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Abstract

In this paper we present an alternative approach to the representation of simulation particles for unstructured electro-

static and electromagnetic PIC simulations. In our modified PIC algorithm we represent particles as having a smooth

shape function limited by some specified finite radius, r0. A unique feature of our approach is the representation of

this shape by surrounding simulation particles with a set of virtual particles with delta shape, with fixed offsets and

weights derived from Gaussian quadrature rules and the value of r0. As the virtual particles are purely computa-

tional, they provide the additional benefit of increasing the arithmetic intensity of traditionally memory bound particle

kernels. The modified algorithm is implemented within Sandia National Laboratories’ unstructured EMPIRE-PIC

code, for electrostatic and electromagnetic simulations, using periodic boundary conditions. We show results for a

representative set of benchmark problems, including electron orbit, a transverse electromagnetic wave propagating

through a plasma, numerical heating, and a plasma slab expansion. Good error reduction across all of the chosen

problems is achieved as the particles are made progressively smoother, with the optimal particle radius appearing to

be problem-dependent.

Keywords: Particle-in-Cell, high-order, unstructured, particle representation, shape function

1. Introduction

The behaviour of plasmas within various environments and conditions is studied extensively within the scientific

community. In particular, there is significant interest in the field of fusion energy research, which seeks to realise fu-

sion power via Inertial Confinement Fusion (ICF) or Magnetic Confinement Fusion (MCF) devices. Examples of such

devices include the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory (LLNL), and

the International Thermonuclear Experimental Reactor (ITER), located in France, which attempt ICF and MCF, re-

spectively. Another major interest is the area of pulsed power systems and magnetically insulated transmission lines

(MITL). The Z Pulsed Power Facility, otherwise known as the ‘Z machine’, located at Sandia National Laboratories

(SNL) is one notable example of such a system. Additional fields of study include the behaviour of magnetrons in

microwave generation systems, charged particle beams, laser-plasma interaction [1], astrophysical plasmas [2], and

applications in biomedicine [3]. However, conducting such experiments can be both extremely time consuming and/or

prohibitively expensive, leading researchers to use simulation to model such phenomena on computer systems. The

Particle-in-Cell (PIC) method is a common approach used to carry out such simulations [4, 5].

Electrostatic and electromagnetic PIC methods are commonly used to simulate high power devices, and the be-

haviour of plasmas under various physical conditions. Traditionally, PIC algorithms employ structured computational
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grids – representing the electric and magnetic fields on a staggered Yee grid [6] – and model particles as discrete

Lagrangian points moving through the problem space [5, 7]. Notable examples of structured PIC codes include

the Extendable PIC Open Collaboration (EPOCH) [1], OSIRIS [8], the Plasma Simulation Code (PSC) [9] and

VPIC [10, 11]. Gyrokinetic PIC algorithms have also been applied to the challenge of plasma simulation in five-

dimensional phase space, where rapid movement about the magnetic field lines allows a velocity dimension to be

ignored in the simulation. One such code is GTC-P, the Gyrokinetic Toroidal Code developed at Princeton Univer-

sity [12]. The performance of the code at scale has been demonstrated on a number of notable HPC systems, including

Sequoia, Piz Daint, Titan and Tianhe-2 [13, 14].

However, traditional structured meshes are poorly suited to representing problems that make use of high fidelity

geometries, where they typically exhibit, at best, first-order convergence. There are multiple approaches to resolving

this complication. One such method is proposed by Dey and Mittra [15], which adapts the commonly used Finite

Difference Time Domain (FDTD) algorithm to use locally distorted cells that accurately model a curved geometry with

simple changes to the FDTD scheme. Another conformal scheme proposed by Zagorodnov et al. [16] also models

curved boundaries and does not require time-step sizes that are significantly smaller than a staircasing approach.

Additionally, the algorithm results in convergence between first- and second-order, depending on the problem. Other

notable examples that maintain the use of a structured mesh include the application of cut-cell algorithms which ‘cut’

bodies out of the background mesh [17], and Adaptive Mesh Refinement (AMR) methods that refine the mesh only

in high interest areas [18]. The use of AMR-PIC has previously been explored for electrostatic and electromagnetic

problems by Vay et al. [19, 20].

Alternatively, one can achieve high geometric flexibility through the use of fully unstructured meshes, which avoid

the requirement of an impractically high grid resolution imposed by the structured approach. Like AMR, this provides

the flexibility of refining the problem in areas of key interest, but without the restriction that the grid cells themselves

retain their structured properties. Examples of such PIC codes include PTetra [21] and the open-source Spacecraft

Plasma Interaction Software (SPIS) [22].

In addition to unstructured or adaptively refined meshes, many domain scientists have also experimented with the

use of higher-order methods. While these have previously been seen as prohibitively computationally intensive, the

extreme levels of parallelism offered by modern supercomputers is causing a revival of such methods. This is due

to the increased arithmetic intensity of these methods improving the amount of floating point operations (FLOPs)

performed per byte moved from RAM, providing an advantage in situations where limited memory capacity and

bandwidth poses an obstacle to performance. The additional computational cost is also accompanied with improved

simulation accuracy and convergence. Such methods have the benefit of enabling the use of coarser computational

grids and reduced simulation constraints, while still reaching an acceptable solution due to the increased accuracy that

they can provide. However, higher-order methods also require smoother particle shape functions in order to achieve

the desired convergence, as in a higher-order Galerkin finite element scheme there is an assumption of smoothness

in the source terms. The use of smooth particles also increases simulation accuracy by improving the sampling of

the surrounding fields when interpolating from the mesh to the particles, and by reducing the effects of aliasing as

particles move between elements.

Structured PIC codes generally implement higher-order PIC by using smooth particle shapes extending over mul-

tiple cells [1], combined with higher-order field solvers. One example of such a particle shape can be achieved by

implementing the cloud-in-cell (CIC) representation proposed by Birdsall and Fuss [23]. Unfortunately, such methods

are non-trivial to implement in practice for unstructured PIC codes as evaluating a higher-order basis often becomes

intractable when spanning multiple elements.

Jacobs and Hesthaven present a discontinuous Galerkin PIC method that incorporates both higher-order time

domain solution of Maxwell’s equations and smooth particle shapes [24, 25]. Essex and Edwards also show a higher-

order PIC algorithm, HOPIC, that extends the PIC method to fourth-order accuracy for transport problems [26].

Stindl et al. have also investigated higher-order methods within an electromagnetic discontinuous Galerkin PIC

code, with a particular focus on the coupling of the particles and the unstructured grid [27]. Specifically, the authors

compare first- and third-order B-spline interpolation functions to a reference Cell Mean Value (CMV) approach which

distributes the charge of all particles in a cell equally to all cell nodes.

In this paper we propose modifications to the core PIC algorithm by representing particles as having a smooth

quadratic shape, with compact support on a fixed radius, which is numerically integrated against the test function

representing the weak form of the currents or charge densities. This integration is performed by numerical cubature
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where the cubature points are represented by virtual particles surrounding each super-particle. Each virtual particle has

an associated offset and weight derived from Gaussian quadrature rules and the chosen radius. This approach also has

the advantage of requiring little extension to the core PIC kernels. This builds on the work of Pinto et al. [28] where

representation of smooth particle shapes using numerical quadrature rules was proposed. Specifically we consider the

implementation of a specific shape function in a production PIC code using this method, and examine its effects on

the solution to various benchmark problems.

The algorithm has been implemented within Sandia National Laboratories’ unstructured EMPIRE-PIC1 code for

electrostatic and electromagnetic problems, in both two and three dimensions using periodic boundary conditions.

The effect of the algorithm on simulation solutions is explored using four representative benchmark problems. This

greatly extends our previous work [29] where we presented only initial exploratory computational performance results

for two-dimensional electrostatic problems, where simulation error was not considered. The work presented in this

paper includes both electrostatic and electromagnetic simulations, considers both two- and three-dimensional particle

shapes, and quantifies the increased accuracy gained through the use of the proposed particle representation.

While smooth particle shapes have been explored previously by other authors, the use of virtual particles is a

unique feature of our implementation. This differs from the approach used by Jacobs and Hesthaven [24] where

particles in a discontinuous Galerkin PIC code are represented as a cloud of constant size with particles weighted

to all elements within the cloud radius. We instead examine weighting each virtual particle to/from its associated

element in a continuous Galerkin code. The work presented in this paper also differs from the charge-conserving PIC

scheme proposed by Squire et al. [30] as a Delaunay triangular grid is not required – our method can be applied to

arbitrary unstructured meshes. Similarly to Moon et al. [31], in electromagnetic simulations the fields are expanded

using the Whitney basis functions. Specifically, the Whitney 1-forms are used for the electric field, and the 2-forms

for the magnetic field.

The virtual particle approach also has the advantage of being able to tune the offsets and weights of the virtual

particles to reproduce a given shape function for the particle cloud with relative ease. Finally, as the virtual particles

are computational, we obtain the additional benefit of adding increased arithmetic intensity to traditionally memory

bound particle kernels within the PIC method.

In summary, we make the following contributions:

• We propose representing particles in the unstructured PIC algorithm as having a smooth shape that is limited

by some finite radius;

• This shape is represented as a collection of delta shape virtual particles surrounding each delta shape super-

particle in order to effectively give the super-particle a smoother shape. The virtual particles have fixed offsets

and weights obtained from Gaussian quadrature rules and the chosen radius;

• The algorithm is implemented in SNL’s unstructured EMPIRE-PIC code, for both electrostatic and electromag-

netic problems with periodic boundary conditions;

• We compare the accuracy of the proposed algorithm to the base implementation of EMPIRE-PIC using four

representative benchmark problems.

The remainder of this paper is structured as follows: Section 2 provides a summary of the PIC algorithm; Section 3

introduces our new higher-order particle shape representation and algorithm modifications, and how the core PIC

components can be adapted to implement it; Section 4 examines the accuracy and convergence of the method on a set

of benchmark problems; finally, in Section 5 we conclude the paper, and highlight areas of interest for future research.

2. The Particle-in-Cell Method

The PIC method is a commonly used technique to simulate the motion of charged particles, in which particles are

tracked in a Lagrangian manner on an Eulerian mesh that represents the problem domain. The particles move freely

through the domain, and the mesh is used to calculate fields and approximate interactions between particles. While the

1A reference paper detailing the capabilities and specifications of EMPIRE-PIC is currently under review at another journal.
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charge and current density are calculated from the particles, these values are needed on the grid, requiring deposition

to the grid at each step. Although the procedure has been detailed extensively in other works [4, 5, 31], we reiterate

relevant parts of it here for completeness. The method applies an operator split approach, which can essentially be

thought of as two coupled solvers, where one updates the values of the electric and magnetic fields, and the other

updates the particle positions and velocities. This is typically accomplished via leapfrog integration, where variables

are updated at interleaved points in time such that they ‘leapfrog’ over one another.

The time evolution of electric and magnetic fields is governed by Maxwell’s equations, given below. Note that

here we use the ~E/~B formulation of Maxwell’s equations instead of the ~D/ ~H version. This provides the advantages

of being easier to couple to the Klimontovich equation [32, 33], allowing the use of a compatible discretisation, and

facilitating the strong preservation of the magnetic divergence constraint, (2). A further benefit is that the ~E and ~B

terms are present in the Lorentz force law, meaning that our simulation fields can be used directly to compute this

force.

∇ · ~E =
ρ

ǫ0
(1)

∇ · ~B = 0 (2)

∂~B

∂t
= −∇ × ~E (3)

∂~E

∂t
=

1

µ0ǫ0
∇ × ~B − 1

ǫ0
~J (4)

Where ~E and ~B are the electric and magnetic fields, ρ is the charge density, ~J is the current, and µ0 and ǫ0 are the

permeability and permittivity of free space, respectively. The force felt by charged particles in the presence of these

fields is defined by the Lorentz force law. This can then be applied to update the velocity ~v and position ~x of the

particles, resulting in the equations of motion shown below, assuming a particle mass m and charge q.

d~v

dt
=

q

m

(

~E + ~v × ~B
)

(5)

d~x

dt
= ~v (6)

This update is typically handled through the use of the particle pusher proposed by Boris [34]. Note that the particles

in a PIC simulation are not individual physical particles, as this would be computationally infeasible. Instead, super-

particles that represent the phase space density are used. These super-particles follow the same equations of motion

as their physical counterparts due to possessing the same charge-to-mass ratio.

The particles and fields (represented by Maxwell’s equations) can then be assembled into the Klimontovich equa-

tion for plasma dynamics, which can be used to fully describe the time evolution of the system [32, 33].

In general, PIC simulations execute a loop that is made up of four key steps, and repeated for each simulation

time-step. The four steps are as follows:

1. Solving Maxwell’s equations to update the electric and/or magnetic fields.

2. Calculate the value of the electric and magnetic fields at each particle, by interpolating these values from the

mesh.

3. Accelerating and moving the particles.

4. Interpolating charge/current contributions from the particles back to the mesh.

These steps are common to PIC codes in general, but production applications often merge these in various ways, e.g.,

current deposition is sometimes carried out during the particle move step. One should also note that the steps listed

here are not exhaustive – diagnostic collection and particle injection can also be part of the main simulation loop.

2.1. Updating the Fields

Beginning with the field update, we must solve Maxwell’s equations ((1)-(4)) for the new values of ~E and ~B.

Typically, the electric and magnetic fields are advanced in time using an FDTD method on a structured rectilinear
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grid [6]. However, in the unstructured PIC code considered in this paper we instead employ a finite element method

(FEM) to solve for the fields at each time-step [35], using edge- and face-based elements for the electric and magnetic

fields, respectively, thus matching the Yee FDTD method.

A key point is that for electrostatic problems we need only solve Gauss’ law (1), while for electromagnetic simu-

lations we instead consider Ampère’s and Faraday’s laws ((3)-(4)). One should also note that the magnetic divergence

constraint (2) is implicitly maintained in the FEM formulation from first principles due to the use of a compatible

discretisation, meaning that we do not need to enforce it directly during the solve step. The equations can then be put

into their respective weak forms [35] and integrated by parts in order to form mass and/or stiffness matrices, allowing

them to be solved for the updated fields via various iterative or direct numerical methods.

2.2. Weighting Fields to Particles

During a PIC simulation the values of the fields are known only on specific locations inside the spatial grid, i.e.,

the interpolation points of the finite elements. Therefore, in order to correctly advance the particles in time during the

simulation we must determine the values of the electric and magnetic fields at the precise location of each particle via

interpolation. Given that we know the values of both fields at some arbitrary time-step n, the fields can be evaluated at

a particular particle position ~xi as follows, where ê are the Nédélec edge elements [36], b̂ are the Raviart-Thomas [37]

face elements, and Nedge and Nface are the number of edges and faces of the containing element, respectively. This

interpolation can be carried out from either the raw edge-/face-based fields, or from values that have been projected

to the mesh nodes as is sometimes done in FDTD-PIC schemes.

~E(~xi) =

Nedge
∑

j=0

E jê j(~xi) (7)

~B(~xi) =

Nface
∑

j=0

B jb̂ j(~xi) (8)

2.3. Particle Acceleration and Movement

In the simulation, the locations of the computational particles must also be advanced in time along with the fields

by updating their individual velocities and positions. This step is commonly known as the ‘particle push’. A detailed

comparison of various particle movers has been conducted by other authors [38].

We update the particle velocities via solving for the force on the particles due to the electric and magnetic fields

as defined by the updates given in (5) and (6), and the couplings given in (7)–(8). To determine the new velocity we

employ the well known Boris method, which has become the de facto standard for pushing particles in PIC codes [34].

Once the new velocity is obtained it is then trivial to update the particle position.

2.4. Weighting of Particles to Grid

Particles are required to deposit their charge and/or current contribution back to the spatial grid via interpolation,

prior to the beginning of the next field solve. For an electrostatic simulation it is sufficient for the particles to deposit

charge contributions at the end of the particle move to the nodes of their newly containing element. This coupling

is defined below, where v̂i represents the nodal basis functions, j is the element index, Ω is the element volume, and

NP is the number of particles. As each computational particle represents multiple physical particles, we define the

particle weight W such that Wk is the number of physical particles represented by the kth computational particle.

∫

Ω j

ρ jv̂i dV =

NP
∑

k=1

Wkqkv̂i(~xk) (9)

Electromagnetics require a different interpolation scheme in order to deposit current, this commonly occurs during

the particle move step and can be evaluated at the midpoint, x
n+1/2

k
, as shown in (10), where ~u is the particle velocity.

The particle trajectory must also be split such that each element visited by a particle in a given step has the correct
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(0.000, 0.000)
0.50517

(0.000, 0.775)
0.10567

(0.775, 0.000)
0.10567

(0.648, 0.648)
0.01804

r 0
=1

(a) Circular virtual particle layout using 3

quadrature points.

r 0
=1

(0.000, 0.000)
0.20643

(0.000, 0.538)
0.11382

(0.000, 0.906)
0.01178 (0.874, 0.413)

0.00574

(0.498, 0.498)
0.061064

(0.696, 0.696)
0.00035

(0.906, 0.000)
0.01178(0.538, 0.000)

0.11382

(0.413, 0.874)
0.00574

(b) Circular virtual particle layout using 5

quadrature points.

Figure 1: Image showing two example virtual particle layouts of differing orders. Surrounding virtual particles are grey with dashed borders, with

the physical location of the simulation particle represented by the central virtual particle (solid border). Virtual particles are sized proportionally to

their weights.

proportion of current accrued to it. Note that here we use the edge basis, ê, instead of the nodal basis, and that each

edge carries all components of the current.

∫

Ω j

~J n+1/2
j

êi dV =

NP
∑

k=1

∫

Ω j

∫ (n+1)∆t

n∆t

Wkqk~uk · êi dt dV =

NP
∑

k=1

Wkqk~uk · êi

(

~x n+1/2
k

)

(10)

Note that this method is only charge conserving for simplices. For non-simplex elements the basis functions used in

EMPIRE-PIC are non-linear within the elements, so a higher-order integration is required – in this case we use two-

point Gaussian quadrature using points at
(

1 ± 1/
√

3
)

/2, each with a weight of 1/2. These quadrature points are

the standard Gaussian quadrature points with the interval adjusted to [0, 1]. This reduces to the charge conservation

method presented by Villasenor and Buneman [39].

3. Higher-Order Particle Shapes

Let us first consider the electrostatic formulation of the standard PIC algorithm due to its simplicity, as the scheme

can be later expanded to electromagnetics. As discussed previously we must formulate the weak form of Gauss’ Law

such that we can integrate the electric potential with a given test function and generate a stiffness matrix. Solving

Gauss’ Law also requires the charge density ρ to be computed from the computational particles. These particles are

generally represented as shape functions S in space and velocity. In the standard FEM-PIC algorithm, the shape

function is generally the Dirac delta function, δ. The charge density can then be integrated with the test function. One

should note that integrating δ with the linear nodal basis is equivalent to piecewise linear interpolation in FDTD-PIC.

This results in a summation at the particle locations when S = δ.

∫

Ω j

ρ jv̂i dV =

NP
∑

k=1

∫

Ω j

S
(

~x − ~xk

)

qkv̂i dV =

NP
∑

k=1

Wkqkv̂i(~xk) (11)

This simple integration is valid, independent of the order of the test function. However, the use of the Dirac delta

function results in a particle shape that is not a smooth representation due to its nature. In the following section, we

show how δ can be replaced with a smooth shape function, and how this can be implemented through the use of virtual

particles.
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Point Position xi Weight wi

0 −
√

3
5

5
9

1 0 8
9

2

√

3
5

5
9

Table 1: Positions and weights for three-point Gaussian quadrature.

3.1. Smooth Particle Shape Function

In order to solve the problem of a non-smooth particle shape we now propose representing particles as having

some defined fixed size. Specifically, we assume that particles possess some radius r0, and have a parabolic shape

subject to the following shape function – replacing the usual Dirac delta function. In (12) we also have normalisation

constant c = 2/πr2
0
.

S (~x − ~x0) =



















c

[

1 −
(

r
r0

)2
]

if r ≤ r0

0 otherwise
(12)

The exact integral of the shape function with the test function in two dimensions is given below in (13). Equation (14)

shows how this can extended to handle a three-dimensional case. However, integration of this shape function with the

test function is generally computationally intractable when spanning more than a single element. We therefore handle

the integration of this function via the application of Gaussian numerical quadrature.

∫ r0

0

∫ 2π

0

S
(

~x − ~x0

)

v̂i dθ dr =

∫ r0

0

∫ 2π

0

rc















1 −
(

r

r0

)2














v̂i(r, θ) dθ dr (13)

∫ r0

0

∫ 2π

0

∫ π

0

S
(

~x − ~x0

)

v̂i dφ dθ dr =

∫ r0

0

∫ 2π

0

∫ π

0

rc















1 −
(

r

r0

)2














v̂i(r, θ, φ) dφ dθ dr (14)

3.2. Implementation

The smooth particle shapes described above are implemented by taking a given simulation particle, and surround-

ing it with a set of computational virtual particles. This allows one to move the quadrature weights from the mesh

onto the virtual particles themselves. In this representation the particle radius is fixed independently of the size of its

current element, and the central particle is used to track the physical location of the particle in the simulation space.

The virtual particles represent quadrature points for the particle; each has a fixed associated position offset ~ov and

weight factor wv, where the weight incorporates Gaussian quadrature weights and the shape function. It should be

noted that the sum over the set of virtual particle weights must be equal to one to ensure the correct total contribution

once all virtual particles are processed. Example particles represented in this way are shown in Figure 1. While this

particular arrangement could give rise to azimuthal modes due to mesh imprinting, we do not believe this to be a

significant issue in this paper. One method of addressing this biasing could be randomly rotating the shape of each

loaded particle, thus reducing the bias towards the coordinate axes.

We now derive virtual particle weights and offsets using a shape represented by mapping a square to a circular

shape. For 3D problems we instead map a cube to a sphere. The choice of a circular/spherical shape has certain

benefits. Firstly, this symmetrical shape prevents the grid biasing/mesh imprinting that would occur with the use of a

square/cube layout. Secondly, such a shape captures the notion of the Debye sphere [40, 41] and allows for a better

representation of this concept in a simulation.

Given Gaussian quadrature of an arbitrary order, let r0 be the chosen particle radius, and x and y be the positions

of the Gaussian quadrature points. We can now calculate x′ and y′ which together make up the offset for the virtual

particle being mapped. Additionally, let wx and wy be the weights of these points and |J| be the determinant of the

Jacobian for the mapping at these points, which we include in order to correctly map from the reference volume to the

mapped volume. For convenience, Table 1 shows the positions and weights for three-point Gaussian quadrature.

We can now calculate x′ and y′ which together make up the offset for each virtual particle being mapped, and

we can also determine the values of wv. Each permutation (with repetition) of the Gaussian quadrature points used
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maps to a single virtual particle; in the case of three-point Gaussian quadrature this results in a total of 32 = 9 virtual

particles. Equation (15) shows the mapping used for 2D problems, and (16) shows the weight calculation. As a final

step, the weights must be normalised to sum to one.

~ov =

[

x′

y′

]

=





















x

√

1 − y2

2

y

√

1 − x2

2





















(15)

wv = wxwy

(

1 −
(

x′2 + y′2
))

|J| (16)

|J| =

∣

∣

∣

∣

∣

∣

∣

∣

















δx′

δx
δx′

δy

δy′

δx
δy′

δy

















∣

∣

∣

∣

∣

∣

∣

∣

(17)

For 3D problems we additionally define z, z′, and wz and carry out the mapping as shown below in (18) and (19). Each

permutation (with repetition) of the Gaussian quadrature points continues to map to a single virtual particle, which

for three-point quadrature results in a total of 33 = 27 virtual particles. As before, the weights are normalised to sum

to one.
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wv = wxwywz
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(20)

While the shape function of a particle is usually represented by a delta function when this is put into the weak form it

has an action on all the bases of the element it occupies thus being equivalent to using piecewise linear shape functions

in FDTD-PIC. As described above the delta function is extended to a quadratic shape with compact support on the

specified radius r0 which is numerically integrated against the test function representing the weak form of the currents

or charge densities. As long as it is guaranteed that the weights sum to unity then the properties of charge conservation

will continue to be maintained. Errors in the cubature can effectively be thought as deviations to the shape function

S (r) = c(1−r2/r2
0
+ǫ f (r)) where ǫ is the cubature error. Figure 2 shows the absolute error between the exact integral of

the shape function with the basis function and of the integration using the proposed method. We see that for a single

element ǫ converges to on the order of machine precision – the increase in noise at higher numbers of quadrature

points can be explained by accumulated floating-point errors. However, much slower convergence is observed once a

particle spans multiple elements. This is unsurprising as we do not expect convergence for the polynomial integration

of a class C0 function. As long as ǫ is below the statistical convergence rate of
√

(1/N) this error is expected to be

small when compared to other terms.

Given the offsets and weights defined above, the implementation of the PIC algorithm can now be modified to

leverage this new particle shape. As the offsets and weights are shared by all virtual particles, the additional memory

required to store this extra data is minimal. Assuming a three-dimensional case and double precision floating-point

numbers, this results in an additional 8Nv bytes for the weights and 24Nv additional bytes for the offsets, where Nv

represents the number of virtual particles used per simulation particle. In the case of five-point Gaussian quadrature

this amounts to approximately four kilobytes. One should note that the positions of the virtual particles do not need to

be stored, it is sufficient to track the physical particle location and apply the assigned offset. The extension to virtual

particles only changes the coupling between the particles and the mesh, making the extensions to the particle move

trivial. The modifications made to the PIC algorithm are now described in the subsequent sections.
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Figure 2: Graph showing how the absolute error of the modified integration converges with the number of quadrature points for a single element,

and when spanning two elements.

3.2.1. Weighting Fields to Particles

As the electric and magnetic fields are only known on the computational mesh, they must be interpolated from

the mesh to the particles in order to be able to update the particle forces and velocities. PIC usually accomplishes

this through the use of basis functions to determine the field values at specific particle locations. In our algorithm

we use the same approach to calculate these values at the position of the replicated virtual particles, and multiplying

the field value by the virtual particle’s associated weight. This can be expressed mathematically as shown in (21) and

(22), where ~xi is the physical position of particle i, and Nv continues to represent the number of virtual particles used

per simulation particle. As before, wi represents the weighting of virtual particle i as specified in (16) and (19) for

two-dimensional and three-dimensional problems, respectively. Once this has been done for all virtual particles it is

then trivial to accumulate each individual contribution to the central particle via summation.

~E(~xi) =

Nv
∑

v=0

Nedge
∑

j=0

E jê j(~xi + ~ov)wv (21)

~B(~xi) =

Nv
∑

v=0

Nface
∑

j=0

B jb̂ j(~xi + ~ov)wv (22)

One should note that it is not necessary to carry out a neighbour search in order to determine which edges/faces/nodes

will be interpolated from as the containing element of each virtual particle is updated during the particle move step.

This discussed further in Section 3.2.2.

3.2.2. Particle Acceleration and Movement

Implementing a particle mover using the proposed modifications to the particle shapes as described is a relatively

simple matter. This is due to the offset of each virtual particle used being fixed relative to the position of the central

particle that is used to track the physical location. As in the standard PIC algorithm we apply the typical Boris

Pusher in order to update the velocities of the central particles in the simulation. Additionally, we specify that the

surrounding virtual particles share the same velocity as their associated central particle, meaning that they do not

need to be processed during the acceleration step. The central particle position can then be updated as in the standard

algorithm. Finally, we apply the same position update to the virtual particles, advancing them in lock-step with their

associated central particle. This allows us to track the containing element of each virtual particle, thus removing the

need for neighbour searches when interpolating values to and from the spatial grid. This choice results in storing a

single 32-bit integer per virtual particle per simulation particle, i.e., 4NPNv extra bytes in total.
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3.2.3. Weighting of Particles to Grid

As described in Section 2, the particles are coupled to the grid and must therefore make contributions back to the

grid prior to the field solve that will take place at the beginning of the next time-step. This can be thought of as each

constituent virtual particle making its own separate charge or current contribution, scaled by its pre-calculated weight

factor. These couplings take place as defined in (9) and (10) for charge and current, respectively. The implementation

of the charge weighting for electrostatic problems using the extension to virtual particles is simple. As the virtual

particle weights sum to 1, the total amount of charge deposited will remain unchanged. We define this modified

coupling below, using the same notation as defined previously.

∫

Ω j

ρ jv̂i dV =

NP
∑

k=1

Wkqk

Nv
∑

v=1

wvv̂i

(

~xk + ~ov

)

(23)

A similar approach to that employed above can also be applied to the current weighting procedure with the difference

that each virtual particle will make a contribution during its individual move, instead of all virtual particles making a

deposit at the end of the move step. Additionally, deposits will be made to all elements crossed by the virtual particle

during the move step. Specifically, the trajectory of each virtual particle is individually split as it passes through each

element, which is crucial for a charge-conserving current deposition scheme. The particle to grid coupling for current

deposition using virtual particles is given below in (24). This remains analogous to each virtual particle making

a separate weight-scaled current contribution to the grid. Along with the base code, we continue to use two-point

Gaussian quadrature in the case of non-simplex elements. As the virtual particle weights sum to one and our base

implementation conserves charge, this current deposition is also charge conserving.

∫

Ω j

~J jêi dV =

NP
∑

k=1

∆tWkqk

Nv
∑

v=1

wv~uk · êi

(

~x n+1/2
k

+ ~ov

)

(24)

4. Results

In the following section we present results for four numerical experiments. These have been selected to be broadly

representative of the problems that can be solved with EMPIRE-PIC. First, a simple 2D electrostatic electron orbit

problem is examined. Second, the 3D simulation of a transverse electromagnetic (TEM) wave propagating through

plasma is discussed. Third, we analyse the effect of our higher-order particle shapes on the amount of numerical

heating observed. Finally, we look at a more complex electrostatic problem – the 1D expansion of a neutral plasma

slab into a vacuum. For the results collected in the following experiments we used a virtual particle layout as defined

in Section 3. We used 5-point Gaussian quadrature resulting in 25 virtual particles for the 2D problems, and 125

virtual particles for the 3D problem. For the electrostatic problems we also examine the effects of particle smoothing

when second-order basis functions are used. This analysis was not conducted for electromagnetics as higher-order

basis functions are not currently available in EMPIRE-PIC for electromagnetic problems.

4.1. 2D Orbit Problem

We first consider the behaviour of our algorithm on a very basic electrostatic problem, consisting of a stationary

H+ ion being orbited by a single electron for one period. This electron is treated as a test particle that does not make

charge contributions back to the spatial grid. Using this simple test case we examine the effect of varying particle

radius on the accuracy of the tracking of basic particle motion. The particles are situated on a quadrilateral mesh, the

ion positioned at the centre, and the electron has an orbit radius of rorbit = 5.291 × 10−8 m. The length of the domain

in both x and y directions is equal to 3.0 × rorbit, with initial Nx = Ny = 14, resulting in 196 elements in total. We

also specify the problem boundary conditions to an analytical value defined as the exact value of the potential at the

boundary: φ =
q

2πǫ0
ln

(

r−1
)

, using an ion charge of q = +e, where e is the elementary charge.

The initial conditions of the problem can be derived as follows. Given the electrostatic assumption, we can reduce

the Lorentz force to ~F = q~E. Then, from centripetal force and Gauss’ Law we can write the following to obtain an

10
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Figure 3: Graphs showing results for the 2D electron orbit experiments on the structured mesh. Error bars represent one standard deviation in the

L1 norm due to variation in the starting locations.

expression for the electric field:

qE (r) = mω2r (25)
∫

~E · n̂ dA =

∫

V

ρ

ǫ
(26)

We are using a test electron that does not deposit charge to the mesh in order to simplify the boundary conditions,

due to being treated as having zero charge, but finite charge-to-mass ratio. Therefore, as the fields are not changed,

the above can be simplified. We can now rewrite and substitute (25) and (26) in order to derive an expression for the

angular velocity ω, and also velocity v which can then be resolved into its x and y components.

E (r) =
1

2πr

q

ǫ0
(27)

ω2 =
q2

2πr2mǫ0
(28)

v = ωr (29)

Therefore we can define angular velocity ω =
√

q2/2πr2mǫ0 . With x = rorbit cos (ωt) and y = rorbit sin (ωt) it is now

trivial to compare the simulated orbit to every point on the trajectory defined by the analytical solution.

For the base case of this test we place the hydrogen ion at the centre of the mesh, directly on top of an element

vertex. In order to avoid the special case (a particle will almost never occupy this position in an actual problem), we

repeat the test placing the central particle at 100 randomised positions within the element quadrant. As a result of all

cell quadrants being identical, we can obtain data that consider a representative range of possible particle positions

within an element. In the remainder of this section we examine the effects of increasing particle radius on the L1

error of the position of the orbiting electron against the analytical solution (normalised via the orbit radius), and also

consider these effects at increased levels of problem refinement, where we hold the ratio ∆x/∆t fixed in order to

maintain a constant CFL value.

We first examine the effects of increasing particle radius for the base level of mesh refinement, consisting of 14

elements in both dimensions as defined above. In order to definitively rule out the influence of time integration on the

orbit error due to large time-step size, we present data collected using a refined ∆t to ensure that the improvement due

to smoothing is visible. In this case, we use 320 time-steps per electron orbit. Figure 3 shows how the L1 error varies

as particle radius, r0, is increased over various fractions of the cell size ∆x. The error bars are used to represent the
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standard deviation in the error due to the position of the hydrogen ion in the element quadrant. After the initial radii,

it is clear to see that as the particle radius is increased the computed answer moves closer to the analytical solution,

with a radius value of 0.9 × ∆x appearing to be optimal in this case.

We also observe a significant reduction in the standard deviation due to altering the position of the central H+ ion

within its quadrant, i.e., the level of statistical noise is lower as when using smooth particles the difference in the force

felt at the centre of the element versus at the element vertex is lower than in the base code. This results in less variation

in the result due to altering the position of the central ion. However, this improvement in error and statistical variation

is reversed as particle radius continues to increase beyond the cell size, as using a large radius essentially means that

a different problem is being solved. From this we can conclude that some smoothing of the charge distribution of the

particle improves the ability of the PIC algorithm to track basic particle motion, whereas excessive smoothing results

in reduced benefits.

Using second-order basis functions results in a 50% improvement over the base code in terms of error and standard

deviation when no smoothing is applied. When smoothing is applied the results follow a similar trend to the first-order

basis data, with an optimal radius value of 0.8 × ∆x. This error value is significantly lower than the equivalent data

point for the first-order basis. In the best case the electron position error is approximately 85% lower than the base

code, and the standard deviation in the result is reduced by an order of magnitude. This is comparable to using a factor

of 25 more simulation particles, assuming scaling of 1/
√

NP. This shift in compute intensity versus memory footprint

is the main benefit in this test case – a key motivation for the work presented in this paper.

We now examine the effect of mesh refinement on this problem via a convergence study, with a base level of

∆x = 1.13 × 10−8 m, ∆t = 4.615 × 10−11 s and Nx = Ny = 14 grid elements. This results in a CFL condition

value of ~v∆t/∆x ≈ 0.0004675. Figure 4 shows the results of this study for various particle radii, using the L1 norm

of the electron position as the error metric, as in the previous test. For clarity, we additionally include a reference

line demonstrating theoretical second-order convergence. As seen in Figure 4a, a particle radius of approximately

0.9 × ∆x appears to be optimal for the majority of refinement levels used for the convergence study when considering

the first-order basis. Figure 4b shows that when using a second-order basis the optimal radius remains consistent as

the problem is refined. These results show a consistent improvement in the L1 norm across a wide range of ∆x values,

consistent with the previous results for the coarse mesh. The error reduction appears to be approximately a stable

factor of 2 when comparing results for the vanilla code against runs using the optimal radius value for the first-order

basis, and a factor of 5 for the second-order basis. It is also evident from these results that, for a fixed field, the use

of smoother particles causes earlier solution convergence then the standard FEM-PIC algorithm, indicating that this

may provide acceptable convergence rates while allowing the use of coarser meshes which are less computationally

expensive.

Finally, in order to assess the benefits of particle smoothing for non-regular grids, we carried out an additional

parameter scan over r0/∆x using an unstructured mesh of 2272 triangular elements. This mesh and its dimensions are

shown in Figure 5a, with the base orbit trajectory shown in red. The mesh has an average ∆x value of approximately

7 × 10−9 m, calculated as ∆x =
√

V/Nelem, where V is the volume of the mesh, and Nelem is the number of elements.

As with the previous experiments, data was collected for each input using 100 randomised starting locations, this time

varying the starting position by at most ±0.5 × rorbit in each dimension. In this way we can determine the variation in

the result due to the electron travelling through various levels of mesh distortion. We continue to use a refined time-

step of 320 steps per orbit in order to rule out time integration error. Figure 5b shows the results of this experiment,

with error bars again representing one standard deviation in the error due to the variation in orbit position. As in

the radius scan experiment that was conducted for the structured mesh we again see a smooth reduction in average

error as particle radius is increased. In this case we have an optimal value of r0/∆x = 1.3, suggesting that greater

amounts of smoothing may be beneficial on a distorted mesh. However, due to the high level of mesh distortion the

improvements in the standard deviation are less significant. A similar trend is observed for the second-order basis

where improvements are visible, but more pronounced than for the first test. Using the second-order basis causes the

optimal amount of smoothing to become similar to the results in Figure 3. In the best case both the electron position

error and standard deviation are reduced by an order of magnitude. From these results it is clear to see that the altered

algorithm is capable of coping with such varying distortion, particularly when using a second-order basis.
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Figure 4: Convergence study results for the 2D orbit problem, ~v ∆t
∆x
= 0.0004675

4.2. 3D Transverse Electromagnetic Wave Problem

To test the performance of our algorithm for 3D and electromagnetic problems we now consider an infinite, planar

TEM wave propagating through an infinite neutral plasma made up of H+ ions and electrons. This problem was

chosen as an electromagnetic case study and has an analytical solution, given certain assumptions. The solution is

given in Section 4.12 of Chen [40], which derives the differences between a TEM wave in a vacuum and a TEM wave

in a plasma where the wave vector is held constant.

In this problem we choose the key controlling parameters as follows: we have the plasma number density as

n0 = 1015 m−3, initial temperature of 0 K, with a maximum electric field magnitude of Emag = 100 V/m, and the

vacuum frequency is the frequency of the hydrogen line, i.e., fv ≈ 1.420 GHz, and ωv = 2π fv. The kinetic energy

of the wave follows a sine-squared pattern, with maxima and minima that increase slowly over time due to numerical

heating effects, which can be reduced with smaller time-step sizes and grid spacing, and higher numbers of simulation

particles. We discuss numerical heating effects in greater detail in Section 4.3.

Next, we assume that the electromagnetic wave is of such a high frequency that the ions within the plasma remain

stationary throughout the simulation, and also that the ~J × ~B forces on the particles are negligible. This has the effect

that electrons are assumed to only oscillate linearly in the plane of the electric field. We have the plasma frequency

and actual wave frequency as follows:

ωpe =

√

n0q2

meǫ0
≈ 1.784 × 109 rad/s (30)

ωpi =

√

n0q2

miǫ0
≈ 4.163 × 107 rad/s (31)

f =
ω

2π
=

1

2π

√

ω2
p + ω

2
v ≈ 1.448 GHz (32)

As the wave is an infinite, steady wave, we can derive the constant phase velocity:

vp =

√

f

fv
c ≈ 1.02c > c (33)
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Figure 5: A parameter scan where (a) represents the geometry being studied and (b) shows the L1 norm of the error in the electron position.

This gives the maximum initial electron velocity as defined below, which is then initialised in phase with the electric

field. The values of vx and vz are initialised to zero.

vy =
qEmag

meω
≈ 1932.5 m/s (34)

The velocity ~u of a given particle can now be calculated as follows, where p is the z component of the particle position:

~u = ~v sin

(

p +
π

2

)

m/s (35)

Finally, we define the maximum magnitude of the magnetic field such that it is congruous with the magnitude of the

electric field.

Bmag =
λ

2π

Emag

c2

(

n0q2

meǫ0ω
+ ω

)

≈ 3.53 × 10−7 T (36)

Using the derivation above it is simple to formulate a computational description of the problem. We set up the problem

on a 3-dimensional grid of hexahedral finite elements with periodic simulation boundaries in all directions, effectively

creating infinite space for the TEM wave, which we simulate for one wave period. The wave is defined to travel in

the z dimension of the computational mesh, with the majority of grid elements also in the z dimension. The x and y

dimensions are each defined to have a constant 4 elements, while the z dimension has 24 elements. As we assumed the

ions to be stationary in our derivation, we force them to remain immobile during the simulation. The computational

particles are placed randomly within each element and weighted in order to achieve our previously specified plasma

number density. Each cell is loaded with an equal amount of particles of each species, with the immobile ions being

used to provide a positive background in order to maintain neutrality. We additionally ensure that the initial electron

velocity is confined to the transverse direction in the plane of the electric field.

We now present results for this problem for a variety of particle per cell counts, showing the average of 100 runs

using random initial particle loads, using error bars to represent the standard deviation in the data. Figure 6 shows the

effect of increased particle radius on the average L1 error of the simulated electric and magnetic fields at the end of the

simulation, presented as a breakdown of the field components. As the problem is set up with plane wave polarisation

with only non-zero Ey and Bx, we refer to these components as the signal components, and the remaining components

as non-signal components. As each of the non-signal components for a given field behave in the same manner, we
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Figure 6: Graphs showing variation in L1 norm of electric/magnetic field components as particle radius is increased.

choose to show data for Ex and By for these components, and Ey and Bx for the signal components. At first it is

clear that we observe a smooth reduction in the L1 error of the electric field which is reflected in the results shown

for both the signal and non-signal components. This improvement continues to occur beyond the previously optimal

value of r0 = 0.9 × ∆x observed in the orbit problem, continuing to improve as r0/∆x exceeds one. Additionally,

we see a slight overall reduction in the variation from the initial seeds, but this effect appears to be negligible. Also

of interest is that the error reduction due to smoothing for the non-signal field components is much greater than that

observed in the component that contains the wave itself, suggesting that the noise in the wave is more sensitive to the

particle distribution used. These differences are apparent in Figures 6a and 6b. Of particular note is that the Ey error

converges to an approximate value of 0.014, whereas the other components continue to improve by tending towards
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Figure 7: Ratio of final kinetic energy to starting kinetic energy for various particle radii.

zero at higher particle counts. We therefore conclude that the remaining Ey error is due to error in the scheme, and

can be reduced by refining the problem further in space and/or time. This was verified through additional convergence

tests, where the expected second-order convergence was observed.

Secondly, we examine the effects of particle smoothing on the computed result for the magnetic field. In accor-

dance with the electric field data, we see a smooth reduction in L1 error for both the signal and non-signal magnetic

field components as particle radius is increased. There is good reduction in the Bx error, particularly as increasing the

number of computational particles per cell has a negligible effect when compared to smoothing. However, the same

does not hold true for the non-signal components where both smoothing and increasing particle count show good re-

sults, with smoothing performing particularly well at low particle counts. At higher particle counts smoothing reduces

the error in these components to near zero. Regarding the statistical noise shown by the error bars, the Bx component

shows almost no reduction in noise, in keeping with the trend observed regarding the electric field. Interestingly, the

opposite holds true for the By component, showing a large reduction in statistical noise as radius is increased.

In general we conclude that, for this problem, the application of particle smoothing has the primary effect of

reducing the noise in the solution for both the electric and magnetic fields in various ways. Specifically, where the

solution should be zero there is a large reduction in the error in these components, and where the solution should be

non-zero the errors converge to a seemingly constant value representing the space and time errors.

As a final note, we also examined the effect of smoothing on the frequency distribution of the error in the final

result by applying a Fast Fourier Transform (FFT) to the Ey component of the electric field. However, we do not show

these results in this paper as there appears to be little to no observable effect, beneficial or otherwise, on the resultant

frequency distribution for this problem.

4.3. Numerical Heating

It is well documented that PIC codes are particularly susceptible to a phenomenon known as ‘numerical heating’,

which leads to a growth in the kinetic energy of the system over the course of a simulation. This has previously been

studied in detail by various authors [42, 43, 44], and is particularly prevalent in momentum conserving schemes such

as that employed in EMPIRE-PIC [4]. This heating is typically controlled by three factors: (i) cell size, (ii) time-step

size, and (iii) the number of computational particles used in the simulation. It has also been shown that the use of

higher-order weighting schemes can significantly suppress such heating, even in cases where the Debye length is not

completely resolved by the spatial grid [45, 46]. We now present our findings from numerical heating experiments

within EMPIRE-PIC, with and without using the implemented higher-order particle shapes presented in this paper.

To this end we examine the total kinetic energy (KE) of a neutral plasma consisting of electrons and hydrogen ions

over 1000 plasma periods, at an initial temperature of 1.0 eV. Therefore we derive the key parameters of this problem
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Figure 8: Graphs showing kinetic energy change over time for the vanilla code vs the optimal particle radius, for resolved and under-resolved λD.

as follows. We chose a number density of n0 = 1015 m−3 resulting in a plasma frequency ωp ≈ 1.784 × 109 rad/s,

assuming the thermal motion of the electrons can be ignored.

Computationally, we use a 16× 16 mesh of triangular elements with periodic boundaries in x and y, 10 time-steps

per plasma period, with various amounts of particles per grid element and a range of particle radii. We also keep the

amount of grid elements fixed, instead altering the size of the problem domain in order to determine the ratio between

the Debye length and the cell size, ∆x. Figure 7 shows the variation of the growth in simulation kinetic energy as

the ratio of particle radius relative to ∆x is increased, for problems using 16, 32, and 64 computational particles per

cell. Additionally, the ratio of ∆x to the Debye length is set at one of three levels: 1, 2, or 4. As expected, when

the Debye length is severely under-resolved we observe large increases in the overall kinetic energy at the end of the

simulation against that at the beginning. However, we see that such growth rapidly decreases as the particles are made

smoother, particularly for the ∆x/λD = 4 case. Interestingly, as we approach the radius of r0 = ∆x, we observe very

little difference in the growth of kinetic energy for the problems with ∆x/λD ≤ 2 at both 16 and 32 particles per cell.

This is promising in terms of performance, as we can maintain similar kinetic energy stability while using less grid

cells and super-particles, reducing both computational requirements and load on the memory system.

The results are further validated in Figure 8, which shows the growth of the system kinetic energy at each simulated

plasma period for values of ∆x/λD of 1 and 4, for the vanilla code and the optimal radius value of r0 = ∆x, using

16 and 64 particles per grid cell. Where the Debye length is under-resolved we observe extremely rapid growth in

the kinetic energy of the system, increasing by 50% in approximately 300 periods for the 16 particle per cell case.

In the case where ∆x/λD = 1, the smoothed particles all but eliminate the numerical heating effects, with only mild

kinetic energy growth throughout the simulation – 0.6% and 0.1% when 16 and 64 particles are used per grid cell,

respectively, in contrast to the increases of 22.8% and 3.8% observed when using the base code. The benefits are

also significant for the under-resolved case, with optimal particle smoothing resulting in a heating trend similar to

that of the base code with a resolved mesh. Additionally, these results remain consistent for Figure 8b, exhibiting

good reduction in heating effects. Again, the smooth particles almost eliminate self heating where λD is resolved, and

continue to show good performance on an under-resolved mesh – on par with the r0/∆x = 0 results in the resolved

case.

4.4. Electrostatic Plasma Slab Problem

In order to properly assess the behaviour of our algorithm for electrostatic PIC simulations it is prudent to examine

a more complex test case than the simple orbit discussed in Section 4.1. We now consider the 1D expansion of

a collisionless slab of plasma into a vacuum, a benchmark problem that has previously been used for verifying PIC
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Figure 9: Image showing the setup of the plasma slab expansion problem.

simulations [47]. As EMPIRE-PIC is a 2D/3D PIC code, it cannot be used to directly simulate an entirely 1D problem.

We therefore set up a 2D mesh with fixed Ny = 2, using periodic simulation boundaries for the y direction, and

quadrilateral elements. We use a Dirichlet boundary condition in the x direction, setting the electric potential to zero

in order to ensure that the problem is well posed. The problem starts with a charge neutral slab with a thickness of

2 mm placed at the centre of a domain of length 1 cm, allowed to expand for a total time of 2.5 × 10−9 s. The ions

are initialised cold, whereas the electrons are assigned a finite initial temperature of 1 eV. Additionally, the ions have

a mass of 10 × me. We choose such an artificially low ion to electron mass ratio in order to accelerate the expansion

of the plasma slab. This setup is shown pictorially in Figure 9. Each grid cell of the simulation that contains plasma

is initially loaded with 8000 particles of both species, weighted such that we achieve a plasma number density of

n0 = 1 × 1018 m−3. Given these parameters, we can now derive the plasma frequencies and Debye length as follows.

ωpe ≈ 5.641 × 1010 rad/s, ωpi ≈ 1.317 × 109 rad/s, and λD ≈ 6.89 × 10−6 m. This allows us to choose a base Nx such

that ∆x/λD ≈ 1, and ∆t such that ωp∆t < 0.1. We now have Nx = 1600, Ny = 2, and N∆t = 250.

We now show results for the simulated cell-centred ion density for this problem for the base code, and for the

smooth particle implementation with r0/∆x = 1. As the density solution output by the vanilla code is extremely noisy,

we filter the data using a one-dimensional Gaussian filter with σ = 3∆x. We display the error in the ion density as a

shaded area, which shows the standard deviation in the raw data in both cells in the y dimension for the given point,

and the six surrounding pairs of cells in the x dimension, specifically three pairs on each side of the point.

Figure 10 shows the results of these experiments. It is clear to see from Figure 10a that the vanilla code exhibits

a very high amount of noise in the simulated ion density, with most of this noise building up at the interface between

the slab of plasma and the vacuum, with an RMSE value of 0.1402 (normalised by the number density). It is also

evident that the use of a second-order basis can reduce this noise, with RMSE of 0.0288. Figure 10b shows the results

of the same experiment for the smoothed particle representation. The magnitude of the noise in the solution is greatly

reduced by particle smoothing, both at the interface and in the centre of the plasma slab to the point of being only

marginally visible (RMSE = 0.0127). Close inspection reveals that the second-order basis continues to outperform

the first-order basis (RMSE = 0.0074).

These experiments were also repeated using 800 particles per cell. These results are shown in Figures 10c and

10d. When comparing Figure 10a to Figure 10d we can see that using 800 smoothed particles produces a result

that is significantly less noisy than when 8000 traditional particles are used for both basis orders – RMSE = 0.0469

and 0.0207 for first- and second-order bases, respectively. This is significant as we can use an order of magnitude

less particles while also maintaining a greatly improved solution over the base code. This resulted in a runtime

approximately 2.5 times slower than the base code runs using 8000 traditional particles per cell – as expected given

that Nv = 25 and PPC = 800 for the smoothed particle tests. This is a positive result as, for a first-order basis,

the smoothed particle tests result in an RMSE approximately three times lower than that achieved with the base code.

Additionally, the purely computational nature of the virtual particles means that the memory footprint of the smoothed

particle tests is lower by comparison.

We also examined the error in simulated electric potential for both a resolved and under-resolved Debye length.

This error did not appear to be sensitive to particle smoothing in this case. This result is interesting as it suggests that

the large reduction in density noise has negligible effect on the simulated potential.
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(b) Smoothed particles, r0/∆x = 1, 8000 particles per cell
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Figure 10: Graphs showing the noise in the simulated ion density for the vanilla code and smoothed particle shapes.

5. Conclusion

As the need to simulate the behaviour of plasmas within devices under various conditions using complex geome-

try continues to grow, PIC algorithms must adapt to these changing requirements. As a result, both higher-order PIC

methods and the use of unstructured FEM-PIC has become an area of great interest to the plasma simulation com-

munity. While higher-order unstructured meshes show promise, they also impose the additional requirement that the

particles being simulated possess some smooth shape instead of the usual Dirac delta function due to the assumption

that the source terms are smooth.

In this paper, we have proposed a higher-order representation of particles in PIC algorithms, where each particle

has a smooth shape function that is limited by a specified finite radius. A unique feature of our approach is that the im-

plementation of this smooth representation is achieved by surrounding super-particles with delta shape computational

virtual particles that have fixed offsets and weights. As this moves the quadrature from the mesh to a set of points
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surrounding the particle we can use the same PIC procedures as the base code with minimal modifications. While we

derive the offsets and weights from Gaussian quadrature rules, the applications of this representation are broad as the

offsets and weights may be tuned to represent any desired shape of the particle cloud.

We show how the proposed changes to the core PIC algorithm are implemented within SNL’s unstructured PIC

code, EMPIRE-PIC, using periodic boundary conditions for both electrostatic and electromagnetic problems. The

accuracy and convergence of the modified algorithm was examined using a set of representative benchmark problems

and contrasted to the behaviour of the base EMPIRE-PIC code. Our results show approximately 70% improvement in

the tracking of basic particle motion on a distorted mesh, with this increasing to an order of magnitude improvement

when a second-order basis is used. We additionally show extremely successful suppression of self-heating for both

resolved and under-resolved grids, and a significant reduction in noise of the simulated ion density in an electrostatic

plasma slab expansion while being able to use an order of magnitude fewer super-particles.

The work in this paper represents a step towards more accurate PIC applications, enabling improved simulations

of plasma phenomena. Our method additionally increases the computational intensity of the PIC algorithm, with-

out drastically raising the burden on the memory system, possibly being beneficial on new architectures, where the

memory sub-system becomes a bottleneck.

5.1. Future Work

The work presented in this paper opens up a number of avenues for further research. As the algorithm implemen-

tation theoretically allows for particles of arbitrary shapes to be represented, further work could examine the effects

of a multitude of particle shapes on the results of a PIC simulation.

Finally, significant work must also be undertaken to implement the more advanced non-periodic simulation bound-

ary conditions to enable behaviour such as particle scattering and absorption. A method of handling such boundaries

while using higher-order charge weighting has previously been shown by Pointon [48], where the charge weighting

is smoothly transitioned back to first-order as the particle approaches a boundary. In the case of our algorithm, this

would be analogous to gradually reducing the radius of smooth particles back towards zero as simulation boundaries

are approached. Implementing such a variable radius remains charge-conserving as long as the virtual particle weights

to sum to one and all element crossings continue to be tracked. However, such a method is likely to exhibit the energy

conservation issues present in structured and AMR-PIC codes.
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Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams, Physics of Plasmas 11 (5) (2004) 2928–2934.

[20] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan, O. Kononenko, R. Lehe, A. Myers, C. Ng, et al., Warp-X: A new exascale comput-

ing platform for beam–plasma simulations, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment 909 (2018) 476–479.

[21] R. Marchand, PTetra, a tool to simulate low orbit satellite–plasma interaction, IEEE Transactions on Plasma Science 40 (2) (2012) 217–229.

[22] J. Roussel, F. Rogier, G. Dufour, J. Mateo-Velez, J. Forest, A. Hilgers, D. Rodgers, L. Girard, D. Payan, SPIS open-source code: Methods,

capabilities, achievements, and prospects, IEEE Transactions on Plasma Science 36 (5) (2008) 2360–2368.

[23] C. K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation, Journal of Computational Physics 3

(1969) 494–511.

[24] G. Jacobs, J. Hesthaven, High-order nodal discontinuous galerkin particle-in-cell method on unstructured grids, Journal of Computational

Physics 214 (1) (2006) 96–121.

[25] J. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids: I. time-domain solution of maxwell’s equations, Journal of

Computational Physics 181 (1) (2002) 186–221.

[26] E. Edwards, R. Bridson, A high-order accurate particle-in-cell method, International Journal for Numerical Methods in Engineering 90 (9)

(2012) 1073–1088.

[27] T. Stindl, J. Neudorfer, A. Stock, M. Auweter-Kurtz, C.-D. Munz, S. Roller, R. Schneider, Comparison of coupling techniques in a high-order

discontinuous galerkin-based particle-in-cell solver, Journal of Physics D: Applied Physics 44 (19) (2011) 194004.
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