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Abstract – We describe a new phenomenon in models of coalescence and fragmentation, that of
gel-shatter cycles. These are dynamical, unforced, stochastic cycles in which slow, approximately
deterministic coalescence up to and beyond gelation is followed by abrupt random shattering.
We describe their appearance in simulations of stochastic models with multiplicative kernels for
coalescence and spontaneous fragmentation into monomers (‘shattering’). The regime in which
such cycles occur is characterized by a cyclicity order parameter, and we provide a simple scaling
argument which describes both this regime and those which border it.

It is natural that coalescence of smaller units should
result in larger accumulations that may eventually be-
come unstable and fragment. A wide range of models for
such coalescence and fragmentation processes have been
created, often with overlapping or even contradictory re-
sults, in fields as diverse as physical chemistry [1], prob-
ability [2], fluid dynamics [3], social grouping [4], bank
mergers [5] and terrorist grouping networks [6–8]. Part
of this popularity is undoubtedly due to the emergence
of power-law behaviour from simple coalescence, e.g. two
asteroids collide [9], one fish eats another [10] or two in-
vestors trade information [11], all of which yield power-
law-distributed steady states, i.e. p(x) ∝ x−α for α > 1
(see Figure 1). When combined, coalescence and frag-
mentation are expected to balance to give a non-trivial
equilibrium [7,9, 12–15].

However, it has recently been discovered that the
cluster-size distributions emerging from the tension be-
tween coalescence and fragmentation do not necessarily
tend to a steady state. Perpetual oscillations were first
observed in coalescence systems with constant influx of
monomers and removal of the largest clusters if the coa-
lescence rate between the large and small clusters increases
sufficiently fast as a function of cluster sizes [16]. It was
shown that here the transition from a steady state to an os-
cillatory state occurs via a Hopf bifurcation. Subsequently,
running waves have been observed in deterministic mean-
field numerical solutions and analytics for a special choice
of coalescence and collision-controlled fragmentation rules

Fig. 1: Cluster size distribution. A typical time-averaged dis-
tribution (black dots) emerging as a result of multiplicative co-
alescence and multiplicative shattering, with fragmentation re-
stricted to clusters larger than 104. The total mass is M = 105.
(a) Complementary cumulative distribution of clusters, i.e. the
number of clusters larger than a certain size. (b) Mean clus-
ter density. This follows a truncated α = 5

2
power-law (blue

dashed line). We also show the distribution at a single time
whose power-law exponent is closest to the median (red line).
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in the absence of cluster influx/outflux [17]. Most recently,
it has been shown that deterministic temporal oscillations
can arise in a class of coalescence-fragmentation (C-F) pro-
cesses where clusters grow or shrink by addition or deletion
of monomers [18]. All of these findings predicted determin-
istic oscillations and relied on mean-field descriptions.

Here we use simulations to show that stochastic cyclical
dynamics – in the form of steady accumulation followed
by sudden shattering – emerge in an important class of C-
F processes. We consider spontaneous fragmentation, not
induced by collision. Such C-F processes have been used
to study polymerisation/depolymerisation reactions [19],
cloud droplets spectra [20], and assembly/disassembly of
cell membrane microdomains [21], among other applica-
tions. We focus on a particular example of size-biased
coalescence and fragmentation processes which is widely
used in applications. We provide simple scaling arguments
to explain the observed dependence of the recurrence time
on the system size.

Mathematical descriptions of the problem can be
grouped into two broad classes: mean field approaches
and stochastic models (including stochastic simulations).
Coalescence processes, also known as coagulation or aggre-
gation processes, were introduced to mathematics a cen-
tury ago [22], while the stochastic equivalent, the Marcus-
Lushnikov process, arose in the 1960s [23, 24].

First, for reference and convenience, we present an adap-
tation of Smoluchowski’s equations for coalescence and
fragmentation, modified from reference [25]. In equation
(1), t is time and nk is the mean field the density of clusters
of (discrete) size k. Larger clusters are generated when
two smaller clusters of sizes i and j randomly coalesce, in
proportion to a kernel K(i, j), to form a cluster of size
i + j. Clusters are reduced in size by a separate process
of fragmentation, which occurs with the rate F (i) for a
cluster of size i. The function b(i, j) describes what pro-
portion of mass of the cluster of size i goes to a cluster
of size j; it is normalised so that

∑i−1
j=1 b(i, j) = 1. This

condition guarantees that the mass is conserved in a frag-
mentation event. Since here fragmentation is spontaneous
rather than collision-induced, the terms describing frag-
mentation are linear in the density of clusters.

The mean field approaches provide the basic language
for cluster-size distribution modelling but ignore finite sys-
tem size. However, in any computational implementation
finite-size effects associated with the total system size M
will be important. In particular, the dynamics of pure co-
alescence, when the coalescence rate grows sufficiently fast
as a function of the sizes of the coalescing clusters, leads to
a giant cluster of a size comparable to M , a gel [2,26–28].
[27]. In the thermodynamic limit, when M → ∞ and the

gel size is infinite, gelation goes beyond mean field theory
(1) and stochastic modelling is essential for capturing the
ensuing dynamics.

A particularly important coalescence kernel allowing gel
formation naturally emerges in describing random network
growth. When two nodes are randomly connected by an
edge per unit time, two clusters of connected nodes coa-
lesce at the rate K = K̂(i/M)(j/M), where K̂ is constant,
the system size M is the total number of nodes, and i/M
and j/M are the probabilities of picking clusters of sizes
i and j from the population. This kernel is often referred
to as the multiplicative coalescence kernel.

Similarly, the multiplicative fragmentation rate F (i) is
proportional to the cluster size i. The particular case in
which the fragmented clusters disaggregate into monomers
is referred to as shattering [13, 14] (We adopt the termi-
nology used by reference [13], but note that shattering has
been used to describe alternative phenomena, e.g. [29].)
This form of fragmentation can be conveniently simulated
numerically by picking a random node from the popu-
lation of all nodes and shattering the cluster it belongs
to, removing all edges amongst the formerly connected

Fig. 2: Stochastic coalescence-fragmentation cycles. (a) Num-
ber of clusters N versus maximum cluster size kmax. The
counterclockwise trajectory shows periods of relatively gradual
growth of the largest cluster followed by its abrupt shatter-
ing. (b) The time-dependent power-law exponent α obtained
by fitting the instantaneous cluster-size distribution to a (trun-
cated) power-law using maximum likelihood estimation. The
coloured region corresponds to the trajectories shown in (a).
(c) Maximum cluster size as a function of time. Here K̂ = 0.99,
F̂ = 0.01 and the total populations is M = 105. An extended
and animated version of this figure is included with the Sup-
plemental Material.
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nodes. The corresponding fragmentation rule is given by
F (i) = F̂ (i/M), b(i, j) = δj1, where F̂ is constant and
i/M is the probability of picking a cluster of size i.
Simple kernels, especially those that are multiplicative,

often result in solvable steady state systems, and the above
forms are no different. Under the assumption of a steady
state, dnk/dt = 0 for all k, set ρk = knk/M so that for
k ≥ 2

ρk =
1
2K̂

F̂ + K̂
∑

∞

i=1 ρi

k−1
∑

i=1

ρiρk−i.

Provided that
∑

∞

i=1 ρi is well-behaved, which empirically

is the case when F̂ is sufficiently large compared to K̂,
we have a variation of the standard recurrence relation of
the Catalan numbers [30, 31]. One standard method of
solving such a system is to use generating functions and
series expansion [7,11]. Writing the result in terms of the
Catalan numbers Cn and writing the prefactor as γ, we
have

ρk = Ck−1γ
k−1ρk1 . (2)

Stirling’s law then yields the standard result of a trun-
cated power-law with exponent −3/2. The ρ1 term can
be evaluated by considering the total amount of mass in
the system to be fixed. Many other, related solutions exist
for the steady-state distribution, dependent on the precise
formulation of Equation 1 [3, 12, 13,15].
The typical stochastic dynamics and its emerging cycles

are seen in Figure 2(a), which shows a sample of the trajec-
tory in the (kmax, N) plane, where N is the total number
of clusters and kmax is the size of the largest cluster. Each
distinct counterclockwise cycle begins in the top-left with
a predominance of monomers. A period of gradual growth
of kmax is accompanied by a decrease in N , taking the tra-
jectory slowly down and to the right before accelerating
rightward through gelation until growth ends in an abrupt
random jump back to top-left with ∆N ≈ −∆kmax. This
clearly evidences that 1) coalescence leads to the forma-
tion of very large clusters during the periods of gradual
cluster size growth and 2) such periods end in shatter-
ing of the largest cluster. However, the cycling dynam-
ics are not limited to the growth and shattering of the
largest cluster but involves the whole cluster size distri-
bution. Indeed, our simulations show that the cluster size
distribution is very broad and can be fitted to (truncated)
power-laws with the time-dependent exponent α(t) cycling
in the range 2.7 − 2.9. During the period of coalescence,
the cluster size distribution is broadening and α decreases
appreciably.
To the best of our knowledge, such stochastic gel-shatter

cycles have not been previously described. We hypothe-
size that they should be a generic feature of C-F systems
with gel-forming coalescence and sufficiently strong frag-
mentation.
The gel-shatter cycles are strongly dependent on the

number of monomers at complete disaggregation, which
we term the system size M . Figure 3 presents a ‘heat map’

Fig. 3: Cluster summary statistics. System sizes are M =
3 × 102 and 3 × 104 (left to right), and fragmentation rates
F̂ = 10−3 and 10−1 (top to bottom, with coalescence rates
K̂ = 1− F̂ ). The number of clusters N and the maximum clus-
ter size kmax are normalised by M . Darker regions represent
states that emerge more often. The red border line denotes the
boundary of the region visited by the system. A more detailed
figure is present in the Supplemental Material.

of the times the simulation spends in different regions of
the (kmax, N) plane (normalised by M for comparison be-
tween different populations). For low fragmentation rates
and small system sizes (top-left corner) the system visits a
broad shoulder-like region. The ‘elbow’, the change in gra-
dient of its lower boundary, corresponds roughly to gela-
tion. As fragmentation rate and system size increase, the
broad distribution collapses to a very small region within
which the stochasticity is not visible as distinct cycles.

The mean recurrence time 〈tr〉 is defined to be the num-
ber of computational steps between successive shatterings
of the largest cluster, averaged across simulations with the
same parameters. This can be thought of as the average
duration of a cycle in the gel-shatter regime. The depen-
dence of the mean recurrence time 〈tr〉 on system size M
for varying fragmentation rates F̂ shows crossovers be-
tween three distinct regimes: for small systems and small
fragmentation rates, 〈tr〉 ∼ M0 while modestly increas-
ing M or F̂ yields 〈tr〉 ∼ M1/2, before crossing over into a
regime with superlinear growth of 〈tr〉 with M . It is a pri-

ori possible that these regimes are due to finite size effects.
In our simulations, finite-size effects are strong and appear
even for systems of size M = 105. Furthermore, there are
multiple time scales present, and the importance of these
could vary across rates and system sizes. These curves
show data collapse when F̂ 〈tr〉 is plotted as a function of
the dimensionless parameter

r =
F̂M

K̂
. (3)
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Fig. 4: Observed data collapse in terms of r. Points are plotted for M = 102, 103, 104 and 105, but data were additionally
gathered at M = 3×102, 3×103 and 3×104. (a) When plotting the mean recurrence time 〈tr〉 multiplied by the fragmentation
rate F̂ , we see that the middle region of unforced gel-shatter cycles has strong data collapse following a nearly linear trend on
log-log axes. (b) When plotting the order parameter K, we observe a plateau of K in the region of unforced gel-shatter cycles.

The physical meaning of r is the ratio of the characteristic
times of gelation Tg ∼ M/K̂ and shattering Tf ∼ 1/F̂ .
Figure 4(a) demonstrates that

〈tr〉 = F̂−1g(r), (4)

where the scaling function g(r) ∼ 1 for r ≪ 0.1. For larger
values of r, the scaling function crosses over to g(r) ∼
r1/2 and this behavior persists for almost four orders of
magnitude of r. Finally, for r & 103, the scaling breaks
down.
In order to explore further the nature of the stochastic

gel-shatter cycles and distinguish cyclical dynamics from
acyclical stochastic fluctuations, we introduce a cyclicity
order parameter, K, defined to be the number of computa-
tional steps that result in growth of the maximum cluster
size kmax minus those that result in reduction, divided by
the total number of computational steps. Hence, K must
lie in the range −1 to 1. A value near zero would indi-
cate that the largest cluster experiences approximately as
many coalescence events as it does fragmentation events,
regardless of the magnitude of the events, and is charac-
teristic of generic stochastic fluctuations which have no
preferred sense. A high value of K, in contrast, indicates
many steps of growth followed by abrupt collapse, thereby
characterizing gel-shatter cycles. (Large negative K would
indicate many fragmentation events followed by rare co-
alescence. This is possible only if fragmentation events
are frequent and small, and we do not expect to observe
it with our chosen K̂ and shattering fragmentation ker-
nel F .) The order parameter K depends non-trivially on
r, see Figure 4(b). Here K(r) forms hump-shaped curves
with the maximum around r = 10. The order parameter
is appreciably large, K > 0.1, for 0.1 < r < 103, which
constitutes the middle regime with 〈tr〉 ∼ M1/2.

We can now identify the different scalings as three phys-
ical regimes:

(i) Weak fragmentation or forced cycles. Here
Tg ≪ Tf and coalescence quickly results in a single

gel cluster. The gel is shattered at the rate F̂ and
hence the emerging cycles have the mean recurrence
time 〈tr〉 ∼ F̂−1. This regime is physically unsur-
prising.

(ii) Unforced gel-shatter cycles. Here Tg ∼ Tf and
the cycles arise from a non-trivial interplay between
the dynamics of gelation and shattering. The cyclic-
ity K reaches a maximum in this regime. The pres-
ence and extent of this regime in gelling C-F systems
is our main finding.

(iii) Fragmentation-dominance. Here Tg ≫ Tf and
fragmentation is so strong as to preclude formation
of large clusters. This annihilates the gel-shattering
cycles, leaving only stochastic variation in a small
region.

We now provide a simple scaling argument to explain
the behaviour of the mean recurrence times and gain fur-
ther insight into the gel-shatter cycles.

Assume the dynamics are dominated by continuous
growth and shattering of the largest cluster. Writing the
size of the largest cluster kmax at time t as m(t), we track
the largest cluster and the probability, dependent on m(t),
that it shatters at a given time. The probability P (t) that
the largest cluster is not shattered by time t is governed
by

dP (t)

dt
= −F̂M−1m(t)P. (5)

Hence the probability density for shattering at time t is

p(t) = −
dP (t)

dt
= F̂M−1m(t)e−F̂M−1

∫
t

0
m(τ)dτ . (6)

p-4



Gel-shatter cycles

In the forced-cycles regime (i), coalescence quickly leads
to a single large cluster of size M , hence m(t) = M and

p(t) = F̂ exp
(

−F̂ t
)

.

This is the exponential distribution with mean 〈tr〉 = F̂−1;
thus g(r) ∼ 1, r ≪ 1.

In the unforced gel-shattering cycles regime (ii), the sim-
plest form for m(t) consistent with dimensional arguments
is linearity. We assume that m(t) = cK̂t, where c > 0.
Then

p(t) = cF̂ K̂M−1te−cF̂ K̂M−1t2/2.

This is the Rayleigh distribution with scale parameter
(√

cF̂ K̂M−1
)

−1

and mean

〈tr〉 =

√

πM/(2cF̂ K̂). (7)

Hence, g(r) ∼ r1/2 in regime (ii). Also, it is straightfor-
ward to show that the largest realisable cluster size scales
as Mr−1/2. This scaling explains the shortening of the
‘elbow’ on Figure 3 for larger M and F̂ .

This work reports a distinctive new phenomenon, that
of stochastic gel-shatter cycles. Gel-shatter cycles are
observed explicitly in simulations of multiplicative (size-
biased) coalescence and spontaneous-shattering fragmen-
tation kernels when the time scales for these are in balance.
We expect gel-shatter cycles to be a general phenomenon
beyond that of multiplicative kernels. The prerequisite
qualities appear to be three-fold: gelation, which promotes
the growth of a single cluster that dominates the system; a
strong form of fragmentation, which can reset the system
to a pre-gel state; and balanced time scales, so that the gel
is neither instantly removed nor aggregates the entire sys-
tem. Gelation is a broad and well-studied phenomenon,
occurring with many coalescence kernels. Shattering is
perhaps the strongest assumption we make, but we antic-
ipate that this can be relaxed to a sufficiently strong form
of mixed fragmentation. Finally, in any system studied for
its tension between coalescence and fragmentation (as op-
posed to just one of these alone), the time scales of these
are likely to be comparable. In such circumstances prac-
titioners should be wary of presuming the existence of a
steady state, and conscious that gel-shatter cycles may be
present.
On this basis we anticipate that gel-shatter cycles

are a ubiquitous phenomenon. This salient novel fea-
ture emerges from a range of simulation studies origi-
nally intended to explore the robustness of the Smolu-
chowski coalescence-fragmentation model and its variants
(see Supplemental Material). Whilst our conclusion is that
models of this type are robust to perturbations of vari-
ous kinds – confirming the common view [6–8, 12] – we
note the ubiquitous presence of unforced stochastic gel-
shatter cycles in finite-size systems. This is relevant to
the application of these models to physical and social phe-
nomena, where the gel-shatter cyclicity may be a natural

dynamical feature, as well as affecting the robustness of
the computationally-fitted exponents. The presence of a
non-trivial dynamic underlying a presumed steady state
needs to be considered when models of this type are used
in applications, and is an intriguing avenue for future the-
oretical research.
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