), pH (R2 = 0.28, P = 0.001), Shannon diversity (R2 =0.20, P = 0.017) and Chao1 richness 

299 (R2 = 0.21, P = 0.014; Fig. 2a and Supp. Fig. 5). Of all predictor variables, soil moisture (relative 

300 weight = 40.36%), total bacterial density (relative weight = 22.77%) and soil pH (relative 

301 weight = 14.59%) were the most significant predictors of pathogen densities in the tomato 

302 rhizosphere (multiple regression model, AIC: 324.09; F10,128 = 10.6, R2 = 0.45, P < 0.0001, Supp. 

303 Table 1). 

304 Random forest modelling was further used to analyse associations between soil 

305 properties and plant health. By using all measured soil properties, we could predict bacterial 

306 wilt disease outcomes with 78.6% accuracy (AUC = 0.89; Supp. Fig. 6). To eliminate the 

307 obvious link between pathogen abundance and disease incidence, we re-ran the model 

308 without pathogen density data (Fig. 2b). The high predictability of the model was retained, 

309 and bacterial wilt disease outcomes could still be predicted with 75% accuracy (AUC = 0.75; 

310 Fig. 2c). Based on ten-fold cross-validation with 10 independent model simulations (inset of 

311 Fig. 2b), soil moisture was ranked as the most important individual predictor of plant health 
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312 followed by the total bacterial abundances (Fig. 2b). Together, these results suggest that 

313 abiotic and biotic soil properties can reliably predict bacterial wilt disease occurrence, with 

314 soil moisture being the relatively most important factor.

315

316 3.3 Variation in soil moisture can causally drive bacterial wilt disease occurrence

317 To directly test if soil moisture can drive variation in bacterial wilt disease incidence, we 

318 performed a greenhouse experiment where tomato plants were exposed to R. solanacearum 

319 type strain under different soil moisture treatments. We found that bacterial wilt disease 

320 dynamics differed depending on soil moisture content and the stage of infection (Fig. 3). On 

321 average, the highest disease incidence was observed in 60% followed by 70% soil moisture 

322 content treatments, while no differences were observed between the other treatments (Fig. 

323 3a-b). Specifically, soil moisture effects were visible during the early stages of infection in 

324 terms of reduced lag-phase of disease onset (F4,21 = 7.48, P < 0.0001, ANOVA; Fig. 3b) and as 

325 overall differences in area under disease progression curve (AUDPC, χ2 = 13.73, P = 0.008, 

326 AUDPC panel), while soil moisture content had no effect on the disease rate during the 

327 exponential phase of infection (χ2 = 4.07, P = 0.396, Kruskal-Wallis test; Fig. 3b). Together, 

328 these results demonstrate that soil moisture alone can causally drive bacterial wilt disease 

329 outcomes in otherwise homogenous tomato rhizosphere environments.

330

331
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332 4 Discussion

333 Here we studied if plant-level variation in bacterial wilt disease occurrence could be explained 

334 by local abiotic and biotic soil properties across six provinces in China. Our sampling data 

335 shows that healthy and diseased plant rhizosphere soils were associated with distinct abiotic 

336 and biotic properties which could predict bacterial wilt disease occurrence with 75% accuracy. 

337 Soil moisture was identified as the most important predictor, and its causal role was tested 

338 directly in a greenhouse experiment with tomato. It was found that variation in soil moisture 

339 alone, could considerably change the disease dynamics resulting in different levels of disease 

340 incidence. Our results are in line with previous studies that have identified a tight link 

341 between moisture and plant diseases (Huber and Gillespie, 1992) with Pseudomonas syringae 

342 (Xin et al., 2016) and M. oryzae pathogens in the plant phyllosphere (Li et al., 2014) and by 

343 expandings this association to crops and other soil-borne bacterial diseases.

344 Moisture could affect plant pathogens in several ways (Aung et al., 2018) ranging from 

345 effects on pathogen survival, movement and growth in the soil (Smilanick and Mansour, 2007; 

346 Kearns, 2010) to effects on pathogen invasiveness (Li et al., 2014) or indirect effects on the 

347 activation of plant defences (Panchal et al., 2016; Velásquez et al., 2018). While the 

348 relationship with moisture has previously been observed with other soil-borne pathogenic 

349 fungi and bacteria, including R. solanacearum (Chairman et al., 1981; van Elsas et al., 2000; 

350 Islam and Toyama, 2004; Satou et al., 2006; Mondal et al., 2014; Jiang et al., 2018), we here 

351 show that moisture was the relatively most important factor predicting bacterial wilt 

352 occurrence across broad geographical scale spanning six Chinese provinces. Our sampling 

353 area covered various soil types, tomato cultivars and climate conditions. While clear 

354 geographical variation between locations was observed, the significance of soil moisture on 

355 plant health status was significant within each field. As a result, this difference could not be 
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356 explained by local climate or agricultural practises, such as use of certain tomato cultivars. In 

357 the future, it will be important to see if our findings can be extrapolated to other countries 

358 and agricultural areas experiencing recurrent R. solanacearum outbreaks. 

359 In addition to identifying an important country-wide link with the soil moisture, we 

360 show that this association might not be an indirect consequence of R. solanacearum infection, 

361 which typically leads to increased soil moisture via reduced water uptake and transpiration in 

362 the infected plants (Jiang, 2016). Instead, by using controlled greenhouse experiment, we 

363 demonstrate that soil moisture alone can causally drive bacterial wilt disease outcomes in 

364 otherwise identical soil environmental conditions. Highest levels of disease incidence were 

365 observed at 60% and 70% maximum water holding capacity soil moisture treatments, and 

366 there are several potential reasons for this. First, it is possible that this moisture content level 

367 was optimal for the plant growth (Kramer, 1983) leading to more efficient root exudation 

368 (Larson and Funk, 2016) and improved growth and colonisation of the plant by the pathogen 

369 (van Elsas et al., 2000; Islam and Toyama, 2004). Moreover, non-optimal soil moisture levels 

370 have previously been shown to lead overexpression of plant resistance genes (Sinha et al., 

371 2016; Jiang et al., 2018), which could have also affected the observed differences in disease 

372 occurrence, as reported before (Mondal et al., 2014). Alternatively, it is possible that certain 

373 moisture levels were directly beneficial to the pathogen, allowing more efficient growth, 

374 movement and colonisation of the plant (Beattie, 2011; Aung et al., 2018; Velásquez et al., 

375 2018). Finally, soil moisture is known to affect the availability of oxygen (Mainiero and Kazda, 

376 2005) and nutrients (Cavagnaro, 2016), which could have affected the R. solanacearum 

377 growth (Dalsing et al., 2015) or the strength of microbiome-mediated pathogen suppression 

378 (Chen et al., 2007; Brockett et al., 2012) in the rhizosphere. Further experiments are hence 

379 however needed to directly test these explanations directly.
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380 In addition to soil moisture, also some soil physiochemical properties, such as 

381 microbiome composition, pH and nitrogen availability, differed between healthy and diseased 

382 plants depending on the sampling sites. This is in line with previous findings showing a clear 

383 link between bacterial community composition and bacterial wilt disease outcomes (Wei et 

384 al., 2018, 2019), highlighting also the importance of microbial interactions for R. 

385 solanacearum infections (Wei et al., 2019; Wen et al., 2020; Lee et al., 2021). While 

386 differences in bacterial community richness and diversity of healthy and diseased plants were 

387 only significant in Nanjing, bacterial community composition was more consistently 

388 associated with plant health status indicative of its importance in predicting bacterial wilt 

389 disease occurrence (Wei et al., 2019). In the future, it would be interesting to test if the 

390 abundance and activity of certain R. solanacearum-suppressing bacteria, such Firmicutes and 

391 Actinobacteria (Lee et al., 2021), were positively or negatively affected by the soil moisture 

392 content. Furthermore, it has previously been shown that bacterial wilt disease is aggravated 

393 in acidic soils (Li et al., 2017a, 2017b; Wang et al., 2017) and by high nitrogen availability (Y. 

394 Gu et al., 2020Gu et al., 2020a), while high C, N, P and K availabilities have been linked with 

395 to healthy plant rhizosphere (Wang et al., 2017; Wei et al., 2018; Wu et al., 2020). However, 

396 we found that the physicochemical soil properties did not consistently differ between healthy 

397 and diseased plants machine learning algorithm. It is also possible that some of the healthy 

398 plants were latently infected by R. solanacearum, and hence, did not show visible disease 

399 symptoms despite being infected (Hayward, 1991; Genin and Denny, 2012). While certain 

400 healthy plants overlapped in their soil properties with the diseased plants, we did not see 

401 clear clustering of healthy plant samples at the field level. This suggests that the proportion 

402 of latently infected plants was low, or that their microbiome properties were more similar to 

403 healthy plants. In the future, it would be interesting to test if our algorithm can predict 
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404 bacterial wilt disease occurrence using other unrelated datasets, and if its performance can 

405 be improved by taking latent infections into account. Furthermore, model predictions could 

406 potentially be improved by including temporally, locally and globally varying some other 

407 abiotic and biotic variables that vary temporally, such as temperature, humidity and 

408 humidityprecipitation.  Furthermore,As it is likely that certain these environmental factors 

409 will have interactive effects, which shouldtheir effects be further explored experimentally.

410

411 5 Conclusions

412 We conclude that soil properties can be used as reliable predictors of bacterial wilt disease 

413 occurrence, with soil moisture being one of the most import single factors that consistently 

414 differed between healthy and diseased plants across all sampling locations. Moreover, while 

415 other soil properties played important roles, their effects were often sampling location-

416 specific, indicative of their potential importance at the local scale. The causal role of soil 

417 moisture was directly validated in a greenhouse house experiments, which highlights the 

418 value of direct experimentation in separating causes from consequences in plant pathology 

419 studies. The obtained information will be helpful for developing predictive modelling to 

420 better understand the epidemiology of bacterial wilt disease outbreaks in spatially and 

421 temporally varying agricultural environments and should be validated in the future with 

422 unrelated datasets from other countries and agricultural areas. Finally, the importance of soil 

423 moisture suggest that relatively simple water management practises could potentially be 

424 effective way to control bacterial wilt disease occurrence.

425
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Table 1: Differences in abiotic physicochemical and biotic soil properties between healthy and diseased plants

Diseased vs healthy plants (P-values)*
Factor Name (Units)

Statistical 

method CS NB NC NJ NN WH

Moisture Soil moisture content (%) Wilcoxon test <0.001 0.026 0.115 0.009 0.006 0.922

pH Soil pH value Wilcoxon test 0.312 0.729 0.025 0.016 0.954 0.431

Phosphorus Available phosphorus (mg·kg-1) Wilcoxon test 0.514 0.63 0.606 0.079 0.862 0.224

Potassium Available potassium (mg·kg-1) Wilcoxon test 0.114 0.319 0.001 0.928 0.012 0.699

Carbon Water-soluble carbon (mg·kg-1) Wilcoxon test 0.799 0.378 0.599 0.009 0.008 0.047

Nitrogen Water-soluble nitrogen (mg·kg-1) Wilcoxon test 0.887 0.143 0.028 0.211 0.419 0.401

Pathogen 

density

R. solanacearum density (log10 fliC gene copies g-

1 soil) Wilcoxon test <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Bacterial 

density

Total bacterial density (log10 16S rRNA gene 

copies g-1 soil) Wilcoxon test
0.002 0.04 0.645 0.005 0.014 0.081

Shannon

Shannon index for bacterial community diversity 

(OUT level) Wilcoxon test
>0.999 0.198 0.519 0.002 0.291 0.133

Chao1

Chao1 index for bacterial community richness 

(OTU level) Wilcoxon test
0.755 0.977 0.133 0.002 0.198 0.401

Bray-Curtis

Bray-Curtis dissimilarity index for bacterial 

community composition

PERMANOVA 

test 0.034 0.023 0.298 0.001 0.003 0.067
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*Sampling locations are abbreviated as follows: CS = Changsha, NB = Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning and WH = Wuhan. P-

values less than 0.05 are shown in red colour. Details of the analysis are listed in Supplementary Figures 2 – 4.
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442 Figure legends

443 Figure 1. Differences in abiotic physicochemical and biotic soil properties between healthy 

444 and diseased plants. (a) Map of China showing sampling locations and provinces (CS = 

445 Changsha, NB = Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning and WH = Wuhan; 

446 numbers in parentheses show the number of samples included in each location). (b) 

447 Comparison of the normalised physicochemical (blue) and biotic (black) parameters between 

448 healthy (green) and diseased (red) tomato plant rhizosphere samples (ns denote for non-

449 significant correlation (P > 0.05) and stars (**, ***, ****) denote significant correlation at 

450 levels P < 0.01, P < 0.001 and P < 0.0001, respectively). Pathogen and total bacterial 

451 abundances are abbreviated as ‘Pathogen’ and ‘Bacteria’, respectively. (c) Comparison of 

452 microbial community composition (PCoA) between healthy and diseased tomato plant 

453 rhizosphere samples (status) at each sampling location (site). (d) Comparison of abiotic soil 

454 physicochemical properties and biotic soil properties (PCA) between healthy and diseased 

455 tomato plant rhizosphere samples (status) at each sampling location (site).

456

457 Figure 2. The relative importance of abiotic physicochemical and biotic soil properties in 

458 predicting bacterial wilt disease occurrence. (a) Correlation coefficients (ranging from 

459 negative (purple) to positive (cyan)) between R. solanacearum pathogen densities and abiotic 

460 physicochemical (blue) and biotic (black) soil properties across all tomato rhizosphere 

461 samples (ns denote for non-significant correlation (P > 0.05) and stars (**, ***, ****) denote 

462 significant correlation at levels P < 0.01, P < 0.001 and P < 0.0001, respectively). (b) Relative 

463 importance rank of abiotic physicochemical (blue) and biotic (black) soil properties and ten-

464 fold cross-validation of random forest model (inset in b) based on the training set (80% of 

465 randomly selected rhizosphere samples). Total bacterial abundances are abbreviated as 
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466 ‘Bacteria’. (c) Validation of random-forest model with a test set (20% of remaining samples) 

467 predicting plant disease outcomes based on soil properties: green and red filled cells denote 

468 for correct predictions and filled cells with white crosses denote for false predictions. 

469

470 Figure 3. Causal validation of the role of soil moisture driving bacterial wilt disease dynamics 

471 in a greenhouse experiment. (a) Mean disease progression curves in different soil moisture 

472 treatments based on logistic curve fitting (left inset shows goodness-of-fit and significance for 

473 each treatment). (b) Comparison of disease dynamics between different treatments in terms 

474 of lag-phase before disease onset (early stage), disease rate (exponential stage) and area 

475 under progression of disease curve (AUDPC, late stage). Different small letters above violin 

476 plots denote for significant differences between treatment groups (P < 0.05).
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by using the track changes mode in MS Word or by using bold or colored text.

Once the revised manuscript is prepared, you can upload it and submit it through your 

Author Center.

When submitting your revised manuscript, you will be able to respond to the comments 

made by the reviewer(s) in the space provided. You can use this space to document any 

changes you make to the original manuscript. In order to expedite the processing of the 

revised manuscript, please be as specific as possible in your response to the reviewer(s).

IMPORTANT: Your original files are available to you when you upload your revised 

manuscript. Please delete any redundant files before completing the submission.

Because we are trying to facilitate timely publication of manuscripts submitted to the Soil 

Ecology Letters, your revised manuscript should be uploaded in the next two weeks. If it is 

not possible for you to submit your revision in this time, you should contact with us as soon 

as possible, or we may have to consider your paper as a new submission.

Page 32 of 47

http://journal.hep.com.cn/sel

Soil Ecology Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

Once again, thank you for submitting your manuscript to the Soil Ecology Letters and I look 

forward to receiving your revision.

Sincerely,

Editorial Office, Soil Ecology Letters

Response to Editor: Thanks for handling our manuscript and your encouraging decision of 

‘minor revision’. We have carefully revised the manuscript following the constructive 

comments and suggestions from reviewers, and our point by point answers can be found 

below.

Reviewer(s)' Comments to Author:

Reviewer: 1

Comments to the Author

This paper deals with defining the soil properties to predict bacterial wilt occurrence in 

fields. Based on field evaluation of bacterial wilt occurrence in tomato, soil properties from 

various fields in China, microbiome/statistical analysis, and validation experiments in green 

house, authors propose that soil moisture is the most important predictor for bacterial wilt 

in field-growing tomato. Both biotic and abiotic factors differed among sites and between 

diseased and healthy plants, and this was the same in soil microbial composition. Among 

the soil properties, soil moisture was the most important predictor of pathogen density and 

disease outcome in fields. Contribution of soil moisture content to bacterial wilt was further 

validated in a greenhouse. 

The main conclusion of this paper is acceptable based on the analysis and interpretation of 

the result, however, I found a couple of points to be clarified in detail in methods or to be 

discussed in discussion. 

Response 1 to first reviewer: Thank you very much for your time to revise our manuscript. 

Please find our responses to your comments below. 

1) Selection of diseased or healthy plants from fields: what was the exact criteria to 

differentiate the plants “diseased” or “healthy”? Was it solely based on wilting symptoms? 

If this is the case, authors should consider latent infection status of bacterial wilt in fields. 

Please discuss this. 

Response 2 to first reviewer: Yes, the diseased and healthy plants were chosen solely based 

on visible wilting symptoms as described on lines 138-139. We fully agree that some of the 

healthy plants could have been latently infected by Ralstonia and now consider this 

possibility in the text. It is possible that some of the healthy plants were latently infected by 

R. solanacearum, and hence, did not show visible disease symptoms despite being infected. 

While certain healthy plants overlapped in their soil properties with the diseased plants, we 

did not see clear clustering of healthy plant samples at the field level. This suggests that the 

proportion of latently infected plants was low, or that their microbiome properties were 

more similar to healthy plants. This is now discussed on lines 394-399.
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2) Methodology to validate disease severity depending on soil moisture; the Ralstonia 

challenge to tomato plants was done by a soil drenching method which will change the soil 

moisture content. Authors described a way to maintain the constant soil moisture before 

pathogen inoculation. But with soil drenching inoculation, how did they control the soil 

moisture? Did authors only focus on the water content during acclimatization period?

Response 2 to first reviewer: We agree that soil drenching infections will increase the soil 

moisture content levels. However, this effect was kept consistent to all moisture treatments 

and limited to soil drenching application period (one day): soil moisture contents were 

otherwise carefully manipulated between treatments before and after pathogen 

inoculation. We have now described this in the manuscript on lines 233-239.

3) Some of the references in text were not indicated with the proper citation format. 

Authors need to double check this. 

Response 2 to first reviewer: We have now corrected the format of referencing throughout 

the manuscript (on lines 81, 93, 95 and 391 and in the ‘References’ list).

Reviewer: 2

Comments to the Author

Considering the poor understanding of the relative importance of different factors, or their 

combinations, for plant disease, this study is timing to show a clear link between soil 

properties, pathogen density and plant health, by analysing 139 tomato rhizosphere soils 

samples isolated from six provinces in China. The authors found disease outcomes were 

positively associated with soil moisture that determined bacterial community, especially 

abundance of some bacterial groups. The exquisite experimental design together with 

advanced algorithm allows quantify the relative importance of soil properties in predicting 

bacterial wilt disease occurrence. The study certainly has sufficient novelty and updated our 

knowledge of what edaphic variables promote pathogenic Ralstonia solanacearum thus 

caused occurrence of bacterial wilt. I like the overall story and don't have much criticism 

with the research. Before considering acceptance, I have a few concerns as below.

Response 1 to second reviewer: We thank reviewer for positive comments. Please, find our 

detailed responses to your comments below.

1. The valid experiment was conducted to test the causality though, I have one major 

question about the collected 139 samples based on which “water” was attributed to the 

biggest predictor to wilt. As water content depend on the weather of the sampling day (rain 

or not), the local climatic information, i.e. average precipitation per year or during growth, 

thus, might be better used as variable. 

Response 2 to second reviewer: This is a very good point, and we fully agree that local 

weather data could potentially be very useful for predicting bacterial wilt disease incidence 
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across wider geographical areas. This would be especially useful in the face of global climate 

change. We now briefly discuss about this on lines 402-404.

2. Line 68, maybe move this sentence to the end of introduction

Response 3 to second reviewer: Thank you for your suggestion. We would prefer to give 

readers an overview of our research question already at the beginning of the introduction. 

We believe this is helpful for communicating our research questions clearly and setting 

everything in the relevant context. 

3. Fig. 1c and d, any chance to give the legend of abiotic variables, I might miss it.

Response 4 to second reviewer: Panels C and D describe overall differences in bacterial 

community composition and abiotic soil properties using multivariate analysis (Principal 

component analysis, i.e., PCA). Individual samples are further separated along with the 

health status of the plant (healthy vs. diseased) and field of isolation in both panels. As a 

result, each observation (individual dots) represents an overall value based on multiple 

variables.
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 1 

Supplementary files 1 

 2 

The relative importance of soil moisture in predicting bacterial wilt disease occurrence 3 

Gaofei Jiang, Ningqi Wang, Yaoyu Zhang, Zhen Wang, Yuling Zhang, Jiabao Yu, Yong 4 

Zhang, Zhong Wei, Yangchun Xu, Stefan Geisen, Ville-Petri Friman, Qirong Shen 
5 

 6 

The supplementary information contains six files. The table file includes statistical information 7 

about multiple regression analysis, and figure files provide further detail on the variation of 8 

physicochemical properties and bacterial communities in tomato rhizosphere and how it was 9 

linked to pathogen density and plant healthy in tomato rhizosphere microbiomes. 10 

 11 

  12 
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 2 

Supplementary Table 1. ANOVA table summarizing the relative importance of abiotic 13 

physicochemical and biotic soil properties in predicting pathogen densities in tomato 14 

rhizosphere samples. 15 

Predictor 

variable Df 

Sum 

Square 

Mean 

Square F-value P-value 

Relative 

weight 

pH 1 10.29 10.29 18.68 <0.0001↓ 14.59% 

Moisture 1 28.45 28.45 51.66 <0.0001↑ 40.36% 

Phosphorus 1 0.14 0.14 0.25 0.6170↑ 0.20% 

Potassium 1 0.14 0.14 0.26 0.6141↑ 0.20% 

Carbon 1 0.07 0.07 0.12 0.7310↓ 0.09% 

Nitrogen 1 0.03 0.03 0.05 0.8271↓ 0.04% 

Bacterial 

abundance 1 16.05 16.05 29.15 <0.0001↑ 22.77% 

Shannon 1 1.78 1.78 3.24 0.0744↑ 2.53% 

Chao1 1 1.33 1.33 2.42 0.1226↓ 1.89% 

Bray-Curtis 1 0.11 0.11 0.21 0.6499↑ 0.16% 

Residuals 128 70.50 0.55 

   
Model Summary AIC: 324.09; F10,128 = 10.6, R2 = 0.45, P < 0.0001 

Note: The significant effects (P < 0.05) are shown in red colour and the ‘up’ and ‘down’ arrows 16 

denote for positive and negative effects, respectively, based on multiple regression model. 17 

  18 
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 3 

 19 

Supplementary Figure 1. Differences in abiotic physicochemical and biotic soil 20 

properties between diseased and healthy plants.  21 

All data is pooled over sampling locations and the numbers in the parentheses denote the 22 

sample size in each group. The ‘ns’ denotes for non-significant difference (P > 0.05) and stars 23 

(*, **, *** and ****) show significant differences at levels P < 0.05, P < 0.01, P < 0.001 and 24 

P < 0.0001, respectively. Pathogen and total bacterial abundances are abbreviated as ‘Pathogen’ 25 

and ‘Bacteria’, respectively. Each violin plot shows the distribution of 69 and 70 rhizosphere 26 

soil samples in diseased and healthy plants, respectively.  27 

Shannon Chao1

Pathogen Bacteria

Carbon Nitrogen

Phosphorus Potassium

pH Moisture

Diseased
(69)

Healthy
(70)

Diseased
(69)

Healthy
(70)

10

20

30

0
200
400
600
800

0

50

100

150

10.0
10.5
11.0
11.5

2000

4000

6000

5

6

7

25
50
75
100
125

40

80

120

160

7

8

9

10

7
8
9
10
11

V
a
lu

e
 o

f 
p

h
y
s
ic

o
c
h

e
m

ic
a
l 
a
n

d
 b

io
ti

c
 p

a
ra

m
e
te

rs

Page 42 of 47

http://journal.hep.com.cn/sel

Soil Ecology Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

 4 

 28 

ns ns * * ns ns

ns ns ns ns ns ns

ns ns ns ** ** *

**** **** **** **** **** ****

ns ns ns ** ns ns

*** * ns ** ** ns

ns ns *** ns * ns

ns ns * ns ns ns

** * ns ** * ns

ns ns ns ** ns ns

Shannon Chao1

Pathogen Bacteria

Carbon Nitrogen

Phosphorus Potassium

pH Moisture

CS
(24)

NB
(24)

NC
(22)

NJ
(23)

NN
(24)

WH
(22)

CS
(24)

NB
(24)

NC
(22)

NJ
(23)

NN
(24)

WH
(22)

10

20

30

0

200

400

600

800

0

50

100

150

10.0

10.5

11.0

11.5

2000

4000

6000

5

6

7

25

50

75

100

125

40

80

120

160

7

8

9

10

7

8

9

10

11

V
a
lu

e
 o

f 
p

h
y
s
ic

o
c
h

e
m

ic
a
l 

a
n

d
 b

io
ti

c
 p

a
ra

m
e

te
rs

Page 43 of 47

http://journal.hep.com.cn/sel

Soil Ecology Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

 5 

Supplementary Figure 2. Differences in abiotic physicochemical and biotic soil 29 

properties of diseased and healthy plants in different sampling locations (provinces). 30 

Numbers in the parentheses show sample size in each group. The ‘ns’ denotes for non-31 

significant difference (P > 0.05) and stars (*, **, *** and ****) show significant differences 32 

at levels P < 0.05, P < 0.01, P < 0.001 and P < 0.0001, respectively. Pathogen and total bacterial 33 

abundances are abbreviated as ‘Pathogen’ and ‘Bacteria’, respectively. Each violin plot shows 34 

the distribution of rhizosphere soils in each province. Sampling locations are abbreviated as 35 

follows: CS = Changsha, NB = Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning and 36 

WH = Wuhan.  37 
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 6 

 38 

Supplementary Figure 3. Differences in bacterial community composition (PCoA) 39 

between healthy (green) and diseased (red) rhizosphere soil samples in different 40 

sampling locations (a-f). 41 

PERMANOVA was used to identify microbial composition difference between the rhizosphere 42 

soil of diseased and healthy plants in each location based on Bray–Curtis distance matrices. P-43 

values are indicated in each panel. Green triangles and red circles denote healthy and diseased 44 

plants, respectively. Sampling locations are abbreviated as follows: CS = Changsha, NB = 45 

Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning and WH = Wuhan.  46 
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 7 

 47 

Supplementary Figure 4. Differences in physicochemical and biotic parameters (PCA) 48 

between healthy (green) and diseased (red) rhizosphere soil samples in different 49 

sampling locations (a-f). 50 

PERMANOVA was used to for identify the environmental difference between the rhizosphere 51 

soil of diseased and healthy plants in each location based on Euclidean distance matrices. P-52 

values are indicated in each panel. Green triangles and red circles denote healthy and diseased 53 

plants, respectively. Sampling locations are abbreviated as follows: CS = Changsha, NB = 54 

Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning and WH = Wuhan.  55 
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 8 

 56 

Supplementary Figure 5. Linear correlations between the normalised pathogen 57 

densities and abiotic physicochemical and biotic soil properties (averaged over heathy 58 

and diseased plant samples). 59 

Blue lines indices the linear fitting of curves, while R2 indicates the Spearman correlation 60 

coefficient of the linear regression and P-values the significance of each correlation. 61 

  62 

Chao1 Bray.Curtis

Bacteria Shannon

Carbon Nitrogen

Phosphorus Potassium

pH Moisture

0.2 0.5 0.8 0.2 0.5 0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

Normalised pathogen density

N
o

rm
a

li
s

e
d

 v
a

lu
e

 o
f 

p
h

y
s

ic
o

c
h

e
m

ic
a

l 
a

n
d

 b
io

ti
c

 p
a

ra
m

e
te

rs

R2 = 0.28, P < 0.0001  R2 = 0.55, P < 0.0001  

R2 = 0.13, P = 0.130  R2 = 0.15, P = 0.079  

R2 = 0.21, P = 0.013  R2 = 0.24, P = 0.005  

R2 = 0.59, P < 0.0001 R2 = 0.20, P = 0.017 

R2 = 0.21, P = 0.014  R2 = 0.28, P < 0.0001 

Bacterial abundance

Page 47 of 47

http://journal.hep.com.cn/sel

Soil Ecology Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

 9 

 63 

Supplementary Figure 6. Comparing the relative importance of all soil parameters in 64 

predicting plant health status. 65 

(a) Relative importance rank of overall abiotic physicochemical (blue) and biotic (black) soil 66 

properties and ten-fold cross-validation of random forest model (inset in a) based on the 67 

training set (80% of randomly selected rhizosphere samples). Pathogen and total bacterial 68 

abundances are abbreviated as ‘Pathogen’ and ‘Bacteria’, respectively. (b) Validation of 69 

random-forest model with a test set (20% of remaining samples) predicting plant disease 70 

outcomes based on soil properties: green and red filled cells denote for correct predictions, 71 

while filled cells with white crosses denote for false predictions. The overall model gained an 72 

average accuracy (78.6%) in classifying plant status, with 84.6% accuracy for diseased and 73 

73.3% accuracy for health plants (AUC = 0.89). 74 
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