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A monolithic single-chip point-of-care platform for
metabolomic prostate cancer detection
Valerio F. Annese 1, Samadhan B. Patil1, Chunxiao Hu1, Christos Giagkoulovits1, Mohammed A. Al-Rawhani1,

James Grant1, Martin Macleod2, David J. Clayton3, Liam M. Heaney 4, Ronan Daly5, Claudio Accarino1, Yash D. Shah1,

Boon C. Cheah1, James Beeley1, Thomas R. Jeffry Evans6, Robert Jones6, Michael P. Barrett5,7 and David R. S. Cumming1

Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the

bedside or in the doctor’s office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to

costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the

adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement

platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to

operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic

channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary

clinical study using L-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest

algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under

the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to

revolutionize low-cost, rapid, point-of-care testing.

Introduction
One in two people will develop cancer at some point in

their lifetime1. The World Health Organization estimates

that cancer is the second leading cause of death globally,

claiming 9.6 million lives in 2018 alone2. Cancer incidence

is expected to rise by more than 40% in the next 15 years

as the population ages3–5. With an estimated 1.3 million

cases and 0.4 million deaths worldwide in 2018, prostate

cancer (PCa) is the most commonly diagnosed cancer in

developed countries and the sixth leading cause of cancer

deaths in men5–7. Although the frequency and survival

rate vary considerably for PCa, there is consistent evi-

dence that patients diagnosed at an early stage are more

likely to survive2,3. Early diagnosis makes localized

treatments, including prostatectomy and radiotherapy,

possible; hence, the 5-year survival rate is nearly 100%3,8.

Nevertheless, the survival rate drops to 34% when a tumor

is diagnosed in a late metastatic stage8.

Despite this, a robust and effective PCa screening pro-

gram is not available today9,10. The widely used prostate-

specific antigen (PSA) test, which is the current standard

blood test for PCa diagnosis, has been found to be

unreliable; fewer than one in three men with an elevated

PSA will have PCa11, and the test misses ~15% of

tumors12. The high false-positive rate of the PSA test can

lead to unnecessary medical procedures such as digital

rectal examination, MRI, and biopsy. In addition to being

painful, invasive, and having the potential to cause com-

plications, PSA downstream tests can be expensive13,

accounting for more than 70% of the medical costs

associated with PCa screening. While the use of the PSA

test alone is problematic14, it has also been suggested that

PSA could still be a valuable complement to new and

emerging tests such as the one we propose15.
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While numerous microtechnologies have been pro-

posed to improve and miniaturize PSA tests16–18, an

independent alternative is sought. One such alternative is

to use a panel of metabolite markers that, when taken

together, can be analyzed to yield a sensitive and specific

test19–27. The creation of a panel-based test requires a

technological platform that is capable of making multiple

simultaneous measurements, ideally in a point-of-care

(POC) format that lends itself to regular screening and

monitoring that has been shown to be beneficial28. Here,

we propose the use of a microelectronic test platform

based on complementary metal-oxide silicon (CMOS)

that underpins all integrated circuit technology. CMOS

has the potential to revolutionize multimetabolite marker

panel measurements for many diseases, including PCa.

Chips with integrated sensors and readouts have been

successfully used for single measurements, such as glu-

cose29, targeted DNA sequences30 and intracellular

transmembrane potentials31; multiple identical measure-

ments, e.g., genome sequencing32; and multianalyte

measurements using partitions over a sensing area33.

Studies to make devices using micromachining34,

additive manufacturing35, and replica molding36,37 have

been carried out, but to date, none of these has proven

capable of meeting the multimetabolite measurement

challenge that must be addressed to build a POC marker

panel system. Current methods for CMOS/microfluidic

integration and packaging are complex and costly38. In

addition to building a physical device architecture, solu-

tions are also required for microchannel functionalization,

reagent stability39, and minimizing crosstalk40. Finally,

these systems should work with minimal sample

preprocessing39.

We have overcome these barriers by monolithically

integrating a passive microfluidic system onto a CMOS

sensor chip to measure multiple metabolites directly from

a single droplet of plasma. To do this, it was necessary to

control the material dimensions to ensure consistent

optical measurements were possible, to control the sur-

face chemistry, hence hydrophilicity, of the channels to

ensure passive sampling occurred, and to introduce

multiple channel biochemical functionalization on the

same chip. In this work, we focused on PCa to demon-

strate a new technology with the capability for wide-

ranging application and impact.

As described in the Supplementary Information, we

selected a panel of 4 metabolites made up of total L-amino

acids (LAA), glutamate, choline, and sarcosine. After

calibration, the platform was used in preliminary clinical

trials with human plasma from 10 healthy men and 16

men diagnosed with PCa. Metabolite profiles were used to

train a random forest classifier algorithm. The classifier

was shown to have a cross-validated sensitivity of 94% and

a specificity of 70% when discriminating between samples

from patients with and without PCa, improving upon the

current PSA-based clinical standard in the population that

we studied.

The platform
The POC platform is made up of three units (Fig. 1): the

disposable chip cartridge, the reader, and the GUI. The

apparatus performs colorimetric quantification of a cho-

sen metabolite panel.

Metabolite panel for PCa

Cancer cells experience rapid proliferation, and their

metabolism diverges from healthy cells, giving rise to

changes that can be reflected in global measures of the

human metabolome41–43. Cancer-related metabolites

accumulate in human body fluids, and their levels can act

as indicators or biomarkers to identify or monitor the

disease44,45. Many blood metabolites have been found to
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Fig. 1 Platform architecture and cartridge. a Schematic architecture of the platform showing the cartridge that needs only a drop of sample to

perform a measurement, the reader, and the computing device for use as a GUI. b A sketch of the multiple measurement cartridge device used in

this work with a CMOS chip, passive microfluidics, a chip package, and an optical assembly.
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be linked to PCa19–27,44–48. Among them, the progression

of cancer is associated with the modification of specific

transporters, namely, large amino acid transporters 1 and

3 (LAT1 and LAT3)19, which can yield an alteration of the

blood LAA profile20,23,24,46,47. Cancer cells have been

shown to have an upregulated glutamine-glutamate

energy cycle; hence, glutamate represents an excellent

candidate marker for PCa20,47,48. The modification of

choline levels, arising from alterations of the enzyme

choline kinase-α and the CHT1 choline transporter, has

been detected in connection with PCa21,22. Finally, sar-

cosine has also been linked, albeit variably, to PCa for

diagnosis24, malignancy assessment23–25, and sta-

ging23,24,26,27. While the evidence that sarcosine is a useful

marker for PCa is debated49,50, we elected to add it to the

present study. A more detailed review of metabolomics

for PCa and our panel selection is provided in the Sup-

plementary Information.

Detection strategy

The platform used in this study was developed to

quantify the aforementioned candidate metabolic bio-

markers using colorimetry. Biological reagents were

selected to produce a measurable light absorbance

change at a specific wavelength after the interaction with

the target metabolite. The initial rate of the reaction is

linked to the initial concentration of the metabolite by

the Michaelis–Menten model51. For the colorimetric

determination of LAA, glutamate, choline, and sarcosine,

a two-stage reaction process was used to conduct

measurements. In the first reaction step, a substrate-

specific enzyme was used to produce H2O2; we used LAA

oxidase (LAAOX E.C.−1.4.3.2), glutamate oxidase (GLOX

E.C.−1.4.3.11), choline oxidase (CHOX E.C.−1.1.3.17),

and sarcosine oxidase (SAOX E.C.−1.5.3.1). The H2O2

produced was in turn monitored by a colorimetric probe

that changed its absorbance properties depending on

the H2O2 concentration. Phenol and 4-aminoantipyrine

(4-AAP) were used in this work. In the presence of the

catalyzing enzyme peroxidase (HRP), phenol and 4-AAP

react with H2O2, producing quinone imine, which has

higher light absorbance in the range of 400–600 nm. The

absorbance is linked to the rate of the reaction by the

Beer–Lambert law52. Detection of an electronic signal was

performed using the platform’s array of photodiodes

(PDs) to measure the colorimetric reaction.

The cartridge

The cartridge was made using a ceramic 120 pin grid

array (PGA) chip package, a custom complementary

metal-oxide-semiconductor (CMOS) chip, a microfluidic

capillary network fabricated directly on the chip, and

biological reagents. A schematic representation of the

main components embedded in the cartridge is shown

in Fig. 2a.

The CMOS chip was fabricated using a commercially

available 350-nm high-voltage 4-metal process provided

by austriamicrosystems (AMS). The chip integrates a 16 ×

16 array, or frame, of multisensing elements. Each

multisensing element comprises a PD, an ISFET, and a
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Fig. 2 Cartridge and reader. a The cartridge (left) and schematic diagram of its main components (right). b Micrograph of the microfluidics

fabricated on the chip’s sensitive area. c Profile of the microstructure built on the sensitive area measured with a Bruker Contour GT-X 3D Optical
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single-photon avalanche diode (SPAD)53,54. Only the PDs

were used in this work. Each multisensing element is

100 × 100 µm in size, leading to a total sensitive area of

1.6 × 1.6 mm. The size of the entire CMOS chip is 3.4 ×

3.6 mm. The CMOS chip was wire-bonded into the PGA.

On top of the sensing area, a passive microfluidic net-

work was monolithically integrated, providing physical

separation for parallel testing so that more than one

metabolite could be measured at the same time. The walls

of the microstructure were fabricated on top of the CMOS

chip using a biocompatible black epoxy resin (302-3M

1LB by Epoxy Technology Inc.) using a combination of

soft lithography and injection molding. A plain poly-

dimethylsiloxane (PDMS) slab coated with polyvinyl

alcohol (PVA)55 was bonded onto the epoxy-based

structure by plasma oxidation to enclose the channels

from the top. A detailed description of the microfluidic

integration is presented in the Materials and Methods

section of this paper. As shown in Fig. 2b, c, the micro-

channel height, width, and length were ~291.95 ±

6.44 µm, 300.87 ± 0.86 µm and 4.0 ± 0.1 mm, respectively.

A liquid sample (see “Materials and methods” section)

was introduced to the cartridge using a pipette (FinntipTM

F2 by ThermoFisher). Once on the cartridge, the sample

under test was divided into four identical microfluidic

channels that physically confined the reactions in each

channel.

Two types of experiments were conducted: a series to

measure each metabolite one-by-one to assess the validity

of the proposed panel and a second to make four mea-

surements in parallel and demonstrate the potential of the

platform. When testing a single metabolite, the sample

and the bioreagent were mixed in the liquid state imme-

diately before loading onto the chip to perform the test.

Thus, both the sample and bioreagents are introduced to

the system at the same time. When testing multiple

metabolites in parallel, the channels were individually

functionalized with the different bioreagents required to

detect each metabolite. Biological reagents were pre-

loaded into the microchannels by manual pipetting and

then dried. The procedure entrapped and isolated the

solid materials in their respective microchannels.

Reader and graphical user interface

The cartridge plugs into the reader using a zero-

insertion force (ZIF) socket. The reader is 8.5 × 7.5 ×

4.0 cm and weighs 150 g. The reader provides function-

ality for sensor multiplexing and addressing, data

digitization and transmission to a personal computing

device via a USB link. The reader is based around an

STM32F334R8T6 microcontroller on an ST Nucleo

F334R8 board (Fig. 2d) that is programmed before use

with custom firmware. Data are digitized using the

embedded 12-bit analog to digital converter with an

average rate of 36 frames per second. The reader is

powered by the USB link (5 V), which in turn powers the

cartridge (3.3 V). The reader also has an LED (λ= 490 nm,

FWHB= 20 nm). Using a lens (AC254-035-A-ML BBAR

Coated, f= 35mm lens from Thorlabs), the LED illumi-

nates the sensing area of the cartridge with collimated

light. The GUI, based on custom software and running on

a personal laptop (HP EliteBook i7-8650u 16 GB), inter-

faces with the reader (via USB) and performs data

acquisition, display, analysis, and storage. The results can

also be uploaded onto a cloud. The GUI also performs

offline signal processing. Additional details (Supplemen-

tary Fig. 4) of the GUI are reported in the Supplementary

Information.

Results
The platform was tested and characterized using human

plasma samples modified with known concentrations of

metabolites so that calibration curves could be generated.

Subsequently, a preliminary clinical study for PCa was

performed using ten samples from healthy men not

known to have PCa (non-PCa group) and sixteen samples

from men affected by PCa.

Calibration

Calibration curves for LAA, glutamate, choline, and

sarcosine in human plasma are shown in Fig. 3. The

complete characterization of the platform for the analytes

of interest is presented in Table 1. At least six data points

were used to obtain the calibration curves for each

metabolite. Each data point was obtained as the average

over three replicates (see “Materials and methods” sec-

tion). Kinetic constants were estimated by fitting data to

the Michaelis–Menten model. The Km results for all of

the metabolites were in line with the values reported in

the literature56. For all the metabolites, the goodness of fit

with the Michaelis–Menten model was satisfactory with

R2 values ≥0.97. For substrate concentrations lower than

Km, the data were also fitted using a linear model. For all

the metabolites, high linearity was observed in the con-

centration range of interest (R2
≥ 0.93). The linear ranges

were in line with the physiological ranges. Typical stan-

dard deviations for the measurements in the linear range

were found to be 16–20%.

Limit of detection and limit of quantification

The limit of detection (LOD) and limit of quantification

(LOQ) were quantified using the “International Union of

Pure and Applied Chemistry” (IUPAC) definition57. The

average (µc) and standard deviation (δc) of the initial

reaction rate for negative controls (common to all the

assays) were found to be 5 and 2.7 µV s−1, respectively.

Consequently, the LOD (µc+ 3.3·δc) and LOQ (µc+

10·δc) were 0.014 and 0.032 mV s−1, respectively. LOD
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and LOQ expressed in mV s−1 were then converted to µM

by using the estimated Michaelis–Menten curve for each

metabolite. Thus, the LODs for LAA, glutamate, choline,

and sarcosine were 11.1, 1.4, 1.7, and 1.4 µM, respectively.

Similarly, the LOQ values for the metabolites in the same

order were 25.5, 3.3, 3.9, and 3.5 µM.

Clinical study

For each sample, the plasma concentrations of LAA,

glutamate, choline, and sarcosine were quantified using

the experimental platform. The procedures and methods

are described in the “Materials and methods” section of

this paper.

The average concentration of a metabolite for all sam-

ples, including the non-PCa and PCa subjects, is referred

to as the grand average. A grand average was calculated

for each of the four metabolites we measured. The grand

averages were 2421 ± 952 µM for LAA, 53.7 ± 26.4 µM for

glutamate, 11.7 ± 7.0 µM for choline, and 10.6 ± 6.0 µM

for sarcosine.

The average values measured for each metabolite for the

non-PCa and PCa groups were also calculated. For the

non-PCa samples, the average concentrations were

1984 ± 527 µM for LAA, 40.2 ± 11.2 µM for glutamate,

10.0 ± 4.1 µM for choline, and 11.5 ± 4.3 µM for sarcosine.

The average concentrations of LAA, glutamate, choline

and sarcosine in the PCa group were 2694 ± 1052 µM,

62.2 ± 29.5 µM, 13.4 ± 7.9 µM, and 10.0 ± 6.9 µM,

respectively.

LAA, glutamate, and choline levels were increased in

the PCa group compared with the non-PCa group. There

was no relevant cross-correlation between different

metabolites, and all cross-correlations were <0.3 (Sup-

plementary Information). These data are summarized in

Table 2 and presented in Fig. 4.

Multivariate analysis

To determine the validity of using LAA, glutamate and

choline as potential diagnostic markers, the data set was

used to train a random forest classification algorithm58.

The task of the classifier was to provide a binary “nega-

tive-or-positive” response to whether a sample was a

control (negative) or cancer (positive) sample, using the

concentrations of LAA, glutamate and choline as inputs.

Using the “randomForest” and “caret” functions in the R

software tool, the algorithm was set to use 500 trees and

try up to three metabolites at each split. The model was

validated using a repeated “tenfold” procedure that was

run 100 times59,60. In this way, we generated a cross-

validated receiver operator characteristic (ROC) curve

using the predictions over every iteration. For each

iteration, a bootstrap resampling procedure was used. The

metrics of the classifier were expressed as an average, and

a 95% confidence interval over the distribution was

obtained for the 100 independent training and validation

iterations. The area under the curve (AUC) was found to

be 0.78, with a 95% confidence interval of 0.55–0.99. The

ROC curve shows an operating point at a sensitivity of
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0.94, with a 95% confidence interval of 0.82–1.00, and a

specificity of 0.70, with a 95% confidence interval of

0.40–0.98, as shown in Fig. 5. The diagnostic capability of

the classifier can be compared with that of PSA. In clinical

practice, the PSA sensitivity and specificity are 0.32 and

0.87, respectively, for a PSA threshold of 3.1 ng mL−1 61.

PSA yields an AUC of 0.6861,62. Our results show that the

random forest model based on LAA, glutamate, and

choline could substantially reduce the number of false-

positive results.

These results show that the platform has the potential

to deliver higher diagnostic capability than PSA. We also

note that if both the PSA and metabolomic test were to be

used together, it would be independently possible to

secure both a high sensitivity of up to 94% (metabolites)

and high specificity of 87% (PSA) to yield a powerful and

highly discriminating diagnostic method.

Simultaneous measurements

To make a practically useful POC diagnostic tool using

the markers LAA, glutamate and choline, it is desirable to

perform simultaneous multimetabolite measurements.

Simultaneous measurements require reagents to be pre-

loaded into the microfluidic channels. Sarcosine was

excluded from these experiments since it was concluded

that it was not a useful biomarker for this population.

The performance of the platform with preloaded dried

reagents (see Materials and Methods section) was asses-

sed by obtaining calibration curves for plasma LAA, glu-

tamate, and choline in the microfluidic device. Each

metabolite was tested individually in undiluted human

plasma spiked with the metabolite to the desired test

concentration. The resulting calibration curves are shown

in Fig. 6a–c. The results were similar to the calibration

curves obtained from using off-chip mixing of the liquid

reagents. A comparison between the two test methods is

shown in Table 3. The linearity in the physiological range

was nearly the same, but a slight loss of sensitivity for

LAA and choline when using the dried reagents was

observed. The control channel, which contained dried dye

and peroxidase only, showed a measurable response when

compared to photodiodes with no dried assay material

Table 1 Platform characterization using human plasma.

LAA Glutamate Choline Sarcosine

Physiological range 2–3.5 mM68 40–150 µM47 7–20 µM69 0–20 µM50

Test range 0–5.4 mM 0–1500 µM 0–600 µM 0–600 µM

Model y ¼ Vmaxx
Kmþx

þ c

Vmax (mV s−1) 3.63 ± 0.51 5.28 ± 0.93 11.34 ± 6.9 11.03 ± 2.1

c (mV s−1) −0.032 ± 0.126 −0.087 ± 0.265 0.082 ± 0.254 0.027 ± 0.04

Km (µM) 2866 ± 1008.2 529.7 ± 269.5 1382 ± 210.7 1209 ± 335.7

RMSE 0.086 0.266 0.169 0.062

R2 0.994 0.979 0.985 0.998

Linear model Y = S ⋅ x + C

Linear range (µM)a 0–1500 0–320 0–120 0–120

Sensitivity (S) (mV s−1 mM−1) 0.83 ± 0.002 6.06 ± 1.01 9.98 ± 1.79 7.84 ± 1.12

Baseline (mV s−1) 0.020 ± 15·10–4 0.003 ± 0.163 0.019 ± 0.1 0.050 ± 0.056

RMSE (linear) 8.6⋅10−04 0.159 0.116 0.070

R2 (linear) 0.999 0.969 0.939 0.961

Average relative std. dev. (linear)b 18.3% 17.2% 16.4% 19.2%

Negative control (µV s−1)c 5.0 ± 2.7

LOD (µM)d 11.1 1.4 1.7 1.4

LOQ (µM)d 25.5 3.3 3.9 3.5

Drift (dark/source on) (µV s−1) 1.4 ± 1.0/0.9 ± 1.0

Avg. steady state (dark/source on) (V) 0.486 ± 0.003/1.730 ± 0.031

aLinear range is here defined as the measurement range where the linear model had R2 > 0.9.
bAverage of the standard deviation of the measurements in the linear range.
cAverage over 24 measurements.
dConverted from mV s−1 to µM using the Michaelis–Menten model.
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present. The observed control signal was still small

compared to the signals observed in the test channels and

gave rise to the increase in the calculated LOD and LOQ

for all the target metabolites. Under these conditions, the

LODs for plasma LAA, glutamate, and choline were 42.9,

6.4, and 3.2 µM, respectively. Similarly, the LOQ values

for the metabolites, in the same order, were 129.3, 19.5,

and 9.8 µM.

To evaluate channel-to-channel independence on the

same chip, the four channels in a set of 12 cartridges were

filled with dried reagents for LAA, glutamate, choline and

a negative control. Using one cartridge at a time, tripli-

cates of each of the following were measured by flowing

the sample into the channels: DI water; 250 µM choline in

DI water; 250 µM glutamate in DI water; and 2.5 mM

LAA in DI water. There was no response to DI water only,

and as expected, each functionalized channel only

responded to the metabolite for which it had been

prepared.

A further triplicate of cartridges was prepared with the

three functionalized channels and a control, and in each,

an unmodified human plasma sample was introduced to

the cartridge. The plasma sample yielded signal rates

above the LOQ for LAA, glutamate, and choline mea-

surements. No obvious crosstalk was observed in these

experiments, and the results are summarized in Fig. 6d.

A proof of principle clinical validation of the platform

for multimetabolite testing using dried reagents in a single

cartridge was then conducted using one individual each

from the non-PCa and PCa sample groups. Simultaneous

readings for different metabolites are shown in Fig. 7. For

both clinical samples, the reaction rates were found to be

similar to the respective wet assay. The rates obtained

with dried and liquid reagents were well correlated with

R2 > 0.91.

The rates obtained with dried reagents for non-PCa and

PCa samples were also compared; the rates were con-

sistently higher for the PCa sample, as was the case with

the wet assays. This provides a proof of principle that the

platform can provide clinically relevant information when

testing for the metabolites of interest simultaneously.

Discussion
We have shown that the method for acquiring data

using multiple metabolites can be integrated into a silicon

chip-based device capable of making all the measure-

ments simultaneously. Using the device, a preliminary

clinical study demonstrated that a model can be created

using multiple metabolites to discriminate patients with

PCa from normal controls. LAA, glutamate and choline

showed a significant correlation in our population, and

the data were used to train a random forest classification

Table 2 Clinical study results in the control and cancer groups.

LAA Glutamate Choline Sarcosine

Overall data set

Grand average ± std. dev. (µM) 2421 ± 952 53.7 ± 26.4 11.7 ± 7.0 10.6 ± 6.0

Grand median (µM) 2072 47.9 10.0 9.9

Range (µM) 1213–5421 6.3–149.5 2.3–36.9 1.7–27.2

Temperature (°C) 27.3 ± 1.0 26.4 ± 1.3 26.3 ± 0.9 25.9 ± 1.2

Humidity (%) 52.6 ± 5.0 49.5 ± 7.8 44.4 ± 9.0 42.2 ± 10.5

Non-PCa group

Non-PCa average ± std. dev. (µM) 1984 ± 527 40.2 ± 11.2 10.0 ± 4.1 11.5 ± 4.3

Non-PCa median (µM) 1966 39.8 9.0 12.3

Range (µM) 1213–3167 21.9–67.1 2.3–15.4 5.1–18.8

PCa group

PCa average ± std. dev. (µM) 2694 ± 1052 62.2 ± 29.5 13.4 ± 7.9 10.0 ± 6.9

PCa median (µM) 2386 61.0 10.4 9.7

Range (µM) 1503–5410 6.3–149.5 4.7–36.9 1.7–27.2

Univariate analysis

PCa/non-PCa (average) 1.36 1.55 1.34 0.87

PCa/non-PCa (median) 1.21 1.53 1.15 0.79

t-test (p-value) 0.03 0.02 0.06 0.27
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model. In our study, sarcosine did not show any relevant

correlation with PCa; therefore, the data were not used for

the classifier. The ROC curve for the new test was found

to have an AUC = 0.78 that compared favorably with an

AUC = 0.68 for the PSA test. The test ROC curve

intersects the PSA ROC curve near the standard threshold

with a specificity of ~87% and a sensitivity of 32%.

However, the new test’s ROC curve has a significantly

greater sensitivity of 94% when operated at a slightly lower

specificity of 70%.

The metabolic biomarker panel we present provides

a valuable proof-of-concept and can potentially be

improved by including additional metabolites. Table 3 in

the Supplementary Information presents additional PCa-

related blood metabolites that could be quantified using

the platform. The availability of data on a larger marker

panel will enable a comprehensive analysis of the pro-

posed diagnostic method. Further work with a larger

population of subjects leading to a full clinical trial using

the diagnostic method proposed in this paper will be

necessary to demonstrate that the platform can deliver an

effective POC diagnostic tool for PCa.

We envisage a potential scale-up to build a system

capable of measuring a whole-person metabolome in a

single measurement from a drop of blood. The proce-

dures and methods developed in this work can be opti-

mized to improve the LOD and LOQ and applied to a

larger CMOS sensor array to deliver increased multi-

plexing capabilities. Future work will include developing

methods for highly dense measurement multiplexing with

low crosstalk. The technology may also take advantage of
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the computation capabilities of CMOS to create a device

capable of not only collecting raw data but also integrat-

ing complete machine learning algorithms to yield a

highly sensitive general-purpose chip, or chip-family,

capable of extracting large amounts of highly specific and

individualized data.

Conclusion
Survival rates for many types of cancer are continuing to

improve63, but progress towards improving the outcome

for men with prostate cancer has been hindered by the

need for a reliable test. The lack of such a test has

inhibited the introduction of mass screening programs. As

a consequence, many instances of cancer are only detec-

ted very late, when the possibilities for effective treatment

are reduced. The CMOS point-of-care platform presented

in this paper has the potential to address this problem by

improving the accuracy of a diagnostic test to such an

extent that screening will become a more clear-cut choice.

Future tests may combine the merits of more than one

assay; hence, metabolite measurements could be used in

conjunction with a test for PSA. Indeed, progress is also

being made to develop POC tests for PSA16. We provide

proof-of-concept for a POC platform using a CMOS

sensor chip with monolithically integrated microfluidics

that is capable of performing multiple metabolite tests

pertinent to the diagnosis of prostate cancer simulta-

neously. The system was shown to be capable of detecting

diagnostically significant information in the population

under test and can be used to improve the current clinical
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standard. Furthermore, the platform has the potential to

be used in a domestic environment and is therefore cap-

able of detecting early changes in candidate biomarkers

when measured over a period of time. The technology

presented in this article has wide-reaching implications,

not only for cancer, as illustrated in Table 1 of the Sup-

plementary Information but for other diseases and per-

sonalized medicine. Metabolite marker panels are now

described for illnesses including sepsis64, acute kidney

injury65, and cardiovascular disease66. We anticipate a

future microelectronic platform to exploit the scalable

properties of CMOS that will become as commonplace in

medicine as the stethoscope and thermometer are today.

Materials and methods
Microfluidic design

Microfluidic channels were designed to provide laminar

and passive flow. The geometry of the design, composed

of straight microchannels with rectangular cross-sections,

was chosen to match the layout of the CMOS sensor

array. Custom MATLAB simulations were carried out to

identify the dimensions of the microchannels needed to

yield higher capillary pressure and lower filling time in the

laminar flow regime.

Microfluidics integration

Microfluidics was integrated with the CMOS chip by

replica and injection molding in five stages: (1) SU-8 mold

fabrication, (2) PDMS mold fabrication, (3) wire bonding,

(4) epoxy encapsulation, and (5) channel enclosure.

1. A silicon wafer (4″) was cleaned with IPA, acetone,

and DI water; sonicated; dehydrated (10 min, 90 °C);

and plasma-oxidized (2 min, 120W). A first SU-8

3050 layer was spin-coated onto the wafer (30 s,

1000 rpm) and baked (90 min, 90 °C). A second SU-8

3050 layer was similarly spin-coated and baked. The

substrate was exposed twice to UV light using a

mask aligner (70 s each time, 15 s wait time).

Afterward, the sample was baked (10 min, 90 °C),

developed using EC solvent (for 28 min), rinsed with

IPA, and baked (30 min, 180 °C).

2. The SU-8 mold was silanized by exposure to

trichlorosilane (30 min in an evacuated chamber)

and placed into a petri dish. PDMS (25 g, 1:14 ratio)

was poured onto the mold, degassed (1 h in a

vacuum chamber), and cured (2 h, 70 °C). Cured

PDMS was released from the SU-8 mold, placed on a

clean substrate, cut with a sharp knife, aligned, and

temporarily bonded to the CMOS chip using a flip-

chip bonder (model 850, Semiconductor Equipment

Corp.). The bond strength was increased by heating

the two respective part holders for the chip and

PDMS (90 °C, 10 min) under constant pressure

(5 psi).

3. The CMOS chip with the bonded PDMS mold was

glued into the 8.3 × 8.3 mm cavity at the center of a

120 pin ceramic chip pin grid array package using

EPO-TEK H74 epoxy (Epoxy Technology Inc.) and

wire-bonded (by Hesse and Knipps Bondjet 710).

4. A black epoxy resin (302-3M 1LB, Epoxy

Technology Inc.) was injected into the PDMS

microstructure and cured (48 h at room

temperature). After curing, the PDMS structure

was removed from the chip. Because there were no

wire bonds on the top and bottom edges of the chip,

microchannels were extended in these directions,

effectively planarizing the surface. Epoxy also

provided encapsulation of the wire bonds.

5. A planar slab of PDMS was cut with a sharp knife

(4 × 3mm), cleaned, exposed to oxygen plasma

Table 3 Comparison of the performance of the platform for the quantification of LAA, glutamate, and choline when

using off-chip mixed liquid reagents or preloaded dried reagents.

LAA Glutamate Choline

Physiological range: 2–3.5 mM68 40–150 µM47 7–20 µM69

Reagents: Liquid Dried Liquid Dried Liquid Dried

Sensitivity (mV s−1 mM−1) 0.83 ± 0.002 0.72 ± 0.07 6.06 ± 1.01 6.14 ± 0.87 9.98 ± 1.79 7.78 ± 1.13

Linearity (R2) 0.999 0.991 0.969 0.977 0.939 0.975

RMSE 0.086 0.076 0.266 0.145 0.169 0.115

Average std. dev. (%) 18.3% 15.7% 17.2% 18.0% 16.4% 17.7%

Negative control (µV s−1) 5.0 ± 2.7 23.0 ± 12.5 5.0 ± 2.7 23.0 ± 12.5 5.0 ± 2.7 23.0 ± 12.5

LOD (µM) 11.1 42.9 1.4 6.4 1.7 3.2

LOQ (µM) 25.5 129.3 3.3 19.5 3.9 9.8
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(1 min, 80W) and immersed in a PVA solution

(1 wt%)55. The PVA-modified PDMS slab was

permanently bonded to the epoxy microstructure

by plasma activation (45 s, 80W) and baking

(15 min, 90 °C).

The approach that was used encapsulated all the water-

sensitive electronic components on the cartridge in epoxy.

This enabled leakage-free aqueous experiments on the

cartridge. A graphical representation of the fabrication is

shown in Fig. 3 of the Supplementary Information.

Reagents

All chemicals required for the assays were purchased from

Sigma-Aldrich unless otherwise specified. A reagent solution

per target metabolite was prepared immediately before the

experiment. Assay formulations were optimized by experi-

mentation. All the reagents were prepared in DI water.

For LAA testing, 6.7 µL of LAAOX (10 UmL−1),

6.7 µL of HRP (150 U mL−1), 3.3 µL of phenol

(44.5 mM) and 3.3 µL of 4-aminoantipyrine (4-AAP,

10.5 mM) were mixed. The reagent solution for gluta-

mate was prepared by mixing 6.7 µL of GLOX (4 U

mL−1), 6.7 µL of HRP (150 U mL−1), 3.3 µL of phenol

(44.5 mM), and 3.3 µL of 4-AAP (10.5 mM). For choline

testing, 6.7 µL of CHOX (150 U mL−1), 6.7 µL of HRP

(300 U mL−1), 3.3 µL of phenol (44.5 mM), and 3.3 µL of

4-AAP (10.5 mM) were mixed. The reagent solution for

sarcosine was prepared by mixing 6.7 µL of SAOX

(200 U mL−1), 6.7 µL of HRP (300 U mL−1), 3.3 µL of

phenol (44.5 mM), and 3.3 µL of 4-AAP (10.5 mM).

The reagent solution for the negative control was pre-

pared by mixing 6.7 µL of DI water, 6.7 µL of HRP

(300 U mL−1), 3.3 µL of phenol (44.5 mM), and 3.3 µL of

4-AAP (10.5 mM).
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Experimental setup

To ensure consistent results, a rigid test setup was built.

All optomechanical components were purchased from

Thorlabs. The reader of the platform was secured to an

optical aluminum breadboard (15 cm × 10 cm × 1.2 cm)

with the ZIF socket facing up. Cartridges were inserted

into the ZIF socket. The sensitive area of the CMOS chip

was parallel to the optical breadboard and facing up.

Using optomechanics, a 3 mW LED (λ = 490 nm, FWHM

= 20 nm) powered using a power supply unit (HP

E3631A) was used to uniformly illuminate the sensing

area on the CMOS chip with a collimating lens (AC254-

035-A-ML BBAR coating f = 35mm). The height and

positioning of the LED and lens were adjusted so that the

sensitive area of the chip received perpendicular colli-

mated light. The equipment that was mounted onto the

optical breadboard was enclosed in a box and covered

with a nylon/polyurethane blackout cloth. The cloth was

essential to ensure that the experiments were performed

in a dark environment. A small opening was left for

connecting wires and allowed sample delivery to the chip.

The reader, enclosed in the dark environment, was con-

nected to an external laptop (HP EliteBook i7-8650u 16

GB) using a USB cable. The MATLAB-based user inter-

face, running on the laptop, was used to control data

acquisition. Data were recorded with an average frame

rate of 36.5 fps and a resolution of 12 bits. Typically, the

duration of a single experiment was 5 min (~10,950

frames). Environmental temperature and humidity were

also monitored during testing using a Texas Instrument

module (HDC 1080EVM).

Cartridge reusage

Although the cartridge could in principle be a single-use

disposable device, because of limited resources, in this

work, cartridges were cleaned and reused. A cleaning

procedure after every measurement was used to avoid

cross-contamination. The cleaning process involved a

sequential rinse in DI water, IPA, and then ethanol, and

nitrogen was used to blow it dry. For the clinical samples,

an additional first rinse step with a dilute piranha solution

was performed. The dilute piranha solution was prepared

using 10:3:1 DI water:18M sulfuric acid:30% hydrogen

peroxide. Cleaning the cartridge with dilute piranha was

kept to a minimum since the etchant attacked the epoxy

microchannels. Cross-contamination reduction was also

achieved by optimizing the testing sequence. In particular,

one or more negative controls were performed before any

measurements.

Calibration

For calibration with liquid reagents, one human plasma

sample was purchased from Sigma-Aldrich and recon-

stituted according to the manufacturer’s instructions.

Subsequently, it was modified by adding known quantities

of analytes of interest. Additional concentrations did not

take into account the unknown endogenous level of the

substrate of interest in the sample. The endogenous

concentration was estimated by using the method for

substrate measurement described in the signal processing

section. Twenty microliters of reagent solution was mixed

off-chip with 20 µL of sample and introduced into the

cartridge within a few seconds.

For calibration with dried reagents, human plasma was

purchased, reconstituted, and modified using the same

procedure described for calibration with liquid reagents.

The same reagents were preloaded in all four micro-

channels in a single cartridge. Thirty microliters of sample

was introduced to the cartridge without any further

dilution.

For both configurations, metabolites were tested indi-

vidually. Each cartridge had four microchannels; there-

fore, each measurement yielded four reaction rates. The

method employed for sample delivery was reliable and

repeatable; therefore, air bubbles or fluidic failures did not

pose a problem for the majority of the experiments.

However, in a small number of instances, unexpected

behavior was observed, and the data were excluded. The

four reaction rates were averaged67, and the small number

of anomalies that occurred was mitigated using triplicate

measurements from each cartridge. Each cartridge was

functionalized with dried reagents prior to each new

measurement. The errors were expressed using the stan-

dard deviation of these data.

Non-PCa samples

Ten samples of human plasma from healthy people,

herein referred to as “non-PCa”, were commercially

sourced from Cambridge Bioscience. The exclusively

adult male non-PCa donors were age 34 ± 10 years. The

ethnicity of the group was diversified. The samples were

tested for the most common infectious diseases, and all

gave negative results. Approximately 10 mL of fresh blood

samples were collected from subjects in various research

centers in England, mixed with 10 mg of K2EDTA antic-

oagulant and centrifuged. The resulting 4-mL plasma

samples were frozen at −80 °C and shipped under dry ice.

After collection, plasma samples were aliquoted and

stored at −80 °C. No additional freeze and thaw cycle was

performed.

PCa samples

Sixteen samples of human plasma from people diag-

nosed with PCa, herein referred to as the “PCa group”,

were sourced from the Beatson West of Scotland Cancer

Centre, Glasgow, UK, using an ethically approved sample

collection protocol. Donors were adults already diag-

nosed with PCa. All patients were under treatment.
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Approximately 10 mL of blood samples was collected at

the cancer center, mixed with 10 mg of K2EDTA antic-

oagulant, and centrifuged, and the resulting plasma

samples were frozen at −80 °C. Samples were trans-

ported in dry ice. Afterward, plasma samples were ali-

quoted and stored at −80 °C. No additional freeze and

thaw cycle was performed. A copy of the ethical approval

letter and consent forms from the donors are available

upon request.

Preliminary clinical study

The non-PCa and PCa groups were tested for the four

metabolites of interest for PCa diagnosis. Chronologically,

the non-PCa group was tested before the PCa group. For

convenience numbered sample IDs were assigned. Sam-

ples with IDs from 1 to 10 belong to the non-PCa group.

Samples with sample IDs from 11 to 26 belong to the

PCa group.

Within each group, metabolites were measured one-

by-one in the following order: LAA, glutamate, choline,

and sarcosine. Experiments were performed with wet

reagents. Twenty microliters of reagent solution was off-

chip mixed with 20 µL of clinical sample and introduced

onto the platform within a few seconds. For each sample

and metabolite, the negative control (background) was

first assessed. Then, the assay was performed. Finally,

positive controls A and B were tested. Additional con-

centrations of positive control A for LAA, glutamate,

choline, and sarcosine were [A] = 500 µM, 100 µM,

100 µM, and 100 µM, respectively. The additional con-

centration for positive control B was [B] = 2[A]. Con-

trols were obtained using single measurements. The

assay was repeated three times using the same cartridge.

Averages and standard deviations were obtained for the

three measurements.

Microchannel functionalization with dried reagents

To functionalize the microchannels with dried assay

material, reagent solutions for the control and for LAA,

glutamate, and choline assays were first prepared as

described above. One microliter of each reagent solution

was preloaded into the required microchannel by manual

pipetting. Ultralong microloader pipette tips (Eppendorf)

with an outer diameter of 100 µm were used under a

microscope. The pipette tips made it possible to dispense

the reagent directly into single microchannels. To avoid

contamination of the shared input fluidic region, reagent

solutions were inserted from the fluidic output-end of the

channels. After the deposition of the reagent solutions,

the cartridge was dried for 1 h at room temperature in a

vacuum chamber. The control channel was preloaded

with a reagent solution containing HRP, phenol, and 4-

AAP. The presence of dried reagents on the chip slightly

increased the light absorbance of the platform after

settling. To compensate, the intensity of the light from the

LED was increased to keep the PDs at the same operating

point with respect to the unfunctionalized microchannels.

Reagents were rehydrated when the sample was intro-

duced into the microchannels. Based on visual inspection

of the data from the single sensors, we found that the

reagents were distributed uniformly along the sensor

region of the channel and remained so after drying.

Simultaneous measurements with clinical samples

A cartridge with four microchannels was used. One

microchannel was functionalized as a negative control.

The remaining three channels were functionalized for

LAA, glutamate, and choline assays. Fifteen microliters

of clinically sourced human plasma samples were

introduced into the cartridge with the preloaded

reagents without any further dilution. Experiments were

repeated twice. Microchannels were functionalized with

dried reagents prior to each experiment. Experiments

were performed immediately after completing cartridge

functionalization.

Signal processing

Signal processing can be divided into initial reaction

rate determination followed by substrate concentration

estimation.

To determine the initial reaction rate in a single

microchannel, data were first visually inspected. Signals

from sensing elements inside the same microfluidic

channel were low pass filtered (normalized cutoff fre-

quency: 0.1; 8th order) and spatially averaged (48 different

sensors). Unresponsive sensors or sensors affected by

strong artifacts were excluded from the averaging process.

The resulting signal was then temporally averaged in 1-s

nonoverlapping windows and fitted using a double

exponential derived by the Michaelis–Menten model and

Beer–Lambert law. The initial rate of the reaction was

then calculated by differentiation of the measured signal.

The substrate concentration estimation was performed

using the initial reaction rate and sample-specific para-

meters. For each sample, a negative control reaction was

initiated between the sample, peroxidase, and color-

changing reagents with no substrate-specific enzyme

present to quantify nonspecific activity. The reaction rate

obtained from the negative control (rn) was used as a

background to adjust the reaction rate of the actual test

(rt), as follows:

r�t ¼ rt � rn

where rt* is the adjusted reaction rate of the test.

Subtraction of the background can affect the performance

of the assay, including the dynamic range, LOD and LOQ.

However, each plasma sample used in this work had a
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different background since they came from different

individuals. Cartridge to cartridge variations were also

expected. The background correction takes into account

these variations to yield comparable results.

The sensitivity was estimated using the two positive

controls A and B, where known substrate concentrations

[A] and [B], respectively, were added to the undiluted

sample. The controls with concentrations [A] and [B]

gave respective initial reaction rates ra and rb in the linear

operating range of the platform. The rates ra and rb pro-

vided the sample-specific sensitivity (S′) of the apparatus

according to the following formula:

S0 ¼
rb � ra

B½ � � ½A�
where B½ �>½A� and rb>ra

By analogy, the sensitivity was also calculated using the

following variants:

S00 ¼
rb � rt

B½ � � ½T�
; S000 ¼

ra � rt

B½ � � ½T�

where T is the test sample with an unknown metabolite

concentration [T]. Typically, we found that S′, S″, and S‴

had similar numerical values. Their average (S) was then

used for substrate quantification. Note that it was not

necessary to adjust ra and rb using rn since rn automatically

cancels when computing the difference. [T] was estimated

using linear regression to be:

½T� ¼
r�t
S

Additional details regarding signal processing can be

found in the Supplementary Information.
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