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Abstract：Size-spectrum models are a recent class of models describing the dynamics
of a whole community based on a description of individual organisms. The models are
motivated by marine ecosystems where they cover the size range from multicellular
plankton to the largest fish. We propose to extend the size-spectrum model with
spatial components. The spatial dynamics is governed by a random motion and a
directed movement in the direction of increased fitness, which we call ‘fitness-taxis’.
We use the model to explore whether spatial irregularities of marine communities can
occur due to the internal dynamics of predator-prey interactions and spatial
movements. This corresponds to a pattern-formation analysis generalized to an entire
ecosystem but is not limited to one prey and one predator population. The analyses
take the form of Fourier analysis and numerical experiments. Results show that
diffusion always stabilizes the equilibrium but fitness-taxis destabilizes it, leading to
non-stationary spatially inhomogeneous population densities, which are travelling in
size. However, there is a strong asymmetry between fitness-induced destabilizing
effects and diffusion-induced stabilizing effects with the latter dominating over the
former. These findings reveal that fitness taxis acts as a possible mechanism behind
pattern formations in ecosystems with high diversity of organism sizes, which can
drive the emergence of spatial heterogeneity even in a spatially homogeneous
environment.

Keywords: Size-spectrum model, marine ecosystems, fitness-taxis, stability, diffusion,
travelling patterns
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Introduction
Marine ecosystems are dominated by trophic interactions where larger predators eat
smaller prey. Various types of models have been developed to describe the dynamics
of these ecosystems (Plagányi 2007; FAO 2008). Food-web models are a common
modelling framework to depict species rich marine systems (Loeuille and Loreau
2005; Rossberg et al., 2008; Boit et al., 2012; Gomez-Canchong et al., 2012). While
food webs can describe the complex interactions between species to a large degree,
this approach cannot well account for individual trophic change during ontogeny,
particularly for ecosystems with high biodiversity (Guiet et al., 2016). To overcome
this difficulty, continuous size-structured community population models have been
developed (Silvert and Platt 1980; Benoȋt and Rochet 2004). This type of models is
based on the pioneering work of Sheldon et al. (1972) who first discovered that the
biomass remains at a nearly constant level in logarithmically increasing size intervals,
which triggered the definition of ‘size spectrum’ (Silvert and Platt 1978; Kerr and
Dickie 2001; Benoȋt and Rochet 2004; Andersen and Beyer 2006, Fig.1). The
size-spectrum approach redefines the marine ecosystems in terms of body size rather
than biological species identity, which provides community-level predictions with
relatively few model processes and assumptions (Blanchard et al., 2009).

Fig. 1 Conceptual illustration of marine size spectrum extending from autotrophs to mammals
in log-log axes (refined from Heneghan et al. (2019)). It is shown that the logarithmic
abundance (N(m)) and logarithmic body size (m) are approximately linear with a gradient near
-2 (i.e., γ = 2).
Biomass size spectra have been widely used in marine ecosystems. Here, predation

is the primary process promoting the energy flow in the ecosystem, consisting of
growth, mortality and reproduction (Benoȋt and Rochet 2004). Silvert and Platt (1978,
1980) first established the existence of a power-law steady state, which led to the
practice of evaluating the state of an aquatic ecosystem by the slope and intercept of
the biomass size spectrum in a log-log plot (Andersen and Beyer 2006). Blanchard et
al. (2009) extended the model, disaggregating the ecosystem to pelagic and benthic
pathways to describe the dynamics of coupled size spectra. Datta et al. (2010) derived
the dynamic equations (the jump-growth and Mckendrick-von Foerster equations)
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=from a simple stochastic process of predation, and further showed how stability of
the system is affected by predator-prey mass ratio, diet breadth and feeding efficiency
(Datta et al. 2011).
While dynamic models of community size spectra have been widely applied to

understand how the abundance of predators change with body size through the
size-based ontogenetic processes (Benoît and Rochet, 2004; Blanchard et al., 2009;
Gilljam et al., 2011), the effects of organisms’ movements on marine size spectrum
have less been studied. Previously, a size-spectrum model accounting for advection
and diffusion movements has been developed to mimic the role of top predators at a
large scale of marine ecosystems (Apex Predators ECOSystem Model, in short
APECOSM; Maury, 2010). This model was coupled with a biogeochemical model
(The Pelagic Interaction Scheme for Carbon and Ecosystem Studies, in short PISCES,
Aumont et al., 2003; Aumont and Bopp, 2006) to explore the climatic responses of
marine pelagic communities and it was found that spatial distribution of population
biomass was significantly shaped with a substantial biomass increase for small marine
organisms (Lefort et al., 2015). In addition, a spatially explicit marine size spectrum
was developed to explore the effects of the biotic (behavior movement, e.g. diffusion
and taxis) and abiotic (passive transport, e.g. mixing) on individual growth and
community structure in marine ecosystems (Castle et al., 2011). Results showed that
spatial distribution of different-sized organism abundance was intimately correlated
with primary production.
However, to our best knowledge, there has been no attempt to explore the stability

properties of marine size spectrum in a spatially explicit dynamic size-spectrum
model and the potential spatial biomass patterns of different-sized individuals. We
employ a marine size-spectrum model with the two spatial movements of diffusion
and taxis to explore how the interplay of these spatial processes affects the stability of
the marine size spectrum in a spatially homogeneous environment. While the
diffusion process describes random movements, the term taxis is used to indicate
directed movement as a response to environmental cues. In prey taxis, a predator
moves in response to prey, so that the mean velocity of the predator is determined by
the gradient of the prey density. This leads to an advection term in the equation
governing the predator density, as first derived by Kareiva and Odell (1987). Ainseba
et al. (2008) described the local interactions of species modeled by Lotka-Volterra
interactions with prey-taxis and found that predators moving in the direction of higher
prey concentrations would not destabilize the uniform steady state. Rather than
considering completely random movements or just a response to other species, the
present work takes conspecific feedback into account, that is, ‘fitness taxis’ termed by
Heilmann et al. (2018), which means that population moves towards areas with high
fitness, as first proposed by Cosner (2005).
The present work aims to address the question whether the spatial irregularities of

marine communities can be a result of internal dynamics or must have a basis in
spatial irregularities of the marine environment. To this aim, we first derive the
equilibrium size-spectrum in a non-spatial marine size-spectrum model, which is also
the equilibrium of the spatially augmented counterpart. Local equilibrium stability in
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both non-spatial and spatial models are analyzed by Fourier analysis. Finally, we carry
out numerical simulations to demonstrate the emerging spatial patterns, which are
non-stationary and travelling in size.

Models and methods
The model is based on the paradigm that body size is the main factor to determine
individual vital rates, which in turn affect population dynamics. We take growth,
mortality, and reproduction as key processes in the life history of fish individuals,
where predation is a primary way to promote the energy flow in the ecosystem. We do
not impose a size range for modeled organism but assume a size range from 0 to
infinity. While this assumption looks unrealistic in nature, it allows our model to be
scale-invariant, and allows us to perform an analytic Fourier analysis. Moreover,
valuable insight into the stability effects of diffusion and fitness-taxis drawn from our
model can to a large degree be translated to real ecosystems with wide size ranges. We
start with a description of the model without spatial movements. For convenience, the
model without spatial movements is termed a temporal size-spectrum model and the
one with spatial movements as a spatio-temporal size-spectrum model. The analytic
equilibrium stability analysis as well as the numerical method for finding the spatial
patterns are briefly outlined at the end of this section with details being deferred to
appendices.

Temporal size-spectrum model
Denote by N(m, t) the abundance density of organisms with body size m (gram) at
time t (year). The community size spectrum model is given by the equation

             ,,,,,,, mNRtmNmNtmNmNg
mt

tmN








  (1)

where g(N, m) and μ(N, m) are the growth rate (mass per time) and mortality rate (per
time) of individuals with size m. R(N, m) encodes the effect of population
reproduction, which we will discuss further below. The growth and mortality rates are

      dwwmtwwNAmmNg q  ,, ,

         dwmwtwNAwmN q ,, .

Here, Amq is the volumetric search rate of m-sized individuals, and η is the
background mortality. We assume that the energy obtained from predation after
paying metabolic costs is invested to growth and reproduction (Fig. 1). Therefore, α
represents the realized growth efficiency. The integrals in the growth and mortality
describe the possible encountered food and predation mortality, respectively, which
depend on the size ratio between predator and prey. The definite relationship between
predator and prey is specified by a log-normal size kernel

    









 
 2

1

2

2
logexp


 wmwm ,

where σ1 determines the width of the size kernel and eβ is the preferred predator-prey
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mass ratio (Ursin, 1973). The model (1) without the term R(N, m) is the classic
McKendric-von Forerster equation (Kot, 2001; Benoȋt and Rochet, 2004).
Since all organisms in our model have a dual trophic role: being predated by large

organism and preying upon small ones, thus we cannot model the egg stage explicitly.
However, it is possible to capture the main features of reproduction that are
significant to the size-spectrum dynamics, that is, move down the biomass from large
weight to small weight and then replenish the population numbers of small-sized
individuals. Here, we model the reproduction rate R(N, m) in the same way as in
Capitán and Delius (2010), which is given by

              '.,,',',',,,',,, dwdwtwNmwwB
m
wwtwNwmwBtmNwwmBmNR  






 

 (2)

The modelling of equation (2) is explained as follows.
It is assumed that a birth event happens from a parent organism with size w to

produce small offspring with size m, which moves the parent to a lower size w’ due to
spawning. We set the number of offspring to be the mass ratio (w-w’)/m which
indicates the equality between the total offspring weight and the weight lost by the
parent, described by the term

    '.,,',' dwdwtwNmwwB
m
ww


 (3)

and the term B(w, w’, m) indicates the birth rate from parent organisms with size w
who decline in weight w’ and produce offspring of size m, which can be specified as

   wmwwBwmmwwB ,'',', 0
11  ,

where B0(w/w’, m/w) is of the following form
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This equation is basically a combination of two log-normal Gaussian functions, with
the former describing an average weight reduction of the parent by a factor of eν and
the latter an average offspring-parent size ratio of eμ.
Besides the above birth event, the abundance of m-sized population can also be

increased by the reduction in weight of large-sized organisms indicated by
    '.,',, dwdwtwNwmwB (4)

and decreased as a consequence of spawning of m-sized organisms indicated by
    '.,',, dwdwtmNwwmB (5)

Taken together, these three possible events (3)-(5) contribute to the reproduction term
in equation (2).

Spatio-temporal size-spectrum model
We now take spatial movements into consideration. Denote by N(m, x, t) the
population density of organisms with size m at location x (km) and time t. Then the
spatially extended size-spectrum model is given by
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The first row represents reaction dynamics similar to the description of the temporal
model. The second row represents the spatial movements of fitness taxis, which is
related to individual growth as well as mortality and depicted in the form of g/m - μ.
The negative sign at the beginning expresses individuals’ preference for higher fitness.
The last term represents the spatial movements due to diffusion, meaning that
individuals move from regions of higher density to lower density randomly. In the
presence of spatial components, the growth and mortality rates are now of the forms

       dwdyyxwmtywwNAmxmNg q    ,,,, ,

           dwdyyxmwtywNAwxmN q ,,,, .

The integrals involve a spatially non-local kernel ψ,
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where σ2 is the width. This space kernel allows a predator to encounter prey over a
spatial range close to their position rather than at the exact location of the predator
(Grindrod, 1988; Banerjee and Volpert, 2016b; Malchow et al., 2008).

Analytic and numerical analysis
We briefly outline the method of deriving the equilibrium size spectrum to the
temporal model (Appendix A), and the method of performing local stability analysis
around the equilibrium for the temporal model (Appendix B) as well as for the
spatio-temporal model (Appendix C). The numerical algorithm for illustrating the
spatial patterns is summarized in Appendix D. Detailed mathematical computations
are presented in their respective appendices. Readers who are mainly interested in the
biological findings can skip this section, and directly go to the next section.
The equilibrium to the temporal model (1) is assumed to be of the power-law form,

that is, Ns(m) = N0m-γ, where N0 is a constant, indicating the magnitude of the marine
size-spectrum. For Ns(m) to be an equilibrium to the temporal model, an additional
assumption is imposed throughout this paper, that is, the volumetric search rate
exponent q is equal to γ-1. Such an assumption enables us to obtain closed forms of
integrals over unlimited size ranges (Datta et al., 2011). In fact, if γ = 2, then q = 1,
which is exactly the empirically observed value of the search rate coefficients
(Andersen et al., 2016). By setting m = m0er and N(m, t) = u(r, t)e-rm0-1 direct
calculation yields a condition for the parameters that can be easily satisfied, for
instance, under the default parameter values in Table 1 (Appendix A).
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Table 1.Model parameters

Symbol Value Units Interpretation

A 600 year-1g-q Coefficient of feeding rate1

β log(100) - Nature log of preferred predator-prey mass ratio2

σ1 1.5 - Width of size-selection function3

σ2 1 - Width of space-selection function4

q 0.8 - Exponent of volumetric search rate5

γ 1.8 - Marine size spectrum exponent5

α 0.4 - Growth efficiency6

μ -8 - Nature log of offspring-parent mass ratio7

σμ 1.5 - Variance in offspring-parent mass ratio8

ν 0.2 - Natural log of parent weight before/after reproduction7

σν 0.05 - Variance in parent weight before/after reproduction7

η 0.1 year-1 Background mortality rate9

b0 1 year-1 Coefficient of reproduction rate10

m0 1 g Reference weight11

d0 varied km2 Coefficient of the fitness taxis

d1 varied km2 year-1 Coefficient of the diffusion
1Plank and Law (2011);
2Ursin (1973); Jennings et al. (2001);
3Datta et al. (2011);
4Heilmann et al. (2018);
5Andersen and Beyer (2006); Plank and Law (2011); Hartvig et al. (2011); q is always set to
equal γ-1.
6Zhang et al. (2013).
7Capitán and Delius (2010);
8Adjusted to result in stability of both temporal and spatio-temporal size-spectrum model.
9Datta et al. (2010); Rochet and Benoît (2011);
10Normalized reproduction rate, conclusion is not sensitive to this parameter .
11Selected to make the fish size-range reasonable in numerical simulations (e.g. Fig. 2B);

We perform the local stability analysis of the power-law equilibrium Ns(m) for the
temporal model using Fourier analysis (Appendix B). To this end, we first transform
the model (1) translation-invariant form by setting v(r, t) = eqru(r, t), and then Fourier
expand the scaled population density, that is, v(r, t) = ∫ eikra(k, t)dt where a(k, t) are the
Fourier coefficients with k being the wave number in the direction of logarithmic
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body size. Substituting the Fourier expansion into the translation-invariant system
yields a system of differential equations for the Fourier coefficients a(k, t). Finally, we
linearize this system around the steady state to obtain the eigenvalue function against
the wave number k, which allows us to determine the stability of the power-law
equilibrium. Analogously, we can perform stability analysis of the power-law
equilibrium in the spatio-temporal model and derive the eigenvalue function against
the size wave number k and space wave number l (Appendix C).
We also use Fourier methods to perform numerical simulations of the temporal and

the spatio-temporal model (Appendix D). To be able to employ Fourier series, we
impose periodic boundary conditions on size and space. While there is no biological
motivation for this, the solutions are not strongly dependent on the length of the size
and space domain as long as they are sufficiently large (e.g., sufficiently larger than
the nature log of the preferred predator-prey mass ratio). We numerically solve the
resulting system of ordinary differential equations for the Fourier coefficients (i.e., a(k,
t)). Applying the inverse Fourier analysis to those Fourier coefficients, we obtain
time-series solutions for the population biomass density u(r, x, t). Default parameter
values are summarized in Table 1.

Results
Figure 2A demonstrates the real part of the eigenvalue λ(k) as a function of the size
wave number k for two cases: stable equilibrium under the default parameter values in
Table 1 (dashed curve), and the unstable equilibrium with a slight different parameter
setting (solid curve). In case of the unstable equilibrium, exciting the most unstable
mode (approximately k = 82) yields a travelling solution (Fig. 2B).

Fig. 2 For the temporal model (1): (A) Real part of the eigenvalues λ(k) against wave numbers
in the direction of size k, and (B) the travelling wave solution of log-form abundance u(r, t)
for logarithmic body size r and time t. Parameters for the stable equilibrium are listed in Table
1, and for the unstable equilibrium are the same as default except for nature log
offspring:parent mass ratio μ = -10.
When spatial processes are taken into account, we are primarily interested in how
diffusion and fitness-taxis interact to affect equilibrium stability in the spatio-temporal
model (3). Clearly, the equilibrium of the temporal model remains the equilibrium of
the spatio-temporal model. Here we focus on the stable equilibrium size spectrum in
Fig.2A. Given a pair of the coefficients of diffusion (d1) and taxis (d0), Figure 3A
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illustrates the unstable modes in the space spanned by the size wave number k and the
space wave number l. The figure shows that there exists unstable modes, which will
result in spatially inhomogeneous distribution of population densities when these
unstable modes are excited. Figure 3B shows the emerging spatial patterns when the
most unstable mode is triggered, which is non-stationary, travelling in time (Fig. 3C)
but periodic in space (Fig. 3D).
To disentangle the role of diffusion and fitness-taxis in the equilibrium stability, we
vary both coefficients of diffusion (d1) and fitness taxis (d0) (Fig. 4A). Clearly, fitness
taxis favors the emergence of spatial patterns whereas diffusion prevents patterns
(also see Appendix C for analytic analysis). Interestingly, these two effects are
strongly asymmetric given the same strength (i.e., d0 = d1), and the stabilizing effect
dominates over the other. Surprisingly, with increasing taxis strength, the unstable
region in the wave number k-l space does not always expand, but approaches a limit
in both size and space directions. Analytic analysis reveals that the saturation is due to
the nonlinear interaction between fitness taxis induced instability and diffusion
induced stability (Appendix E).

Fig. 3 (A) The unstable modes in the k-l wave number space, (B) the emerging spatial pattern,
and (C) time evolution with fixed space position and (D) size. Parameters are listed in Table 1,
and the coefficients of diffusion and fitness are respectively d1 = 0.1 and d0 = 1.5.
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Fig. 4 (A) Diagram of spatial patterns in the space spanned by diffusion (d1) and fitness taxis
(d0) coefficients, and (B) the evolution of region with unstable modes in the k-l wave number
space with increasing taxi strength (d0 [1.5, 15] increases with deepening blue color) but
fixed diffusion (d1 = 0.1). The blue point A in (A) corresponds to Fig. 3 and the shaded grid
area in (B) corresponds to Fig. 3A. Parameters are listed in Table 1.

When the widths of the size and space kernel are varied, we see that wider kernels
favor equilibrium stability in the spatio-temporal model (Fig. 5). The difference is that
the size kernel width primarily affects the unstable modes in the size direction, while
the space kernel width affects the unstable modes in the space direction. Moreover,
narrower size kernel width allows more unstable size modes, and even makes the
equilibrium unstable.

Fig. 5: The evolution of region with unstable modes in the k-l wave number space with
intensified taxi strength (d0  [1.5, 15] increases with deepening blue color), and fixed
diffusion (d1 = 0.1). Top panels correspond to the width of size kernel σ1: 0.5 (left), 1.5
(middle) and 3 (right), and the bottom panels correspond to the width of the space kernel σ2:
0.5 (left), 1 (middle) and 2 (right). Other parameters are listed in Table 1.
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Discussion
We have developed a spatially augmented marine size-spectrum model to explore the
stability properties of equilibrium solutions, where animals move both randomly and
towards higher population fitness. Previously, several models have considered spatial
movements (i.e., diffusion and advection) in a size-spectrum framework, such as the
APECOSM model (Maury, 2010), the COBALT model (The Carbon, Ocean
Biogeochemistry and Lower Trophics marine ecosystem model; Stock et al., 2014;
Waston et al., 2015), the PISCES model (Aumont et al., 2003; Aumont and Bopp,
2006; Lefort et al., 2015). However, these models were generally studied in an
applied context. To our best knowledge, the present work is the first theoretical
attempt to investigate equilibrium stability in a spatially explicit marine size-spectrum
model.
Population fitness in our model is measured by the proxy g/m - μ, which integrates

the gain of food and losses to predation. Positive fitness indicates that the
environment benefits an animal’s population growth, and thus appeals to individuals,
while negative fitness implies a harsh environment in which individuals would try to
avoid foraging. An alternative fitness proxy can be of the form (g/m)/μ, which is the
well-known Gilliam’s rule (Gilliam and Fraser 1987). This fitness proxy tends to
optimize an individual reproductive output of its whole life. While both fitness
proxies have been widely employed in the literature (Abrams 1990; Visser 2007;
Kiørboe et al., 2017; Heilmann et al., 2018), we adopted the first fitness proxy mainly
because it is analytically tractable, but it would be interesting to see the impacts of the
other fitness proxy on equilibrium stability.
The spatial foraging kernel was introduced to overcome the ill-posedness of the

problem, a similar issue to which was encountered by Heilmann et al. (2018). In the
absence of this spatial kernel short-wave disturbances increase exponentially. In the
presence of the spatial kernel, short-wave perturbations decay exponentially, and the
unstable wave modes first grow exponentially but ultimately become saturated
(Appendix F). In the present work, the spatial foraging kernel stabilizes the
equilibrium with wider kernel favoring stability (Fig. 5). Such a spatial foraging
kernel has been demonstrated in non-structured prey-predator models to exhibit a
stabilizing effect (Banerjee and Zhang 2016), as well as a destabilizing effect if the
kernel width exceeds a threshold value (Pal et al., 2019); however, the later effect is
not observed in our model.
The reproduction process plays a stabilizing role. This process and predation act as

the two driving forces that propagate the energy flux through the whole ecosystem. In
the absence of the reproduction process, we found that the predation process always
makes the equilibrium solution unstable in the temporal model (Datta et al., 2011).
The reproduction term enabled us to find a stable equilibrium solution and then made
it possible to understand how different scales of space and size perturbations affect the
spatio-temporal dynamics. Most exiting studies of equilibrium stability of
size-spectrum models employed the predation process as the sole driving force,
ignoring the reproduction process (Benoît and Rochet 2004; Datta et al., 2010, 2011;
Plank and Law, 2011). This is mainly because the egg stage cannot be explicitly
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modeled since every individual in size-spectrum models is assumed to grow by
predating on smaller organisms, whereas eggs of course do not predate. Our modeling
of population reproduction originated from Capitán and Delius (2010), who studied
the size-spectrum stability in a scale-invariant model for marine population dynamics
where reproduction was developed based on a Markov chain, and reported that the
reproduction stabilized equilibrium. Alternatively, a stable equilibrium might arise in
a truncated size spectrum by limiting organisms’ size to a finite range and imposing a
constant biomass for the organism with the smallest body size (Benoît and Rochet
2004).
The two spatial processes of diffusion and fitness-taxis have contrasting roles in

determining equilibrium stability. While diffusion always stabilizes equilibrium
(Appendix C), fitness-taxis can destabilize it (Fig. 3A). In the latter case,
non-stationary patterns emerge that are travelling in size and periodic in space (Fig.
3B, 3C, 3D). Previously, Heilmann et al. (2018) considered a two-species model with
diffusion and fitness-taxis as well as spatial kernel, and found a variety of spatial
patterns including stationary spatial patterns, standing and travelling waves, and
chaotic spatio-temporal patterns. We did not observe stationary patterns nor chaotic
patterns in our model, but we did observe travelling waves for certain parameter
values (Appendix G). The diverse patterns in Heilmann et al. (2018) are due to the
taxis-driven instability as well as taxis-diffusion driven instability, the latter of which
is basically the same as the classic Turing mechanism (Turing 1952), but is impossible
to occur in our model. This is because our model fundamentally differs from
two-species predator-prey model in the way population abundance changes. In
particular, our model takes the growth of individuals and the resulting ontogenetic diet
shift into account. This size-spectrum approach makes our study unique in the context
of pattern formation in ecosystems with organisms of diverse sizes.
While we have revealed fitness-taxis to be a significant mechanism for creating

spatial patterns in marine ecosystems, the unstable modes in the wave number k-l
space were constrained to a finite region (Fig. 5), which did not always expand, but
instead approached a limit in both directions of size and space as taxis strength is
continuously intensified (i.e., d0). This is due to the nonlinear interactions between
taxis-induced instability and diffusion-induced stability (Appendix E). Moreover, the
region with unstable modes decreased with increasing width in the size and spatial
kernels (Fig. 5), suggesting that foraging kernels with large widths promote
ecosystem stability. Note that all individuals in our model have exactly the same
diffusion rate, taxis strength, size and space foraging kernel width, meaning that these
factors are all size-independent. Since it is reasonable to assume that large individuals
own large rates in diffusion as well as in taxis strength (Castle et al., 2011), or wide
size and space width (Kramer and Chapmanm 1999; Haskell et al., 2002; Jetz et al.,
2004, Nash et al., 2013), a particularly interesting and ecological relevant question
arises what happens to the marine spatio-temporal dynamics if these factors are
size-dependent. Zhang et al. (2014) considered a size-structured population model
where diffusion rate increased allometrically with body size and found that the
size-dependent diffusion promoted the emergence of spatial patterns, specifically,
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chaotic patterns. However, adding size-dependency either in diffusion, fitness taxis,
size or spatial kernels to our model will break scale-invariance, hence making our
model analytically intractable. Nonetheless, considering the size-dependency will be a
promising future work.
Our finding that fitness-taxis promotes spatial patterns in marine ecosystems has

important biological significance. In general, marine ecosystems are constantly
exposed to changes from natural or anthropogenic origins, and these changes may
alter population fitness, creating fitness gradients and thus directing organism
movements. For instance, fisheries create a harsh environment for targeted fishes,
which will lower their fitness and thus drive them away from regions with heavy
fishing pressure. Marine ecosystems are also substantially impacted by human
pollution (Votier et al., 2005, 2008), which may provide a considerable amount of
nutrient inputs. The supplement of nutrients can attract epipelagic and migratory
communities (Maury, 2010) for the reason of enhanced fitness. Growing evidence
suggests the accelerated global warming trends by human activities may cause an
average of 1.3-1.8oC increase by the mid-century (2046-2065; IPCC, 2007). Empirical
studies showed that elevated temperature benefits foraging rate but also burdens
metabolic costs, thus altering population fitness (Fry, 1971; Sandersfeld et al., 2015).
Thus, global warming could be an important environmental forcing driving spatial
heterogeneity of marine organism’s abundance distribution (Beaugrand et al., 2009,
McGinty et al., 2011) possibly through the spatial movement of fitness-taxis.
In conclusion, we studied the stability properties in a spatially explicit marine

size-spectrum model with diffusion and fitness-taxis. While diffusion always
stabilizes the equilibrium, fitness-taxis can destabilize it, leading to spatially
inhomogeneous population densities that travel in size. These findings suggest that
fitness-taxis serves as a possible mechanism underlying marine spatial pattern
formations. An interesting future work is how this mechanism will be reinforced by
environmental factors that can potentially alter population fitness. Moreover, since
our model is purely size-based ignoring species identity, a promising future work is to
explicitly address the spatio-temporal dynamics of species-rich ecosystems with
species-based network approaches.
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