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Abstract

In recent years, global hunger has begun to rise, returning to levels from a decade 

ago. Climate change is a key driver behind these recent rises and is one of the lead-

ing causes of severe food crises. When coupled with population growth and land 

use change, future climate variability is predicted to have profound impacts on 

global food security. We examine future global impacts of climate variability, popu-

lation, and land use change on food security to 2050, using the modeling frame-

work FEEDME (Food Estimation and Export for Diet and Malnutrition Evaluation). 

The model uses national food balance sheets (FBS) to determine mean per capita 

calories, hence incorporating an assumption that minimum dietary energy require-

ments (MDER) remain constant. To account for climate variability, we use two 

Representative Concentration Pathway (RCP) scenarios from the Intergovernmental 

Panel on Climate Change (IPCC), alongside three Shared Socio-economic Pathway 

(SSP) scenarios incorporating land use and population change within the model. Our 

results indicate that SSP scenarios have a larger impact on future food insecurity, in 

particular because of projected changes in population. Countries with a projected 

decrease in population growth had higher food security, while those with a projected 

rapid population growth tended to experience the worst impacts on food security. 

Although climate change scenarios had an effect on future crop yields, population 

growth appeared to be the dominant driver of change in undernourishment preva-

lence. Therefore, strategies to mitigate the consequences of projected population 

growth, including improved maternal health care, increasing equality of access to 

food at the national level, closing the yield gap, and changes in trade patterns, are 

essential to ensuring severe future food insecurity is avoided.

K E Y W O R D S

FEEDME model, food security, undernourishment

[The copyright line for this article was 

changed on 8 January 2021, after original 

online publication]  



2 of 20 |   MOLOTOKS ET AL.

1 |  INTRODUCTION

Global hunger is currently rising and has been since 2014, 

after years of decline (FAO et  al.,  2018). The proportion 

of undernourished people worldwide increased to 10.6% in 

2015 and then to 11% in 2016 (UN, 2018). According to the 

Food and Agricultural Organisation (FAO) of the United 

Nations, the number of undernourished people in the world 

reached an estimated 821 million in 2017, which is around 

one in nine people (FAO et al., 2018). This rise in food inse-

curity indicates a significant risk of falling short of achieving 

the Sustainable Development Goal (SDG) target of hunger 

eradication by 2030 (FAO et al., 2018).

Food security was defined at the 1996 World Food summit 

as “existing when all people, at all times, have physical and 

economic access to sufficient, safe, and nutritious food that 

meets their dietary needs and food preferences for an active 

and healthy life” (FAO, 2008). It is determined by four main 

factors: (1) availability, for example, access to productive land 

and agricultural production, (2) access, physically, socially and 

economically, (3) utilization, for example, food preparation and 

diversity of diet, and (4) stability across the first three dimen-

sions. Major disasters, for example, would affect the stability of 

a countries’ food security, of which 80% of those internationally 

reported are climate related (FAO et al., 2018).

Climate variability and extremes are a significant driver 

of increases in global hunger (FAO et al., 2018). The chang-

ing nature of climate variability and extremes negatively af-

fects all four dimensions of food security (FAO et al., 2018). 

It has direct impacts on crop production, with an estimated 

3.1%–7.4% reduction in global yields of major crops for 

each degree-Celsius increase in global mean temperature 

(Zhao et al., 2017). Using a 2005 baseline, projections fore-

cast an increase in global crop demand of 100%–110% by 

2050 (Tilman et al., 2011), which is propelled by population 

growth and greater per capita income (Godfray et al., 2010). 

Even more recent projections which use 2014 as a baseline 

estimate an increase in production of 25%–70% is necessary 

for meeting crop demand in 2050 (Hunter et al., 2017).

The world's population is currently growing by approxi-

mately 1.1% per year, and if current trends continue, accord-

ing to the medium-variant projection, the world's population is 

projected to reach 9.7 billion by 2050 (UN, 2019). Despite in-

herent uncertainty in population projections, with recent years 

overestimating population growth (Keilman, 1998), it is with 

95% certainty that by 2050, the global population will stand 

between 9.4 and 10.1 billion (UN, 2019). More than half of this 

anticipated growth is expected to occur in sub-Saharan Africa, 

adding 1.05 billion people between 2019 and 2050 (UN, 2019). 

Two-thirds of the projected growth is projected to be attributed 

to current age structures, hence even if fertility levels declined, 

population growth would continue (UN, 2019). The majority 

of the increase in global population, however, can be attributed 

to a small number of countries. From 2019–2050, more than 

half of the world's population growth will be concentrated in 

just nine countries: India, Nigeria, Democratic Republic of 

the Congo, Pakistan, Ethiopia, Tanzania, the United States of 

America, Egypt, and Indonesia (UN, 2019).

The majority of these are low-income countries (LIC); 

hence, it is expected that there will be limited resources and 

access to technology to sustainably produce more food for 

growing populations. Although investment of agricultural 

GDP in technology is increasing worldwide, it is uneven, 

with spending equivalent to 3.25% in high-income countries 

(HIC). For LICs, where the vast majority of increased food 

demand will occur and the greatest impact could be seen 

from closing the yield gap, only 0.52% of agricultural GDP 

is spent on investing in research and development, despite 

strong evidence that this investment effectively alleviates 

poverty (Fuglie et al., 2020; Tilman et al., 2002). A lack of 

investment in technology coupled with increased fluctuations 

in crop yields due to climate change could lead to an accel-

erated cropland expansion into unsuitable lands, including 

conversion of natural forests (Lambin & Meyfroidt,  2011). 

Matching the rapidly increasing and changing demand for 

food, in ways which are environmentally and socially sus-

tainable, while making sure no one goes hungry is one of the 

worlds’ biggest challenges (Godfray et al., 2010). However, 

future projections of population, land use, and crop yield 

changes vary with different socioeconomic and climate con-

ditions. Therefore, in this study we aim to compare future 

effects on global food security across a range of scenarios, 

building on the Dawson et al. (2016) study, which examined 

the impacts of changes in crop yields on global food security 

under the SRES A1B climate scenario.

In this study, we use two representative concentration 

pathways (RCPs) to demonstrate climate change impacts 

on future crop yields. We also examine three Shared Socio-

economic Pathways (SSPs) projecting different population 

change and cropland expansion scenarios to 2050. By alter-

ing the parameters of the Food Estimation and Export for 

Diet and Malnutrition Evaluation (FEEDME) model accord-

ing to these scenarios, we have three main objectives: firstly 

to compare impacts of different scenarios on national food se-

curity; secondly to indicate the key drivers of undernourish-

ment prevalence from making these comparisons; and thirdly 

to demonstrate which areas on a global scale are most likely 

to be at risk of undernourishment in the future across all sce-

narios considered. This is in order to direct climate change 

mitigation and adaptation, and food security strategies.

2 |  METHODS

The FEEDME model as described in Dawson et al. (2016) was 

used to analyze undernourishment prevalence at a national 
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level. This modeling framework, as detailed in Figure 1, uses 

the dietary energy provision-based methodology adopted by 

the FAO (FAO, 2004) to allow for comparability between 

current, historical, and future levels of food insecurity at a 

national or global scale. This approach has become the stand-

ard for rapid assessment of undernourishment as an indica-

tor of food security. The FAO indicator of the Prevalence 

of Undernourishment (PoU) is defined as “the percentage of 

a population whose food intake in terms of dietary energy 

in kilocalories is insufficient to meet requirements on a con-

tinual basis” (Hall et al., 2017). It is an internationally rec-

ognized indicator routinely used by international agencies, 

governments, and NGOs alike since 1998 and is evaluated 

with reference to a mean daily calorie threshold. This is de-

scribed as a Minimum Dietary Energy Requirement (MDER) 

as established by nutritionists, and a probability distribution 

of habitual Dietary Energy Consumption of a representative 

individual in a population. Each country has a mean per cap-

ita MDER threshold based upon their demographic structure; 

therefore, the proportion of the population with food con-

sumption below the MDER is considered by the model as 

undernourished.

The relatively simple parametric methodology used to 

calculate PoU for a population is able to account for two of 

the important aspects of food insecurity, specifically; avail-

ability, using mean calories (kcal person−1 year−1) estimated 

from Food Balance Sheets (FBS), and differential  access, 

estimated from a measure of the inequality of access to 

food across a population. The latter, drawing upon exten-

sive household surveys, uses a two-parameter lognormal or 

three-parameter skew-normal and skew-lognormal curves 

to define a stylized relationship between household income 

and food consumption whose shape is characterized by a 

coefficient of variation (CV) as a parameter accounting for 

inequality in food consumption and a skewness (SK) param-

eter accounting for asymmetry in the distribution. Further 

information on the equations and assumptions used to derive 

CV and SK directly from available household survey data are 

described in Wanner et al. (2014). Likewise indirect methods 

through using macroeconomic relationships between CV and 

national-level Gini coefficient of income inequality (Gini), 

GDP, and infant mortality data are also described (Wanner 

et al., 2014).

FEEDME integrates the FAO methodology with coun-

try level statistics from the FAOSTAT database for use in 

future scenarios of climate, population, and socioeconomic 

changes. Within this database, food balance sheets (FBS) 

are compiled for each country annually, which are assumed 

to be the best available data despite their limitations for 

LICs. They specify estimates of national-level food produc-

tion, imports, exports, and food availability on a per capita 

basis as well as in calorific values for all food commod-

ities. The FBS for 175 countries were downloaded from 

the FAOSTAT website and subsequently reformatted to 

standardize spreadsheets for automatic manipulation of the 

data using the FEEDME model. Specifically, three aspects 

were altered manually: (a) changes in crop yields, and hence 

crop production, as a result of climate change, (b) land use 

change in terms of total area under cultivation, and (c) pop-

ulation changes under each scenario.

The first aspect manually altered was changes in crop 

yields under climate scenarios. This analysis covers two 

Representative Concentration Pathways which are the lat-

est atmospheric concentration scenarios adopted by the 

Intergovernmental Panel on Climate Change (IPCC) for 

its fifth Assessment Report in 2014. We use RCP2.6 and 

RCP6.0 which were elected for their representativeness at the 

end of the 21st century (van Vuuren et al., 2011; Van Meijl 

F I G U R E  1  Systematic diagram of 

FEEDME model (Dawson et al., 2016)
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et al., 2017). RCP2.6 represents the range of lowest green-

house gas emissions, requiring strict climate policies to limit 

emissions and is also the lowest in terms of energy intensity 

(van Vuuren et  al.,  2011). RCP6.0 has a heavy reliance on 

fossil fuels, while RCP2.6 sees declines in use of oil as a re-

sult of depletion and climate policy (van Vuuren et al., 2011). 

Climate change effects on crop yields from these two scenar-

ios were incorporated into the FEEDME model using region-

ally aggregated annual growth rates for three reference crops: 

wheat, maize, and soybean (Van Meijl et al., 2017). The rel-

ative change in production from the baseline year (2000) for 

the three reference crops were mapped to a wider list of food 

items (Table 1) in the countries FBS as outlined in Dawson 

et al. (2016).

The three reference crops were chosen due to their global 

significance, as well as reasons of data availability and mod-

eling complexity. Although this approach has limitations, the 

individual crops chosen represent three large crop categories. 

All crops follow a C3 or C4 photosynthetic pathway; hence, 

it is assumed that changes in productivity will be similar for 

crops categorized into monocot C3 (wheat), monocot C4 

(maize), or dicot C3 (soy) when grown in optimal conditions 

with no constraint on resources. It is important to note there 

are a range of factors which have not been considered which 

Group

Reference 

Crop FBS commodities: summary

FBS commodities: 

individual

C4 (cf maize) Maize crop 

yield data

Cereals, sugar crops, Vegetable 

Oils

Maize, millet, 

sorghum, sugarcane, 

maize germ oil

C3 (cf wheat) Wheat crop 

yield data

Cereals, Alcoholic Beverages Wheat, rice, barley, 

rye, oats, other 

cereals, beer

C3 (cf soy) Soybean crop 

yield data

Pulses, Oil crops, Vegetable 

Oils

Soybeans, 

groundnuts, 

sunflower seed, 

rape and mustard 

seed, cottonseed, 

sesame seed, other 

oil crops, soybean 

oil, groundnut oil, 

sunflower seed oil, 

rape and mustard 

oil, cottonseed oil, 

sesame seed oil

Other No change Starchy roots, sugar crops, 

tree nuts, vegetables, 

fruits stimulants, spices, 

miscellaneous

Sugar beet, honey, 

coconuts, palm 

kernels, olives, palm 

kernel oil, palm oil, 

coconut oil, olive 

oil, wine, beverages 

(fermented and 

alcoholic)

Meat/dairy Currently 

assume no 

change

Meat, offals—edible, animal 

fats (inc milk), eggs

Aquatic Currently 

assume no 

change

Fish, seafood; fish oils; aquatic 

products, other

Sugars & 

Sweeteners

Based on 

dominant 

production 

from either 

sugarcane 

(C4) or beet 

(no change) 

above

T A B L E  1  Assignment of FBS 

commodities to reference crops for 

projection of production changes
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would produce variation between different crops and are out-

side the scope of this study. However for some, for example, 

differences due to light-use efficiency (LUE) of individual 

crops (the ratio of net primary productivity to absorbed pho-

tosynthetically active radiation) the difference is minimal 

(1%–2%). The chosen reference crops vary in their LUE from 

high to low (Slattery & Ort,  2015), hence can represent a 

wide range of crops, but the differences in LUE have a much 

smaller effect on productivity in comparison with climate 

change effects incorporated within the crop model data used 

for this study.

For each region, we calculated total change in crop yields 

over the 50 year period 2000–2050 based on estimated annual 

growth rates for each of the reference crops from biophysical 

crop modeling data produced under AgMIP (Agricultural 

Model Intercomparison and Improvement Project, Van Meijl 

et al., 2017), which were regionally aggregated into thirteen 

coherent spatial regions. This was used to revise the crop 

production values in the FBS for each country based on the 

region within which it was located.

Three Shared Socio-economic Pathways; SSP1, 2, and 

3 were also used to provide the model with population and 

land use change projections, which were the other two as-

pects manually altered in the model. The SSP scenarios are 

defined as “reference pathways describing plausible alterna-

tive trends in the evolution of society and ecosystems over a 

century timescale” (O'Neill et al., 2014). SSP1 is the “green-

est” scenario, representing low challenges for mitigation 

and adaptation to climate change. Sustainable development 

proceeds at a high pace, lessening global inequalities, and 

there is rapid technological change toward low carbon en-

ergy sources. SSP2 is an intermediate scenario representing 

moderate challenges and a future where development trends 

follow a “middle of the road” pathway consistent with typical 

patterns observed over the last century. SSP3 represents sig-

nificant challenges for mitigation and adaptation to climate 

change, with slow technological change and a rapidly grow-

ing population. Emissions are unmitigated, there are reduced 

trade flows and, due to a lack of investment in human capital, 

large numbers of people are left vulnerable to climate change 

impacts with low adaptive capacity. (O'Neill et al., 2017). 

This scenario, when coupled with RCP6.0 (RCP6.0 SSP3), is 

what we describe as the scenario with the highest global im-

pact (HGI), while SSP1 with RCP2.6 (RCP2.6 SSP1) is de-

scribed as the scenario with the lowest global impact (LGI).

In this study, we look specifically at change in total area 

of cropland under each SSP scenario, using land use change 

data from the IMAGE 3.0 model. The change in total crop-

land area from 2010–2050 was extracted per country and 

percentage increase calculated over the specified time frame. 

Although country FBS existed for 175 countries as examined 

in Dawson et al. (2016), we examine only 159 here, due to a 

lack of availability of either land use change or population 

data for the excluded countries. These countries were often 

small islands for which the land use change data were not 

available due to the coarseness of the data.

The FEEDME model was run for each of the 159 countries 

both for the baseline period (2000–2002) and for projections 

to the year 2050, using population projections taken from 

each SSP scenario a well as modifying the crop yield and 

land use changes as described above. Although the baseline is 

2000, the FBS were based on the mean of years 2000–2002 to 

reduce effects of any anomalous change in production in any 

one year. Both the total number of people undernourished 

and the undernourishment prevalence (probability of under-

nourishment) were produced as results, yet we present only 

the latter in this study. This is to enable comparison with pre-

vious studies (Dawson et al., 2016; Hall et al., 2017) as well 

as official FAO publications. The model adopts the following 

assumptions:-

1. national-level population demographic structures (age 

and gender) remain the same as the year 2000;

2. income and food inequality Gini coefficients remain the 

same as the year 2000 values;

3. minimum dietary energy requirements (MDER) for a 

country remain constant throughout the 21st century;

4. food trade (imports and exports) are held constant through 

the 21st century for each country;

5. dietary patterns remain constant until 2050.

These assumptions pose a limitation to the model, particu-

larly the assumption of no change to food imports and exports, 

as this leads to a projected increase in undernourishment even 

without climate change effects, due to population growth pro-

jections if the country cannot meet population requirements 

through national production. While the assumption of no 

change in international trade is unrealistic, the results high-

light the potential shortfall in imports which are needed to 

address national food needs. Hence, undernourishment prev-

alence should be interpreted as an indicator of exposure to 

undernourishment in the absence of no adaptation or mitiga-

tion responses. When faced with an increased proportion of 

people who are undernourished, responses often consist of 

increasing national food production or changing international 

food trade agreements, which are difficult to predict.

3 |  RESULTS

Undernourishment for the baseline period 2000–2002 is 

shown in Figure 2 for which the prevalence of undernourish-

ment scale was adopted from the FAO Hunger Map 2015. 

To validate model results, we compare baseline figures pro-

duced by FEEDME for each country to published FAO fig-

ures for the period 2000–2002 (FAO, 2004). This showed 
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that 88% of listed “developing” and “in transition” countries 

were within 5% of FEEDME results, with a Person's corre-

lation coefficient of 0.98. It is worth noting that FAO does 

not differentiate below 2.5% undernourishment prevalence; 

hence, countries with less undernourishment prevalence were 

listed as 2.5%. The vast majority of countries not listed in 

this report in North America and Europe were shown to have 

<2.5% undernourished according to web-based data. When 

these countries are also incorporated, 90% of countries are 

shown to be within 5% difference, with a Pearson's correla-

tion coefficient of 0.99 (Table A1). Minor differences are ex-

plained by FEEDME using population values from the year 

2000, while the FAO results are based on an average of three 

years of undernourishment calculations (2000–2002).

Undernourishment prevalence for RCP2.6 SSP1 and 

RCP6.0 SSP3 are presented (Figures 3 and 4), which incor-

porate land use change. These scenarios are the lowest and 

highest impact on global food security, with RCP2.6 SSP1 

F I G U R E  2  Global map showing the proportion of the population undernourished in each country for the baseline period 2000–2002 as 

simulated by the FEEDME model

F I G U R E  3  Global map showing the proportion of the population undernourished in each country for the lowest global impact (LGI) scenario, 

RCP2.6 SSP1
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having the lowest average prevalence of undernourishment 

globally and RCP6.0 SSP3 having the highest (Figure 5).

In both the lowest and highest global impact scenarios, 

there is a considerable increase in the number of countries 

with a very high prevalence of undernourishment (Figures 2–

4), particularly in the HGI scenario (Figure 4). In this sce-

nario, almost the whole of Latin America, Africa, and parts 

of South East Asia are projected to have a very high preva-

lence of undernourishment (Figure 4). This scenario shows 

significant polarization between HICs and LICs, with most 

countries either being in the top or bottom category of the un-

dernourishment prevalence scale (Figure 4). In contrast, for 

the LGI scenario, although the majority of Africa is still pro-

jected to have a very high prevalence of undernourishment, 

there is considerably more variation across Latin America 

and South East Asia (Figure 3).

Figure  5 shows the global average undernourishment 

prevalence for the baseline as well as each of the scenarios. 

In every scenario, undernourishment prevalence more than 

triples. The baseline shows less than 15% undernourishment, 

while every scenario shows an average of over 50% being 

undernourished. This graph also shows RCP2.6 SSP1 being 

the LGI scenario and RCP6.0 SSP3 being the HGI, with the 

highest prevalence of undernourishment globally, reaching 

almost 60% (Figure 5).

For the vast majority of regions, scenarios all show higher 

mean prevalence of undernourishment than the baseline, with 

the exception of China for which two scenarios show a lower 

undernourishment prevalence (Figure 6). There is variation 

in the patterns shown compared to the scenarios observed on 

the global scale. For example, in LICs such as in sub-Saha-

ran Africa (SSA), Brazil (BRA), and Other South America 

(OSA), the same pattern is shown across the scenarios, with 

RCP2.6 SSP1 being the lowest impact and RCP6.0 SSP3, the 

highest, with impacts increasing across SSPs 1–3 (Figure 6). 

The opposite effect, however, is seen in HICs, for example 

in Europe (EUR), Canada (CAN), and America (USA), with 

the lowest impact seen in RCP6.0 SSP3 and the highest in 

RCP2.6 SSP1 (Figure 6).

4 |  DISCUSSION

Agricultural production is very vulnerable to climate change 

(Osborne et al., 2013). Climate change will affect tempera-

ture, precipitation, and wind speed which all have an effect 

on water availability and other ecosystem services on which 

agriculture relies, hence consequentially on crop yields 

(Calvin et  al.,  2013). Therefore, understanding the impact 

of these changes on food production is essential to ensure 

future global food security (Zhao et al., 2017). There are lim-

ited positive impacts of climate change, for example, longer 

growing season in northerly latitudes. However, the vast ma-

jority of results are homogeneous across major food crops 

and geographical areas, with decreases in yield projected for 

each climate scenario (Wiebe et al., 2015; Zhao et al., 2017). 

Adverse impacts of climate change are particularly strong for 

oilseeds (Wiebe et  al., 2015) which could contribute to re-

gional variation in undernourishment prevalence. However, 

for all crops considered in this study, there are only a small 

F I G U R E  4  Global map showing the proportion of the population undernourished in each country for highest global impact (HGI) scenario, 

RCP6.0 SSP3
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handful of regions under each climate scenario which are 

projected to see small increases in annual growth rates from 

2000–2050 (Van Meijl et  al.,  2017). Hence when coupled 

with projected population growth, land use change, that is, 

cropland expansion is not shown to contribute significantly 

to food security. Results from this study show both globally 

(Figure 5), and in the vast majority of regions (Figure 6) and 

countries (Figure A1), there is a higher risk of undernourish-

ment in every scenario examined (Figure 5).

For every scenario, undernourishment prevalence dramat-

ically increases compared with the baseline, which averages 

13% (Figure 5). This is also the case on a regional scale, with 

one exception (Figure 6). For China, two scenarios show a 

lower prevalence of undernourishment: RCP2.6 SSP1 and 

SSP2. The reason for this is both a reduction in population 

in SSP1 and 2, and higher crop yields in RCP2.6 as opposed 

to RCP6.0. Higher crop yields, combined with lower popula-

tion projections, results in lower prevalence of undernourish-

ment. This is despite decreases in total cropland area in these 

scenarios, showing that climate and population changes have 

a larger effect in this region. Previous studies in China also 

show projected decreases in cropland area, yet these climate 

scenarios show climate change to have a largely positive ef-

fect on crop yields, which combined with a plateauing popu-

lation, exert a great impact on future trends of food security 

(Ye et al., 2013).

Although at the global scale the scenario with the largest 

impacts on the prevalence of undernourishment is RCP6.0 

SSP3 (Figure  5), patterns vary considerably between re-

gions (Figure 6). A clear difference is seen between low- and 

F I G U R E  5  Graph showing the mean 

global undernourishment prevalence across 

all scenarios compared to the 2000–2002 

baseline

F I G U R E  6  Graph showing the mean 

undernourishment prevalence across all 

scenarios within each region defined by 

(Van Meijl et al., 2017)
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high-income regions, with sub-Saharan Africa (SSA) and 

Latin America showing the same patterns as the global mean 

(Figures 5 and 6). In contrast, high-income regions including 

North America and Europe (EUR) show the opposite pattern, 

where the largest projected prevalence of undernourishment 

is seen in what we describe as the “lowest global impact” sce-

nario (Figure 6). This is also shown when the difference be-

tween the LGI and HGI scenarios are examined. As expected, 

the majority of regions show an increase in percentage of un-

dernourished, however for Australasia, Canada, Europe, and 

the United States of America, there is a decrease (Figure A2).

There are several reasons for this, one being that the ef-

fects on crop yields tend to be less severe at higher latitudes 

which tend to be more developed (Calvin et al., 2013). In one 

study, the largest negative changes in crop yield as a result 

of climate change, with no adaptation occurs in LICs, aver-

aging −9 to −11%, while in the majority of scenarios, pro-

duction in HICs is estimated to increase by up to 11% (Parry 

et al., 2005). In RCP6.0 in particular, the annual growth rates 

of major crops are higher in high-income regions compared 

with tropical areas (Van Meijl et  al.,  2017). Furthermore, 

population growth is projected to be significantly lower for 

HICs (UN, 2019) and even decreases in SSP3 for some coun-

tries such as Canada. Therefore, smaller populations com-

bined with increased crop yields results in undernourishment 

being less prevalent.

For low-income regions however, population growth is 

projected to be the most extreme, with the majority occurring 

in sub-Saharan Africa (UN,  2019). Projections predict that 

Africa's population will double from one to two billion by 

2050 (Foresight,  2011) and rapid population growth is ex-

pected even when assuming a substantial reduction of fertility 

levels (UN, 2019). This is due to”replacement-level fertility” 

which means that even if the number of births per woman 

falls instantly to levels which will stabilize the population 

growth, it will continue to increase in future decades because 

of the young age structure of the population (UN, 2019). The 

concentration of population growth in the poorest countries 

will make it more difficult for governments to combat food 

insecurity and eradicate poverty (UN, 2019).

Across every scenario examined, almost the whole of the 

continent of Africa is in the “Very high” category of under-

nourishment prevalence (Figure A1). There are a couple of 

exceptions across all six scenarios, which are Morocco and 

Tunisia (Figure A1). For SSP1, Libya is also an exception yet 

is still in the “High” category of undernourishment preva-

lence (Figure 2, Figure A1). South Africa however shows the 

most extreme difference between the LGI and HGI scenarios, 

moving from “Moderately low” to “Very high,” an increase 

of over 30% of its population projected to be undernourished. 

For the majority of scenarios, it is not in the highest category 

of undernourishment (Figure  A1), a pattern also shown in 

(Hall et  al.,  2017). Without the impacts of climate change, 

Tunisia and Morocco are also shown as exceptions (Hall 

et al., 2017); however, this study shows more severe impacts 

with the most recent climate change scenarios.

Although not shown in the scale used, the vast majority 

of countries in sub-Saharan Africa project over 95% of the 

population to be undernourished in the HGI and over 70% in 

LGI, excluding only South Africa, Lesotho, and Mauritius. 

Furthermore, when compared to the baseline scenario, there 

is an astonishing average across all scenarios of a 91% in-

crease of the population projected to become undernourished 

by 2050 (Figure  A3). Sub-Saharan Africa not only shows 

the largest increase in undernourishment but also shows 

the smallest difference between LGI and HGI scenarios 

(Figures 3 and 4, Figure A2). Therefore, regardless of the fu-

ture pathway taken, future undernourishment prevalence is 

projected to be severe for this region.

These extreme rates of undernourishment prevalence 

have previously been attributed to an increase in food de-

mand driven by population growth, overshadowing the ef-

fects of climate change (Hall et al., 2017). This is also the 

case in this study, with a larger effect shown between so-

cioeconomic scenarios than climate scenarios. The climate 

scenarios used however do not include the higher emissions 

pathways (RCP 8.5); hence, this finding is potentially a re-

sult of there being similar climate change impacts across 

low to moderate emissions pathways (Wiebe et  al.,  2015). 

This is seen in the example of sub-Saharan Africa, where 

undernourishment prevalence increases by 5% in sub-Saha-

ran Africa between SSP1 and 3, yet only increases by 1% 

between RCP2.6 and 6.0. The impact of land use is even 

smaller, although on a global scale land use change will de-

crease undernourishment prevalence in SSP2 and 3. This 

is largely due to cropland expansion, of which there is less 

in SSP1; hence in this scenario, land use change increases 

undernourishment prevalence. However, there is less than a 

1% difference for SSA when excluded, suggesting that the 

main driver of undernourishment prevalence will be driven 

by population growth.

The largest difference between the LGI and HGI scenarios 

is seen in South America, with an average increase in un-

dernourishment of almost 30%, including Brazil (Figure A2). 

This is also reflected in Figures  2–4. There are no coun-

tries above the “Moderately high” category in the baseline 

scenario (Figure 2); however, several are projected to have 

“Very High” undernourishment prevalence in the LGI sce-

nario, with all countries excluding Guyana being” Very high” 

in the HGI scenario (Figure 4). Therefore, unlike sub-Saha-

ran Africa, future prevalence of undernourishment in South 

America will be highly reliant on the pathway society and 

climate change take. Climate change has a larger impact on 

this region with an average increase of 4% of the population 

becoming undernourished in RCP6.0 compared to RCP2.6. 

However, the biggest difference again is seen between SSP 
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pathways, with a 20% increase in undernourishment preva-

lence between SSP1 and SSP3.

Like with sub-Saharan Africa, if populations continue 

to increase while climate change reduces food production, 

there is likely to be increased undernourishment in the fu-

ture. Although not shown in this study, the country with the 

highest numbers of people projected to be undernourished 

by 2050 as opposed to proportion of the population, across 

every scenario including the baseline, is India. It also has 

some of the highest proportions of its population projected to 

be undernourished (Figure 6) as well as the largest increase 

in proportion of its population undernourished when com-

pared to the baseline scenario (Figure A3), after sub-Saharan 

Africa. Future projections with the lowest population growth 

in LICs have been shown to have the largest reduction in risk 

of hunger (Parry et  al.,  2005). However even within SSP1 

where population growth is the lowest, there is still severe 

undernourishment prevalence (Figure A1).

This indicates that even in best case scenarios like SSP1, 

efforts still result in undernourishment being very high 

purely because of the assumption of no adaptation response. 

Population growth and demographic change are some of the 

biggest challenges for the food system in the next few decades 

(Godfray & Garnett,  2014). Drivers of fertility are a com-

plex topic and it is beyond the scope of this paper to engage 

fully on this topic, but adaptations could include supporting 

continued increase in access to reproductive health care, 

including family planning, especially in LICs (UN,  2019). 

This, as well as improvements to education, can have positive 

effects on reducing fertility while also improving women's 

well-being and livelihoods (Lutz et al., 2008; Nargund, 2009; 

UN, 2019). In LICs, fertility rates tend to be higher; however, 

there is often a reduction in birth rates due to high mater-

nal and perinatal mortality (Nargund, 2009). Therefore, im-

proved health care to reduce mortality rates would, according 

to conventional demographic theory, lead to natural declines 

in fertility (Bongaarts & Casterline, 2012).

As well as a lack of access to contraceptives and gener-

ally lower levels of female education, high fertility rates in 

LICs are often ascribed to the need for a labor force and to 

provide care for parents in old age (Nargund, 2009). Fertility 

preferences however tend to change as a country develops 

and there is a strong inverse correlation between develop-

ment indicators and fertility (Bongaarts & Casterline, 2012). 

Countries with declining population growth rates often see 

benefits in their economy and reductions in poverty (Lutz 

et al., 2008). Increased levels of income and education can 

then potentially in turn lead to fertility rates naturally declin-

ing (Nargund, 2009).

Other mitigation strategies include greater global in-

vestment in appropriate technology improvement as this 

is crucial for reducing environmental impacts of meeting 

future increased crop demand (Tilman et  al.,  2011; Willett 

et al., 2019). This is largely due to strategic, sustainable inten-

sification, which has the potential to elevate yields of existing 

croplands of under-yielding nations and can meet the major-

ity of 2050 global crop demand with limited land clearing 

and GHG emissions (Tilman et al., 2011). Africa in particular 

continues to have large yield gaps (Luan et al., 2018) and see-

ing as this is the region with the highest undernourishment 

prevalence projected, closing the yield gap could make a sig-

nificant difference. However, the maximum attainable yield 

will shift with climate change effects, therefore maintaining 

or increasing productivity to close yield gaps will require 

continued innovation (Godfray et  al.,  2010). Improvements 

in fertilizer and water use efficiency as well as enhancing 

biodiversity and closing nutrient loops are also essential for 

sustainably intensifying food production and closing yield 

gaps (Willett et al., 2019). Substantial increases in public and 

private investment in technology and human resources are 

needed internationally, especially in low-income countries to 

ensure agricultural systems are sustainable, but there are few 

incentives for the private sector (Godfray & Garnett, 2014). 

Hence, it is important to note that although technological 

change could have a significant impact on food security, the 

sociopolitical will to ensure it becomes a reality is essential, 

and our results emphasize how crucial it is that we act quickly 

and effectively to avoid alarming rates of global food insecu-

rity in the future.

There are a number of limitations to this study. In the un-

dernourishment scale used to create the hunger maps, any 

countries with an undernourishment prevalence of over 35% 

were shown in the same category. Thus, variation in under-

nourishment above this threshold is not shown. Yet when the 

scale is altered to “equal intervals,” there is little difference, 

with almost the whole of sub-Saharan Africa still in the high-

est category of undernourishment prevalence. There are also 

limitations of using only three reference crops, which were 

used due to global importance and availability of climate 

change impacts on yields. Despite being representative of a 

large proportion of commodities (Slattery & Ort, 2015), un-

dernourishment prevalence for countries that rely heavily on, 

for example roots and tubers, is likely to be over-estimated. 

Hence, results should be seen as indicative, not absolute. 

Inclusion of other globally important crops such as rice as 

the data become available would also be a significant con-

tribution to future research, although it is important to note 

that production differences for individual crops will show a 

similar order of magnitude of change from climate change 

impacts, due to the similar but limited mechanisms of the 

photosynthetic pathways for all crop types.

Projected changes in meat or fish production are not in-

cluded in the modelled scenarios. While meat and fish are 

important sources of dietary protein, they only contribute a 

relatively small percentage of the total mean energy budget 

per capita (Dawson et al., 2016). In countries that consume 
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higher proportions of meat and fish, for example the USA, 

it still only accounts for 12% and in LICs, this percentage is 

insignificant. Meat products in LICs contribute about 5% to 

per capita calorie consumption and consumption levels have 

changed relatively little over the last 30 years. Livestock pro-

duction is also expected to show very low growth rates under 

future projections, with less than 1.6% annual growth rate on a 

global basis to 2030, with some HICs currently showing a de-

cline in meat production (Alexandratos & Bruinsma, 2012).

Yet it is still important to note that inclusion of climate change 

impacts on livestock could alter the results. For example, the 

quality and quantity of crops used as feed for livestock, as 

well as changes in species composition in grassland systems 

impacting livestock productivity (Thornton et  al.,  2009). 

Hence, it is recommended future research incorporate pasture 

as well as area under cropland within land use change vari-

ables. Although comprising of relatively few calories, these 

food sources are essential for delivering certain micronutri-

ents, for example, zinc, iron, and B14 (Herrero et al., 2013; 

Nelson et  al.,  2018), which global studies often neglect. 

There is an important role therefore for animal source foods 

in achieving nutrition security, as opposed to food security 

(Nelson et al., 2018) and even small levels of consumption 

can substantially reduce undernutrition (Neuman et al., 2003; 

Randolph et  al.,  2007). Although incorporation into global 

modeling is unlikely, it could be possible to model on smaller 

scales, dependent on local data availability. Yet for both in-

clusion of meat production and more reference crops, it is 

highly likely that these changes will be minimal when com-

pared to the extreme rise in projections of undernourishment 

from population growth and continued inequality of access to 

food, which remains a challenge.

Hidden hunger in the form of micronutrient deficiency is of 

particular concern in LICs and in some cases, climate change 

noticeably lowers adequacy ratios (Nelson et al., 2018). This 

is not captured using FAO methodology; hence, it is import-

ant to note that results of this study do not represent a com-

prehensive assessment of food security. In recognizing the 

complexity of monitoring food insecurity, the FAO (2001) 

stated “no direct measure of the state of food insecurity in 

the world will ever be possible” due to the inability to mea-

sure all of the dimensions that constitute food security at 

the level of individuals in a population. This methodology 

does cover two of the important aspects of food insecurity 

specifically availability of food, and differential access, and 

remains the de facto standard for reporting on the outcomes 

of policy interventions. However, a number of assumptions 

and limitations exist relating to both theoretical foundation 

and the methodological principles of a parametric approach. 

The methodology uses few parameters and variables that are 

used to characterize undernourishment. But these have been 

calculated from extensive household survey data and national 

agricultural census data to estimate the distribution of access 

to food across a population and Food Balance Sheets (FBS), 

respectively.

Concerning the FEEDME model, there are three main 

areas of uncertainty: firstly, the use of the curve fit to char-

acterize the variability of distribution of food consumption 

across the whole population; secondly, estimates of the cutoff 

point for intake inadequacy defined on the basis of Minimum 

Dietary Energy Requirements (MDER) referring to the spec-

ification of the basic metabolic rates of individuals, which 

vary with sex, age, and the level of physical activity (Anand 

& Harris, 1992; de Haen et al., 2011); and thirdly, the utility 

and accuracy of FBS, which accounts for food availability, 

as a proxy for food consumption. While there have been crit-

icisms (Naiken, 2007), the lognormal (skewed curve) model 

was initially adopted due its simplicity, requiring only two 

parameters to characterize it, specifically the mean calories 

and a coefficient of variation of dietary energy consump-

tion (kcal  Person−1  Day−1) owing to income inequalities, 

expressed in terms of the well-known Gini coefficient. In 

2012, the more flexible three-parameter skew-normal and 

skew-lognormal curves were adopted to account for more 

varying degrees of asymmetry and where more information 

from household surveys were available. Yet in defense of the 

methodology, the FAO has demonstrated it delivers an appro-

priate inference on the individual state of undernourishment 

through appropriate statistical treatment of available data, 

even if that datum is poor or inadequate (Cafiero, 2014).

The assumption of no changes to trade is also a limitation 

as there would be a projected increase in undernourishment 

based only on population growth (Dawson et al., 2016). This 

assumption produces a few unexpected results. Australia, for 

example, is quite unexpectedly predicted to incur very high 

rates of undernourishment prevalence in the majority of sce-

narios compared to other HICs (Figure A1). It is also pro-

jected to have the largest decrease of undernourishment when 

comparing the LGI to the HGI scenario (Figure A2). This is 

because there is reduction in crop yields as a result of climate 

change, as well as a decrease in cropland and an increase in 

population. Therefore by assuming current trade levels stay 

the same, for example, the country exports two-thirds of all 

grain produced, it is less surprising that Australia is projected 

an increase in undernourishment prevalence. However, the 

results of this study should therefore be treated as the pro-

portion of the population potentially at risk of undernourish-

ment, which trade could at least partly ameliorate.

Countries with high GDP have the capacity to reduce 

their food insecurity in times of crisis by altering their 

trade patterns. For example, Russia in 2010 banned all ex-

ports after drought and wildfires devastated domestic crops 

(Wegren, 2011). However, changes in trade do not improve 

food availability for all (Porkka et al., 2013). An increasing 

dependency on trade may lead to improved food availabil-

ity for example, but mainly in regions with strong economies 
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(Porkka et al., 2013). It is therefore a significant challenge for 

regions such as sub-Saharan Africa which often rely heavily 

on food aid due to the lack the purchasing power needed to 

improve their own food security.

5 |  CONCLUSION

Although climate change is predicted to have a large impact 

on future food security, this paper shows that population 

growth and land use change could have the largest impact. 

This study highlights the severity of potential hunger prev-

alence in the near future, especially in sub-Saharan Africa, 

across all scenarios if rapid mitigation measures are not taken. 

Some of these mitigation measures will be location specific; 

however, increased access to health care, closing the yield 

gap, and reforming trade in LICs are three options that could 

help to reduce the threat of future undernourishment, reverse 

current trends of increasing food insecurity, and help to meet 

the Sustainable Development Goal to eradicate global hunger 

by 2030.
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APPENDIX A

T A B L E  A 1  Undernourishment values for 159 countries generated by the FEEDME model compared to FAO values for baseline period 

2000–2002

Countries FEEDME FAO Difference

Albania 4.92692029 6 −1.07308

Algeria 4.558194472 5 −0.44181

Angola 35.36696135 40 −4.63304

Argentina 2.5 2.5 0

Armenia 29.18609593 34 −4.8139

Australia 2.5 2.5 0

Austria 2.5 2.5 0

Azerbaijan 11.1865929 15 −3.81341

Bahamas 4.719992272 n/a n/a

Bangladesh 27.99151082 30 −2.00849

Barbados 2.5 n/a n/a

Belarus 2.5 2.5 0

Belgium 2.5 2.5 0

Belize 3.196159453 n/a n/a

Benin 11.84184776 15 −3.15815

Bolivia 19.97775643 21 −1.02224

Bosnia and Herzegovina 7.5172141 8 −0.48279

Botswana 26.56453455 32 −5.43547

Brazil 7.08846407 9 −1.91154

Brunei Darussalam 2.702363241 n/a n/a

Bulgaria 8.195257235 11 −2.80474

Burkina Faso 15.41258966 19 −3.58741

Burundi 61.73783628 68 −6.26216

Cambodia 30.07121959 33 −2.92878

Cameroon 21.8979724 25 −3.10203

Canada 2.5 2.5 0

Central African Republic 39.4130695 43 −3.58693

Chad 29.49745539 34 −4.50254

Chile 2.902785759 4 −1.09721

China 10.35675725 11 −0.64324

Colombia 11.20459899 13 −1.7954

Comoros 55.50843873 n/a n/a

Congo 35.33573298 37 −1.66427

Congo (Democratic Republic of the) 65.41766187 71 −5.58234

Costa Rica 3.333620646 4 −0.66638

Côte d'Ivoire 11.21776147 14 −2.78224

Croatia 7.745260943 7 0.745261

Cuba 2.5 3 −0.5

Cyprus 2.5 n/a n/a

Czech Republic 2.5 2.5 0

Denmark 2.5 2.5 0

(Continues)
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Countries FEEDME FAO Difference

Djibouti 30.26559251 n/a n/a

Dominican Republic 13.98294329 25 −11.0171

Ecuador 3.461978333 4 −0.53802

Egypt 2.524953702 3 −0.47505

El Salvador 9.188097375 11 −1.8119

Eritrea 81.99778217 73 8.997782

Estonia 3.647903156 5 −1.3521

Ethiopia 42.92373864 46 −3.07626

Fiji 3.287198284 n/a n/a

Finland 2.5 2.5 0

France 2.5 2.5 0

Gabon 4.714235516 6 −1.28576

Gambia 22.25377495 27 −4.74623

Georgia 16.02238544 27 −10.9776

Germany 2.5 2.5 0

Ghana 9.646012157 13 −3.35399

Greece 2.5 2.5 0

Guatemala 19.42379303 24 −4.57621

Guinea 21.73795078 26 −4.26205

Guinea-Bissau 28.60509262 n/a n/a

Guyana 7.816673672 9 −1.18333

Haiti 41.87429285 47 −5.12571

Honduras 19.19689161 22 −2.80311

Hungary 2.5 2.5 0

Iceland 2.5 2.5 0

India 21.13894213 21 0.138942

Indonesia 5.788677351 6 −0.21132

Iran 3.381848349 4 −0.61815

Ireland 2.5 2.5 0

Israel 2.5 2.5 0

Italy 2.5 2.5 0

Jamaica 8.183848351 10 −1.81615

Japan 5.580568675 2.5 3.080569

Jordan 6.023338221 7 −0.97666

Kazakhstan 10.65960058 13 −2.3404

Kenya 25.20931401 33 −7.79069

Kuwait 4.081377008 5 −0.91862

Kyrgyzstan 4.491279816 6 −1.50872

Laos 18.60873975 22 −3.39126

Latvia 2.871976043 4 −1.12802

Lebanon 2.5 3 −0.5

Lesotho 8.733541219 12 −3.26646

Liberia 39.13000269 46 −6.87

Libya 2.5 n/a n/a

T A B L E  A 1  (Continued)

(Continues)
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Countries FEEDME FAO Difference

Lithuania 2.5 2.5 0

Luxembourg 2.5 2.5 0

Macedonia 7.106513796 11 −3.89349

Madagascar 32.32749937 37 −4.6725

Malawi 29.50697331 33 −3.49303

Malaysia 2.5 2.5 0

Maldives 7.696831716 n/a n/a

Mali 22.72044215 29 −6.27956

Malta 2.5 2.5 0

Mauritania 7.841008233 10 −2.15899

Mauritius 4.835172592 6 −1.16483

Mexico 4.339675161 5 −0.66032

Moldova 9.5000397 11 −1.49996

Mongolia 24.78515327 28 −3.21485

Morocco 5.26899591 7 −1.731

Mozambique 39.82991832 47 −7.17008

Myanmar 5.641057205 6 −0.35894

Namibia 20.16442232 22 −1.83558

Nepal 14.67329809 17 −2.3267

Netherlands 2.5 2.5 0

New Caledonia 8.714828017 n/a n/a

New Zealand 2.5 2.5 0

Nicaragua 23.91910969 27 −3.08089

Niger 32.31433274 34 −1.68567

Nigeria 7.246550297 9 −1.75345

North Korea 31.67641263 36 −4.32359

Norway 2.5 2.5 0

Pakistan 19.81990822 20 −0.18009

Panama 23.9682199 26 −2.03178

Paraguay 12.53283239 14 −1.46717

Peru 10.56307966 13 −2.43692

Philippines 16.90889025 22 −5.09111

Poland 2.5 2.5 0

Portugal 2.5 2.5 0

Romania 2.5 2.5 0

Russia 2.801075768 4 −1.19892

Rwanda 32.11087489 37 −4.88913

Samoa 2.857288265 n/a n/a

Saudi Arabia 3.044817229 3 0.044817

Senegal 19.51257471 24 −4.48743

Sierra Leone 46.15498126 50 −3.84502

Slovakia 4.013357024 5 −0.98664

Slovenia 2.5 2.5 0

Solomon Islands 17.02734588 n/a n/a

T A B L E  A 1  (Continued)

(Continues)
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Countries FEEDME FAO Difference

South Africa 2.5 n/a n/a

South Korea 2.5 2.5 0

Spain 2.5 2.5 0

Sri Lanka 19.94639808 22 −2.0536

Sudan 21.06486007 27 −5.93514

Suriname 8.352073668 11 −2.64793

Swaziland 15.27755375 19 −3.72245

Sweden 2.5 2.5 0

Switzerland 2.5 2.5 0

Syria 2.854235917 4 −1.14576

Tajikistan 56.22063434 61 −4.77937

Tanzania 39.17990627 44 −4.82009

Thailand 20.37395063 20 0.373951

Togo 22.98879711 26 −3.0112

Trinidad and Tobago 9.496585346 12 −2.50341

Tunisia 2.5 2.5 0

Turkey 2.5 3 −0.5

Turkmenistan 7.358152696 9 −1.64185

Uganda 15.39792118 19 −3.60208

Ukraine 2.506402122 3 −0.4936

United Arab Emirates 2.5 2.5 0

United Kingdom 2.5 2.5 0

United States 2.5 2.5 0

Uruguay 2.948816474 4 −1.05118

Uzbekistan 21.31693034 26 −4.68307

Vanuatu 8.651361117 n/a n/a

Venezuela 14.012229 17 −2.98777

Vietnam 16.70161024 19 −2.29839

Zambia 43.71487828 49 −5.28512

Zimbabwe 39.097322 44 −4.90268

T A B L E  A 1  (Continued)
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F I G U R E  A 1  Panel of global maps showing prevalence of undernourishment under each of the six scenarios for RCP2.6 and 6.0, SSPs 1–3, 

including land use and population change but excluding feed and export compensation measures

F I G U R E  A 2  Graph showing average 

percentage change in undernourishment 

prevalence per region between lowest global 

impact (LGI) and highest global impact 

(HGI) scenario
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F I G U R E  A 3  Graph showing average 

difference in undernourishment prevalence 

per region between the baseline and six 

scenarios examined
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