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Abstract

In this paper, we present a novel thermodynamically based analysis method for

directed networks, and in particular for time-evolving networks in the finance

domain. Based on an analogy with a dilute gas in statistical mechanics, we

develop a partition function for a network composed of directed motifs. The

method relies on the decomposition of directed networks into a series of fre-

quently occurring graphlets, or motifs. According to the connection between a

directed network and the dilute gas, the network motifs have the same topolog-

ical structure as the low-order interactions between particles in the gas. This

means that we can use the so-called cluster expansion from statistical mechan-

ics to develop a partition function for the motif decomposition. In prior work,

we have reported a detailed analysis of the cluster expansion for the case of

undirected graphs, and showed how the resulting motif entropy can be used to

analyse time evolving networks [1]. In this paper we extend this work to the

case of directed graphs to compute thermodynamic quantities including energy,

entropy and temperature for the directed network. The three thermodynamic

quantities constitute the thermodynamic framework for the analysis of directed

network evolution. We apply our thermodynamic framework to the financial

and biological domains to represent real world complex systems as time-varying
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directed networks. Experimental results successfully demonstrate the effective-

ness of the thermodynamic framework in representing the evolution of directed

network structure and anomalous event detection.

Keywords: Cluster Expansion, Motif, Directed Network Entropy

1. Introduction

Research on the learning and inference of network representation has be-

come a central topic in the field of pattern recognition and machine learning.

In particular, the use of network representations as succinct characterizations

of time varying complex sysems [2] has made possible the understanding of oth-5

erwise intractable data from biological, social and technological domains. The

network representation allows the complex patterns of interactions between the

entities in such complex systems to be modelled in terms of basic distributions

of its connection characteristics. Such systems can be well captured by the

statistics of the underlying structure of the network [3]. However, these basic10

representations tend to ignore the importance of local multiplexing and similar

proximity structures in networks. Recently, recurring patterns, termed network

motifs, have been proved to be useful in providing the basic building blocks for

different subgraphs which perform specific functional roles in a larger network

structure [4, 5].15

Motifs have been proved to provide an efficient way to uncover the structural

design principles of a system represented by a complex network. Examples in-

clude positive and negative autoregulation [6, 7], positive and negative cascades

[8, 9, 10], positive and negative feedback loops [11], feedforward loops (FFLs)

[12, 13], single input modules [14], and combinations of these too [15, 16]. With20

the further study of network motifs, many methods for motif detection and

counting have been developed [17], but how to combine the structural charac-

teristics of the motifs with their statistical characteristics to represent the entire

complex network remains an open problem. This task requires an understand-

ing of the basic structural elements constituting the motifs and the processes25
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which give rise to them from a microscope point of view [18]. To embark on this

type of analysis, tools from statistical mechanics provide a convenient route to

the characterization of network structure.

When a thermodynamic system is modelled using statistical mechanics,

then the partition function which captures the probabilities of the different30

microstates of the system can be used to compute thermodynamic properties

such as energy, entropy and temperature [19]. Statistical mechanics can be com-

bined with graph theory to provide a practical framework for complex networks,

especially highly structured and time-evolving networks [20, 21]. For example,

Delvenne and Libert [22] compute the stationary distribution for large networks35

through the Ruelle-Bowens random walk [23], and deal with disconnected net-

works with a centrality measurement which they refer to as Entropy Rank.

Estrada [24] also interprets the subgraph centrality as a partition function of a

network, and has defined the thermodynamic quantities on the basis of spectral

graph theory.40

In prior work we have provided the building blocks for the study reported

in this paper. Namely, we have used the cluster expansion from statistical me-

chanics to perform a graphlet or motif decomposition of network structure for

undirected graphs [1]. Both motifs and graphlets are subgraphs of a larger net-

work. Here we decompose the original graph according to the structure by the45

subgraphs that we have predefined. This prior work has mainly investigated

the mapping from clusters in the gas model to undirected network motifs, and

derived the partition function for undirected networks based on the classical

cluster expansion. The corresponding entropy of an undirected graph can be

derived from the partition function and used to effectively represent the evolu-50

tion of network structure. This has verified the validity of the partition function

for undirected networks. However, this work is therefore limited to the study

of undirected graphs, and was restricted to deriving a simple expression for

undirected network entropy. In this paper, we resume the analysis and further

consider the more detailed microscopic structure of the network, especially that55

resulting from directed edges. We use this to develop a thermodynamic frame-
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work for computing the internal evolutionary characteristics of the directed

network in terms of its motif composition.

2. Related Work

2.1. Network Motifs60

There is a substantial literature on analyzing network motifs, starting from

a subgraph description of the frequently occurring patterns within a network

structure. Motifs are recurring patterns that can be used in the representation

of more complex structure [4, 25]. They reflect not only the structural prop-

erties of a network but can also capture its functional properties. Motifs can65

also be regarded as the fundamental building blocks of complex networks since

identical network motifs exist in diverse fields such as biology and sociology [26].

For example, in the biological domain, network motifs are implicated in both

signaling [27] and neuronal activities [28], and also account for the integration

of transcriptional regulation and protein-protein interactions [29].70

Due to the deep insights provided by the motif structure of networks and

the direct links between motif structure and the function of specific real-world

networks, many algorithms to detect and enumerate the frequency of network

motifs have been proposed [30, 31]. These algorithms include exact counting

[32], sampling [33], and pattern growth methods [34], and are developed under75

a number of different paradigms. Network-motif patterns can also be identified

when the nodes and edges in a network are annotated with quantitative features.

The expected number of appearances of a motif can be determined using a Null-

model [30], which is an ensemble of random networks with some properties in

common with the original network.80

2.2. Cluster Expansion

In statistical mechanics, the cluster expansion is usually a power series ex-

pansion of the partition function. Each order of expansion describes the prim-

itive patterns of interaction in a system with a large number of particles [35]
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in terms of smaller units of interaction. Mayer and his collaborators [36] were85

the first to carry out a systematic study of alternative expansions, in the case

of real gases obeying classical statistics. Kahn and Uhlenbeck [37] generalize

the cluster expansion to gases obeying quantum statistics. Lee and Yang [38]

explore the application of these ideas to the real world.

The cluster expansion has become a standard tool in the analysis of solid-90

state structures [39, 40]. Examples include the theory of two-dimensional solids,

which are a kind of regular network structure [41]. Cao and Li [42] further

demonstrate how the cluster expansion assists in building structureproperty

relationships and hence predict the functional structures occurring in a two-

dimensional square lattice.95

The remainder of the paper is structured as follows. In Sec 3, we first show

how the partition function in the classical gas system is linked to the directed

networks based on the description of graph motifs. With this to hand, we

then provide a detailed account of the development of several thermodynamic

variables of directed networks, i.e., the motif entropy, average motif energy, and100

temperature. In Sec 4, we apply the resulting thermodynamic characterization

to several real-world time-varying directed networks, including the drosophila

melanogaster gene expression data, the New York Stock Exchange (NYSE) data,

and the financial networks in the past 10 years. Finally, in Sec 5, we summarize

the main contributions of this paper and also suggest a few research directions105

for the future.

3. Thermodynamic Framework for Directed Networks

In this section, we provide a detailed description of how we construct our

thermodynamic framework for networks using graph motifs, especially to com-

pute the three thermodynamic quantities, namely the energy, the entropy, and110

the temperature.
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Figure 1: Typical motifs for a directed graph. The arrows indicate the direction of the edge.

The edges are both unidirectional and bidirectional. Unidirectional edges have a single arrow.

Bi-directional edges have two opposed arrows.

3.1. Initial considerations

Let G =< V,E > represent a graph where V is a set of vertices, and E ⊆
V × V is the set of edges. Further, let N = |V | be the total number of nodes in

the graph G. We can decompose the graph into differently sized motifs, which

are the representative subgraphs that frequently appear in a graph. Suppose

that the individual motif index is ν and the ν-th motif has node-set Lν and

edge-set Mν . Further let lν be the number of nodes in the ν-th motif and nν

be the frequency of occurrence of the ν-th motif. We will exploit an analogy

with the classical non-ideal gas system from physics. This system is composed

of N particles which occupy a volume V olgas. For such a gas we can represent

interactions between particles using the connected graph composed of l particles,

which is referred to as the l-cluster. The number of l-clusters in the classical

gas system is ml, and thus we have the constraint that

∑

l

lml = N.
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3.2. Directed Motif Detection

Later on in this paper, we implement our method by detecting 15 distinct

motifs for each graph. The structure of the motifs is shown in Figure 1. The115

detailed steps of the motif detection process are listed in Algorithm 1.

3.3. Partition Function

We begin by briefly reviewing the structure of the partition function Z based

on the cluster expansion for the classical gas system together with the computa-

tion of necessary cluster expansion coefficients bl. These coefficients account for120

the motif-based interactiosn and are the key element of our previously published

work on undirected motifs [1].

For undirected graphs, the partition function for the classical gas system

using the notation described above is

Z =
∑

ν∈χ

|Lν |
∏

l=1

1

ml!

{

V olgas
λ3

bl

}ml

(1)

bl =
1

l!λ3l−3V olgas

∫

...

∫

∑ ∏

i<j≤l

fi,jd
3~r1d

3~r2...d
3~rl (2)

where ν ∈ χ is an index that represents the different kinds of lower-order125

interactions which give rise to clusters in the particle system, χ is the set of

such interactions or motifs, and l is the number of particles constituting the

system. The product
∏|Lν |

l=1 is over all particles in the different clusters. The

scale paramerer λ is the average de Broglie wavelength of the particles in the

gas. For the cluster of particles indexed l, ml is the frequency of occurrence130

and bl is the expansion coefficient which is given by a classical cluster integral

for the l-cluster. Finally, fi,j is the interaction strength (or Mayer function)

between the nodes (or particles) i and j.

To evaluate the motif partition function for directed networks, on the other

hand, we again map the directed network motifs to the classical cluster expan-

sion. The detailed mapping process can be seen in Table 1. The particles in

the gas system are nodes of the network, and interactions between particles

7



Algorithm 1: Detecting Directed Graph Motifs

Input: graph G = (V,E), type of motifs m

Output: A set of motif number for each type of motif {n1, ..., nν , ..., nm}
1 initialization, Adjacency matrix of the graph A, Number of nodes in the

the Graph N ;

2 Re-sort each row and column of adjacency matrix according to the degree

of the corresponding node from small to large A;

3 If Nodei connected to Nodej , Undirectional(Nodei, Nodej)=1

If Nodei bidirected to Nodej , Bidirectional(Nodei, Nodej)=1;

4 Compute Two Node motif ;

5 nν = 0, a = copy.copy(A);

6 for i in range(N) do

7 for j in range(i, N) do

8 if Undirectional(i, j) then

9 n1+ = 1;

10 end

11 if Bidirectional(i, j) then

12 n2+ = 1;

13 end

14 end

15 end

16 Compute Three Node motif ;

17 nν = 0, a = copy.copy(A);

18 for i in range(N) do

19 for j in range(i, N) do

20 for k in range(k,N) do

21 Judge the connection mode of the three nodes;

22 if Node i, j, k construct the ν-th motif then

23 nν+ = 1;

24 end

25 end

26 end

27 end

28 return n for the number of ν-th motif in different structure ;
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Table 1: Comparison between thermodynamic gas system and directed network.

Gas System Directed Network

cluster motif

number of particles

in gas system N

number of nodes

in the network N

multiple volume for

the gas system V olgas
single scalar radial variable r

number of particles

in an l-cluster l

number of nodes

in the ν-th motif lν

frequency of occurrence

of the l-cluster ml

frequency of occurrence

of the ν-th motif nν

the classical cluster integral

for l-cluster bl

the configuration integral

for the ν-th motif qν

correspond to edges. In terms of the computational elements of the mapping,

we treat the motifs as the interactions represented by the expansion coefficients

appearing in the partition function. We simplify the partition function to the

one-dimensional case by replacing the multiple volume integrals by a single

scalar radial variable r and by ignoring the dependence on λ which is a constant

related to the physical properties of particles. We let nν be the number of mo-

tifs of type ν analogously to the number of l-clusters ml in the classical cluster

expansion. The corresponding motif configuration integral qν is the configura-

tion integral for the νth motif, and this plays a similar role to bl in the cluster

expansion. The partition function for the network can be written as a sum over

motifs ν as

Z =
∑

ν∈χ

|Lν |
∏

nν=1

1

nν !

{

rqν

}nν

=
∑

ν∈χ

zν (3)

i.e. the sum over all possible motifs for the N particles.

We use differently sized motifs to decompose the network, and according to

this decomposition the network can be considered as consisting of two different
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components in terms of the interactions between particles or nodes. The first

component is an interaction term governed by the connected component of a

specific network motif. The second component is a non-interaction part, gov-

erned by the set of independent or disjoint nodes. Thus the number of these

nodes is N− lνnν . The product over the integrals of all possible graphs becomes

the product of the integral over the connected interaction components together

with an disjoint non-interaction part. As a result we can write the partition

function for motif ν when N − lνnν ≥ 0

zν =
1

nν !
(rqν)

nν
1

(N − lνnν)!
(rq0)

N−lνnν (4)

where qν is the configuration integral for the νth motif which plays a similar135

role to bl in the cluster expansion, and lν is the number of nodes in the motif.

Here q0 is the configuration integral of a single node which we set to unity.

According to classical cluster expansion,the expansion co-efficient bl repre-

sents the configuration integral of l-cluster in Eq. 2 , and qν as the configuration

integral of the ν-th motif in the network. In this setting the quantity analogous

to bl defined above is

qν =
1

lν !r

∫

...

∫

∑ ∏

i<j≤l

fi,jd
3~r1d

3~r2...d
3~rl =

1

lν !r
ζν (5)

where ζν is the configuration integral resulting from product of integrals over

all edges connecting nodes in the ν-th motif.

3.4. Motif Energy and Entropy140

The average energy of the network can be expressed in terms of the Hamil-

tonian operator and the partition function as

U = kβ2[
∂

∂T
lnZ] =

∂

∂β
lnZ (6)

Moreover, the thermodynamic entropy S is obtained by

S = lnZ − β
∂ lnZ

∂β
(7)
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For directed graphs, we capture the directionality of edges connecting the

nodes of a motif using the number of unidirectional edges du,ν and the num-

ber of bidirectional edges db,ν in the ν-th motif. Thus the number of disjoint

nodes without connecting edges is lν − du,ν − db,ν . The directed motif con-

figurational integral can be obtained by decomposing the overall configuration

integral into contributions originating from nodes connected by unidirectional

edges, bi-directional edges and those that are disjoint.

ζν = ǫ
lν−du,ν−db,ν

0 (ǫu)
du,ν (ǫb)

db,ν (8)

where ǫu and ǫb are the corresponding edge configurational integrals obtained

using the Mayer function and given by

ǫu =

∫ ∞

0

(e−βv(r) − 1)dr

ǫb =

∫ ∞

0

(e−βv(r) − 1)2dr

(9)

where r is the separation betweeen particles in the gas (or the ”length” of the

corresponding edge) Here we model the inter-particle repulsive potential vr)

using the Lennard-Jones potential

v(r) = 4ǫ[(
σ

r
)12 − (

σ

r
)6]

from chemical-physics. To make numerical computations of the configuration

integrals, we use Simpson’s Method [43]

ǫu = eβ
rmax
∑

r=rmin

e−v(r) − rmax − rmin

∆r

ǫb = eβ
rmax
∑

r=rmin

(e−2v − 2e−v) +
rmax − rmin

∆r

(10)

where ∆r → 0 is the bin size for r and [rmin, rmax] is the numerical interval

of integration. As a result,

ǫu = eβpu +R

ǫb = eβpb −R
(11)
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where

pu =

rmax
∑

r=rmin

e−v(r)

pb =

rmax
∑

r=rmin

(e−2v − 2e−v)

R = −rmax − rmin

∆r

(12)

Thus, according to Eq. 4, Eq. 5 and Eq. 8, the logarithm of the partition

function for directed graphs can be written as

log zν = nν(lν log
ǫ0
lν

+ du,ν log
ǫu
ǫ0

+ db,ν log
ǫb
ǫ0

− log nν) + (N − lνnν) log
rq0

N − lνnν

(13)

The corresponding energy is given according to Eq. 6 by

Uν =
nνdu,νPue

β

Pueβ +R
+

nνdb,νPbe
β

Pbeβ −R
(14)

From Eq. 7, with Vν = nν lν and the total number of unidirectional edges

Γu,ν = nνdu,ν and bidirectional edges Γb,ν = nνdb,ν appearing in the motif, the

entropy of a directed graph is given by:

Sν = N log
rq0

N − Vν
+ Vν log

[

ǫ0
lν

N − Vν

rq0

]

− nν log nν

+ Γu,ν log

[

ǫu
ǫ0

exp

[

−β(1− R

ǫu
)

]]

+ Γb,ν log

[

ǫb
ǫ0

exp

[

−β(1 +
R

ǫb
)

]]

(15)

There are five terms appearing in this expression for the directed network

entropy, and have the following properties

• The first three terms are independent of temperature. The first of these

terms is proportional to the number of nodes in the network and increases

as the number of nodes in the motif of type ν increases. The second145

term is proportional to the number of nodes contained within the clique

of type ν and decreases as the size lν of the motif increases. The third

term decreases with the increasing frequency of the motif of type ν and

controls the distribution of motif frequencies.
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• The final two terms give the separate entropy contributions from unidi-150

rectional and bidirectional edges. When the graph is strongly directed,

i.e. there are no bidirectional edges, then the final term vanishes. When,

on the other hand, the graph is weakly directed, i.e. there are few unidi-

rectional edges, then the entropy approaches for the undirected graph.

3.5. Temperature155

With thermodynamic entropy and energy obtained through the motif ex-

pansion, we explore how the motif structure determines the thermodynamic

temperature, i.e. the rate of change of energy with entropy. When the motif

composition varies with time, then the effects of these change can be moni-

tored by computing and observing changes in temperature. Suppose that the

graph-sequence GT = {G1, ...Gi, ...Gn} represent a time-varying network system

sampled at different times t1,...,tn. Let Gi be the network at time epoch ti. We

perform our motif-based analysis on such sequences of time-varying or dynamic

graphs. Here, the graphs Gi are time-varying samples in which the node-set is

fixed and the edge-set is time-varying. Examples of the graphs which satisfy

these requirements and are studied later in this paper include financial market

networks and gene regulatory networks. In both cases the node-set is fixed and

the edge-set varies with time. The network structure fluctuations are associated

with a measured temperature Tc defined as.

1

Tc (Gi, Gj)
=

dS

dE
=

Sνi
− Sνj

Uνi
− Uνj

(16)

We treat β = 1/T as a hyper-parameter associated with the gas-model,

and this corresponds to the ambient temperature. To make this explicit, we

define the ambient temperature to be T0 = 1/β. The overall temperature of the

network is the sim of the ambient and fluctuation temperature, i.e.

T = T0 + Tc =
1

kβ
+

Uνi
− Uνj

Sνi
− Sνj

(17)

To further develop the expression for the overall temperature, we compute
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the change in entropy

Sνi
− Sνj

= N log
N − Vνj

N − Vνi

+ log
ǫ0
rq0

(Vνi
− Vνj

)

+ Vνi
log

[

N − Vνi

lνi

]

− Vνj
log

[

N − Vνj

lνj

]

− nνi
log nνi

+ nνj
log nνj

+ {Γu,νi
− Γu,νj

} log
[

ǫu
ǫ0

exp

[

−β(1− R

ǫu
)

]]

+ {Γb,νi
− Γb,νj

} log
[

ǫb
ǫ0

exp

[

−β(1 +
R

ǫb
)

]]

(18)

The change in energy can be similarly computed as

Uνi
− Uνj

=
Pue

β

Pueβ +R
(nνi

du,νi
− nνj

du,νj
)

+
Pbe

β

Pbeβ −R
(nνi

db,νi
− nνj

db,νj
)

(19)

Thus the overall temperature can be computed from the changes in the motif

edge composition from epoch to epoch as the network evolves with time.

4. Experiments

In this section, we use the proposed thermodynamic framework to analyze

the time evolution of real-world complex networks and investigate the utility160

of the graph motif thermodynamic variables, i.e. entropy, energy, and temper-

ature. First, we investigate the correlation between motif entropy and motif

energy. Second, we explore the relationship between the motif temperature

and the structure of the evolving network. Third, we use these thermodynamic

quantities to analyse realistic time-evolving networks to explore whether they165

can effectively reveal the evolution of detailed network structure. Finally, we

use the proposed thermodynamic framework to a) analyse financial network

evolution and detect temporal anomalies associated with global financial or po-

litical crises, and b) to study developmental state detection in gene regulatory

networks varying with time.170
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4.1. DataSet

Drosophila melanogaster Gene Networks: The Drosophila melanogaster

Gene Networks [44] are extracted from a time series of gene expression data

measured during full life cycle of drosophila melanogaster. The data follows

the dynamics of 588 development genes along 66-time points spanning four dif-175

ferent developmental stages. i.e. embryonic(1-30), larval(31-40), pupal(41-58),

adult(59-66), which constitute a time-varying network.

NYSE Financial Networks: New York Stock Exchange (NYSE) database

[45] is composed of 347 stock and their associated daily closing prices over 6004

transaction days from January 1986 to February 2011. To extract market net-180

works, we closely follow [46]. We use a sliding time window of 28 days to obtain

a moving closing price sequence for each stock. We regard each individual stock

as a node of the time evolving network. At each time epoch, to determine the

set of edges between nodes we compute the time-lagged correlation coefficient

between the moving stock closing price sequences for each pair of stock. We185

search for the time-lag that gives the maximum correlation coefficient, and if

this is in the top 5 percentile of the cumulative distribution we create a con-

necting edge. The direction of the edge is determined by the sign of optimal

time lag. Using this procedure we construct 5976 financial network samples

corresponding to different trading days.190

Financial Networks for the Past Ten Years: We construct financial

market networks covering the past ten years. These encompass 416 stock with

their daily closing prices for 2639 transaction days from January 2010 to June

2020. Here we use a time window of 20 days (different from the 28-day time

window in the NYSE Financial networks) and slide the window with time to195

obtain a network sequence as above.

4.2. Experimental Settings

We detect the motifs for each network as shown in Fig. 1. We then com-

pute the motif entropy, energy and temperature for the different datasets. The

parameter settings used are listed in Table 2. The physical parameters of the200
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Table 2: Parameters for different datasets

Datasets Number of graph Motifs used Number of nodes β σ

Drosophila Networks 66 15 588 1000 3

NYSE Financial Networks 5976 15 347 100 9

Financial Networks

for the Past Ten Years
2619 15 416 100 9

model are the inverse initial temperature β and the scale parameter σ appearing

in the potential.

4.3. Correlation Between Entropy And Energy

In this subsection, we aim to explore the internal relationship between energy

and entropy as they evolve with time. We first investigate these thermodynamic205

variables for the Drosophila melanogaster Gene Networks and the Financial

Networks data. At each time step, we compute the motif entropy and motif

energy for each graph. We construct two thermodynamic variable vectors, the

motif entropy vector S = (S1, ..., St, St+1, ...)
T and the motif energy vector

U = (U1, ...Ut, Ut+1, ...)
T for the entire network sequence. We then calculate the210

difference of motif entropy at the epochs t and (t+1), which can be represented

as δSt = St − St+1, and the corresponding difference of motif energy is δU =

Ut − Ut+1. We then construct a scatter plot of δSt versus with δE for two

realistic evolving networks for the samples spanned by the different time epochs.

The scatter plot for the Drosophila data is shown in Fig. 2 (a). The are a215

number of features to be noted from this data. Firstly, the number of distinct

scatter points displayed in the figure is less than the number of Drosophila

network samples over time. The reason for this is that many networks have the

same change in motif energy and entropy compared to their previous sampling

epoch. Secondly, the scatter points are arranged in an approximately straight220

line. When the change in energy equals zero, the change in entropy is also zero.

According to the Eq. 16 the ratio of the change in entropy to the change in

energy is the inverse fluctuation temperature. This result shows that when the

Drosophila networks evolve with time, the motif entropy and energy change in
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Figure 2: Figures (a) and (b) show the change in motif entropy versus the change in motif

energy on Drosophila melanogaster networks and Financial Networks respectively.

a manner consistent with small fluctuations in the internal temperature. In Fig.225

2 (b), we repeat this analysis for the financial market data. Again, most of

the points lie on a tight regression line, of approximately constant slope. This

indicates that the ratio of the change in entropy to the change in energy, i.e. the

temperature, appears to show small fluctuations over time. There are also some

points that deviate significantly from the regression trend line, which correspond230

to abrupt changes in the temperature associated with the network. These are

associated with temporal anomalies in network structure, and are caused by

external events such as global financial and political crises.

4.4. Temperature and Network Structure

In this section, we explore the relationship between the thermodynamic tem-235

perature variables and the change of network structure. To this end, we com-

mence by constructing multiple groups of networks with different node degrees.

We construct these graphs in a similar way to that in [47]. First, we construct

a complete graph with 80 nodes, we continue to delete its edges randomly with

a probability p ∈ [0, 02]. Second, we begin with the same complete graph, this240

time we delete edges randomly with the probability of p+△p. Using these two

random graphs, we compute the temperature according to Eq. 17. We repeat

17
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Figure 3: Mean and standard deviation of the temperature versus △p for random graphs with

different graph sizes.

the process above 100 times with the variable probability of deleting edges △p

varying from 0.1 to 0.6. In this way we construct a group of random networks

consisting of 80 nodes, and the varying network structure which evolves with245

the change of node degree. We also construct the random graphs with 150

nodes and 300 nodes respectively. We plot the mean with the standard devia-

tion(shown an error bar) of the temperature versus △p for the set of random

graphs of different sizes.

As shown in Fig. 3, as △p increases, both the mean values and the variance250

values of temperature increases for all three kinds of graphs. This is because

when there is a dramatic structural change in the time-varying network, the

variance of the ratio (Sνi
− Sνj

)/(Uνi
−Uνj

) becomes larger, therefore the vari-

ance of the temperature changes larger.

To take our study one step further, we investigate the relationship between255
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Figure 4: Mean and standard deviation of the temperature versus △m for regular graphs with

different graph sizes.

temperature and network structure especially when the internal structure of the

network has changed by a small amount during the evolution. We first construct

a regular graph of 80 nodes with degree m = 10, and create a second regular

graph with degree m + △m. Thus the temperature difference between these

two networks can be computed. We also create 100 realizations of these graphs260

with △m varying from 12 to 50. We plot the mean and standard deviation of

the temperature versus △m for different sizes of graphs in Fig. 4. For each

set of △m, the variance value of the temperature stays almost constant. The

reason for this is that each set of regular graphs with fixed node degree m+△m,

the network structure remains unchanged. The mean value of the temperature265

shows some small fluctuations with varying △m. This is because the internal

motif structure of the network changes in a regular way with the addition of

two new neighbors to each node for each time.
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4.5. Thermodynamic Measures for Analysing Network Evolution

To evaluate our thermodynamic framework in characterizing networks, we270

compute the thermodynamic motif entropy and motif energy respectively. We

also compute the relative temperature between networks at consecutive time

steps. We investigating how these thermodynamic network variables evolve

with time, and evaluate their effectiveness in characterizing distinct periods in

network evolution.275

We compare the thermodynamic quantities computed using our motif method

with the von Neumann entropy and associated thermodynamic variables de-

scribed in [48]. Here the von Neumann entropy for a directed graph is given by

SD
VN = 1− 1

|V| −
1

2|V|2







∑

(u,v)∈E1

dinu
dinv dout2u

+
∑

(u,v)∈E2

1

doutu doutv







,

where V is the number of nodes in the graph. The symbols E1 and E2 denote

two disjoint subsets of the edge set of the graph, containing unidirectional and

bidirectional edges respectively, and so E1 = {(u, v) | (u, v) ∈ E ∧ (v, u) /∈ E},
E2 = {(u, v) | (u, v) ∈ E ∧(v, u) ∈ E} satisfy the conditions E1∪E2 = E , E1∩E2 =

∅. For the internal energy U =
∑|V|

s=1 psEs where Es is the energy of microstate

s and ps is the probability that the system occupies a microstate indexed by s.

The internal energy is taken to be the total number of edges in the graph i.e.,

U = |E|. Finally the von Neumann temperature is obtained through

1

T (G1,G2)
=

∑

(u,v)∈E1,E2

du∆v + dv∆u +∆u∆v

∆|E|du (du +∆u) dv (dv +∆v)
,

where∆|E| = |E2| − |E1|, ∆u and ∆v are defined as the difference between the

degree of vertex u in graphs G2 and G1.

In Figure 5 and Figure 6, we compare our thermodynamic framework with

the von Neumann entropy and the average node degree, which is a widely used

measure of network structure. The four developmental stages for Drosophila are280

shown in different colors (name them here embryonic, larval, pupal, and adult).

From Fig. 5, it is clear that von Neumann entropy shows three differ-

ent evolutionary periods where it is either increasing, decreasing, or constant.
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Figure 5: Top to bottom: the temporal evolution of (a) the von Neumann entropy, (b) the

temperature, and (c) the internal energy for the dynamic Drosophila melanogaster network.

These three states successfully distinguish the pupal and adult periods in the

Drosophila development, but do not distinguish between the embryonic and285

larval periods. For the motif entropy, on the other hand, in Fig. 6, the sec-

tion marked in red (embryonic period) shows some local fluctuations due to

structural changes associated with the early development of the embryo. How-

ever, the subsequent three stages show obvious increasing and decreasing trends,

with which we can clearly distinguish the different developmental periods for290

Drosophila.

The temperature is computed as the partial derivative of energy and with

respect to entropy. Here we focus on the boundaries between different develop-

mental periods. Comparing the temperature in Figs. 5 and Fig. 6, we can find

that when the growth period of Drosophila changes, the motif temperature curve295

shows obvious transitions, while the von Neumann temperature remains almost

unchanged. This result indicates that the motif temperature can well represent

the transitions between different developmental periods for the Drosophila from

the gene regulatory network data.
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Figure 6: Top to bottom: the temporal evolution of (a) the motif entropy, (b) the temperature,

(c) the motif energy, and (d) the average degree for the dynamic Drosophila melanogaster

network.

Finally, the internal energy shown in Fig. 5 is equal to the number of edges300

in each graph, which is proportional to the average degree shown in Fig. 6. The

reason for this is that the average degree is computed from the number of edges

in the graph, and the number of nodes in the graph remains unchanged over

time. Both the internal energy and the motif energy behave in a similar manner

to the corresponding entropy.305

4.6. Thermodynamic Framework for Characterizing Abrupt Changes in Finan-

cial Networks

4.6.1. Financial Networks for the Past Ten Years

We continue our study by exploring whether the motif thermodynamic frame-

work can be used for a better understanding of the time evolution of financial

networks. To this end, we first compare the evolutionary behavior of motif

entropy and von Neumann entropy for the financial networks. At each time

step, we compute both the motif entropy and von Neumann entropy. For a

graph G with adjacency matrix A, according to Passerini and Severini [49] the
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Figure 7: The motif entropy (upper, orange), von Neumann entropy (middle, blue), and

average degree (lower, green) versus time for the financial networks covering past ten years.

von-Neumann entropy is

SvN (G) = −Tr[
L̃

|V | ln
L̃

|V | ]

where L̃ = D−1/2(D−A)D−1/2 is the normalised Laplacian matrix of the graph.

We calculate the second motif entropy and the von Neumann entropy for310

each sample of the graph and plot the two entropy values for the stock network

as it evolves with time. We choose the value of second motif entropy instead

of the first motif entropy since the networks are mainly composed of the sec-

ond motif. Figure 7 shows the time series for the motif entropy (orange line),

the von Neumann entropy (blue line), and the average degree (green line) for315

2619 trading day. When a financial crisis occurs, there is a sudden drop (i.e.

a trough) in the motif entropy. Examples include the Debt Ceiling Standoff

(2013.4), the Brexit Vote (2016.6.23), the Trump Election Win (2016.11). In

the case of the von Neumann entropy, it is hard to distinguish these events on

the basis of entropy. On the other hand, for some crisis events which persist320
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Figure 8: The 3D scatter plot of the financial networks in the thermodynamic space. The

financial crisis period is represented by triangular symbols of different colors, while the re-

maining periods are represented by green dots, and these form the background. (a) the

thermodynamic framework spanned by motif entropy, motif energy and motif temperature.

(b)the thermodynamic framework spanned by von Neumann entropy, internal energy and

temperature.

over an extended period, e.g. the U.S-China Trade War (2019-2020), the motif

entropy reveals multiple anomalies over the period. The von Neumann entropy

shows fluctuations that are similar to those exhibited over crisis free periods. In

before, we find that the average degree of the graph remains constant through-

out time so that we cannot capture any useful information through this classical325

graph structure measurements. This is because when we construct the graph,

we choose to establish edge connections between the nodes whose correlation

coefficient is in the top 5 percentile. Since the number of nodes in the graph

does not change with the network, the number of edges remains the same, and

the average degree of the network eventually stays constant.330

To further explore whether the thermodynamic motif framework can be used

as an effective tool for better understanding the evolution of financial networks,

we calculate the motif entropy, motif energy, and the corresponding tempera-

ture for each graph evolving with time, and plot them as a three-dimensional

scatter plot in Fig. 8(a). We also create a three-dimensional scatter plot for the335
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von Neumann thermodynamic framework with von Neumann entropy, internal

energy, and corresponding temperature as the coordinates, the result is shown

in Figure 8(b).

As is shown in Fig. 8,when we use the motif-based framework the entire

time series during the 2619 trading days and multiple financial crises shown340

with different colored markers are clearly separated. On the other hand, in the

case of the von Neumann thermodynamic variables the graphs corresponding to

different time epochs are badly interspersed. On the other hand, for the ambient

(non-crisis) time represented by green dots, the motif thermodynamic framework

also performs better than the von Neumann thermodynamic framework because345

it gives rise to a strong manifold structure with good temporal continuity.

4.6.2. NYSE Financial Networks Anomalous Event Detection

To see more clearly the detail of how the thermodynamic variables change

over time during the different periods and test the ability of the thermody-

namic methods to characterize a network when it encounters network a sudden350

change in structure, we explore how the motif entropy of the NYSE stock net-

works evolve with time. We select nine different financial crises(i.e. Black Mon-

day, Friday the 13th Mini Crash, Early 1990s recession, Asian Financial Crisis,

Russian Financial Crisis, Dot-com Bubble, September 11 attacks, Downturn of

2002-2003, Financial Crisis of 2007-2008). We compare our motif entropy with355

the von Neumann entropy. As we can see in Fig. 9,the motif entropy responds

strongly to the crises while varying smoothly before and after the crisis period.

The von Neumann entropy, on the other hand, fails to detect several financial

crises. In the case of the Early 1990s Recession events though, the von Neumann

entropy has a strong shoulder.360

4.6.3. Time Series Embeddings

To take our study one step further we focus on detecting temporal anoma-

lies. To do this we perform embeddings of the financial networks time series

covering past ten years. For the entropy vectors of the networks, we use kernel
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Figure 9: The evaluation of motif entropy (upper red) and von Neumann entropy(lower black)

for nine different global events in Financial networks

PCA. We use the graph entropies to construct a kernel matrix, and then per-

form linear kernel principal components analysis to embed the sample of graphs

into a vector space. Let H be the matrix of entropy differences with element

H(i, j) = ||SV N (i)−SV N (j)||. We use the entropy similarity matrix to compute

a symmetric kernel matrix

K = −1/2(I − J/M)H(I − J/M)

where I is the M×M identity matrix and J = eeT where e = (1, 1, ..., 1)T is the

all-ones vector of length M . We perform kernel embedding on the matrix K. To

this end let Y be the matrix with the embedding coordinates of the graphs as

columns, then K = XTX. Performing the eigendecomposition K = UΛUT , the365

matrix of embedding coordinates is X =
√
ΛUT . We visualize the distribution

of the graphs using the first three rows of X corresponding to the leading three

eigenvectors of the kernel matrix.

Figure 10 illustrates the structural changes in the embedding spaces before
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Figure 10: Embeddings in the proximity of the Black Monday event. Figure 10 (a) and (b)

depict the spatial distribution of embeddings obtained by KPCA of the Motif entropy vectors

and the von Neumann entropy during the UK Brexit Vote, respectively. While Figure 10 (c)

and (d) illustrates the distribution around the period of the COVID-19.

and after crucial events generated from motif entropy and Von Neumann en-370

tropy, respectively. The blue star represents the exact day before the crisis

occurred while the red stars represent the period during the crises. From the

figure, it is clear that both types of event can be effectively detected by the two

entropies. From Figure (a)(b), it is clear that the crisis event can be effectively

detected by motif entropy while the von Neumann entropy failed, and the motif375

entropy keeps the continuity in time. From Figure (c) and (d), we can find

that the motif entropy shows the changes before the event happens(blue points)
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and multiple exceptions during event occurrence(red stars). This is because the

COVID-19 is a long-term global crisis event that persists until the end of the

data.380

5. Conclusion

In this paper, we proposed a novel thermodynamic framework for the analy-

sis of time-varying networks based on motif. Commencing from constructing the

relationship between network structure and gas system structure, we introduce

the partition function for the thermodynamic system. We continue to compare385

the cluster in the gas system to the motifs in directed networks and derive the

partition function based on the motif for the network. Then we compute the

motif entropy and motif energy for the network through the motif partition

function, the temperature can also be get with the partial derivative relation

between energy and entropy. We finally applied our method on the financial390

networks, the result all demonstrate the effectiveness of three thermodynamic

variables.

Our future work will focus on applying thermodynamic analysis to capture

the internal laws of network evolution and predict network development. For

example, we can predict the possible financial crisis events in the stock market,395

or predict whether the protein will have pathological changes. Another interest-

ing line of investigation would be to explore if the thermodynamic framework

can be extended to the domains of more complex networks for example the dy-

namic weighted graphs and study the characteristics of these thermodynamic

variables.400

Acknowledgment

This work is supported in part by the National Natural Science Foundation

of China under Grant U2066213 and 61860206004, and in part by the Research

Funds of State Grid Shaanxi Electric Power Company and State Grid Shaanxi

Information and Telecommunication Company (contract no.SGSNXT00GCJS2000104).405

28



Dongdong Chen and Xingchen Guo are co-first authors, which contributed

equally to this paper.

References

[1] Z. Zhang, D. Chen, L. Bai, J. Wang, E. R. Hancock, Graph motif entropy

for understanding time-evolving networks, IEEE Transactions on Neural410

Networks and Learning Systems (2020).

[2] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Re-

views of Modern Physics 74 (1) (2002) 47.

[3] K. Anand, G. Bianconi, Entropy measures for networks: Toward an infor-

mation theory of complex topologies, Physical Review E Statistical Non-415

linear and Soft Matter Physics 80 (4 Pt 2) (2009) 045102.

[4] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon,

Network motifs: simple building blocks of complex networks, Science

298 (5594) (2002) 824–827.

[5] I. A.Maraziotis, S. Perantonis, A. Dragomir, D. Thanos, K-nets: Clustering420

through nearest neighbors networks, Pattern Recognition 88 (2019) 470–

481.

[6] N. Rosenfeld, M. B. Elowitz, U. Alon, Negative autoregulation speeds the

response times of transcription networks, Journal of Molecular Biology

323 (5) (2002) 785–793.425

[7] A. Becskei, L. Serrano, Engineering stability in gene networks by autoreg-

ulation, Nature 405 (6786) (2000) 590–593.

[8] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,

M. Sheffer, U. Alon, Superfamilies of designed and evolved networks, Sci-

ence 303 (5663) (2004) 1538–1542.430

29



[9] H. Bolouri, E. H. Davidson, Transcriptional regulatory cascades in devel-

opment: initial rates, not steady state, determine network kinetics, Pro-

ceedings of the National Academy of Sciences 100 (16) (2003) 9371–9376.

[10] S. Hooshangi, S. Thiberge, R. Weiss, Ultrasensitivity and noise propaga-

tion in a synthetic transcriptional cascade, Proceedings of the National435

Academy of Sciences 102 (10) (2005) 3581–3586.

[11] Y. T. Maeda, M. Sano, Regulatory dynamics of synthetic gene networks

with positive feedback, Journal of Molecular Biology 359 (4) (2006) 1107–

1124.

[12] S. Kalir, S. Mangan, U. Alon, A coherent feed-forward loop with a sum440

input function prolongs flagella expression in escherichia coli, Molecular

Systems Biology 1 (1) (2005) 2005–0006.

[13] S. Mangan, A. Zaslaver, U. Alon, The coherent feedforward loop serves as a

sign-sensitive delay element in transcription networks, Journal of Molecular

Biology 334 (2) (2003) 197–204.445

[14] M. Ronen, R. Rosenberg, B. I. Shraiman, U. Alon, Assigning numbers to

the arrows: parameterizing a gene regulation network by using accurate ex-

pression kinetics, Proceedings of The National Academy of Sciences 99 (16)

(2002) 10555–10560.

[15] N. Rosenfeld, U. Alon, Response delays and the structure of transcription450

networks, Journal of Molecular Biology 329 (4) (2003) 645–654.

[16] I. Amit, A. Citri, T. Shay, Y. Lu, M. Katz, F. Zhang, G. Tarcic, D. Siwak,

J. Lahad, J. Jacob-Hirsch, et al., A module of negative feedback regulators

defines growth factor signaling, Nature Genetics 39 (4) (2007) 503–512.

[17] E. Wong, B. Baur, S. Quader, C.-H. Huang, Biological network motif de-455

tection: principles and practice, Briefings In Bioinformatics 13 (2) (2011)

202–215.

30



[18] U. Alon, Network motifs: theory and experimental approaches, Nature

Reviews Genetics 8 (6) (2007) 450–461.

[19] J. Wang, R. C. Wilson, E. R. Hancock, Spin statistics, partition functions460

and network entropy, Journal of Complex Networks 5 (6) (2017) 858–883.

[20] C. Ye, R. Wilson, L. Rossi, A. Torsello, E. Hancock, Thermodynamic anal-

ysis of time evolving networks, Entropy 20 (10) (2018) 759.

[21] Q. Hui, Y. Jihao, L. Xiaoyan, Lg: A clustering framework supported by

point proximity relations, Pattern Recognition 103 (2020) 107265.465

[22] J. C. Delvenne, A.-S. Libert, Centrality measures and thermodynamic for-

malism for complex networks, Physical Review E Statistical Nonlinear and

Soft Matter Physics 83 (4) (2011) 046117.

[23] Y. Chen, T. T. Georgiou, M. Pavon, Ruelle-bowen continuous-time random

walk, arXiv: Optimization and Control (2018).470

[24] E. Estrada, N. Hatano, Statistical-mechanical approach to subgraph cen-

trality in complex networks, Chemical Physics Letters 439 (1-3) (2009)

247–251.

[25] S. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the tran-

scriptional regulation network of escherichia coli, Nature Genetics 31 (1)475

(2002) 64–68.

[26] Y. Sui, G. Wang, L. Zhang, Sparse subspace clustering via low-rank struc-

ture propagation, Pattern Recognition 95 (2019) 261–271.

[27] A. Awan, H. Bari, F. Yan, S. Moksong, S. Yang, S. Chowdhury, Q. Cui,

Z. Yu, E. Purisima, E. Wang, Regulatory network motifs and hotspots480

of cancer genes in a mammalian cellular signalling network, IET Systems

Biology 1 (5) (2007) 292–297.

31



[28] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, D. B. Chklovskii,

Structural properties of the caenorhabditis elegans neuronal network, PLoS

Computational Biology 7 (2) (2011) e1001066.485

[29] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pin-

ter, U. Alon, H. Margalit, Network motifs in integrated cellular networks

of transcription–regulation and protein–protein interaction, Proceedings of

the National Academy of Sciences 101 (16) (2004) 5934–5939.
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