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Abstract  

The use of Jacobians in chemical thermodynamics has focused chiefly on explicit functions. We 

generalize this powerful method to incorporate implicit functions. Considering a slight deviation 

from equilibrium, governed by the Gibbs-Duhem equations, can simplify the theories of 

preferential solvation and adsorption significantly. Since these deviations are zero at equilibrium, 

the implicit function theorem can be applied by postulating their differentiability. A generalization 

to multiple component solutions is straightforward by virtue of Jacobians and the implicit function 

theorem.  
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1. Introduction  

In equilibrium thermodynamics, the stability of a reaction or a system depends on a set of 

thermodynamic variables. Experiments carried out in one set of thermodynamic variables often 

need to be converted to another [1,2]. This is carried out via variable changes in partial derivatives, 

which can be quite tedious and lengthy [3,4]. However, the use of Jacobians has eased the 

calculations significantly [5–9]. 

 

The application of the Jacobian method has so far been limited chiefly to explicit functions and 

the conversions of variables in between [5–9]. However, the thermodynamics of chemical 

equilibria essentially involves implicit functions [10–13]. For example, consider two phases in 

equilibrium. The discussion of phase equilibria starts by considering the difference in the chemical 

potential of each species, Δ𝜇𝑖 , between the two phases (See Appendix A). Phase equilibrium 

corresponds to Δ𝜇𝑖 = 0; however, allowing Δ𝜇𝑖 to deviate from equilibrium is crucial in deriving 

the Clausius equation, Clausius-Clapeyron equation, and their multiple-component generalizations 

such as the Gibbs-Konovalov theorem [10–13], as well as in interpreting conformational phase 

diagrams via the fluctuation solution theory [14–17]. The key is to write down the derivatives of Δ𝜇𝑖 with respect to temperature, pressure, and composition, for which the differentiability of Δ𝜇𝑖 
around zero is essential [10–17]. Thus, the implicit function theorem [18,19] is the key to relate 

the phase diagram to these derivatives (see Appendix A). In this paper, we will generalize this 

lesson to solvation and adsorption in solvent mixtures.  

 

Thermodynamic variable conversions have made the statistical thermodynamic approach to 

solvation and adsorption in solvent mixtures complicated with significant demand for calculations 
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[20–28]. Despite this, classical concepts in biomolecular solvation (such as preferential solvation 

[29,30], pressure [31] and volumetric [32] analyses), based originally on a purely 

phenomenological basis (such as stoichiometric binding or exchange models [33–35]), have been 

reformulated rigorously via fluctuation theory [36–40]. They became an essential tool for 

biomolecular stability [36,37,41–43] and hydrotropic solubilization [44–48], applicable to small 

molecules, macromolecular assemblies and nanoparticles alike [16,49–52]. (Biomolecular 

stability, for example, can be understood from the difference in preferential solvation between 

folded and denatured conformations of a protein [37,53,54].) Such an approach has also been 

extended to the analysis of adsorption isotherm [55] and solution in mesoscale confinement [56].  

 

Here we demonstrate that a slight deviation from equilibrium, when postulated to be 

differentiable, can simplify the theories of preferential solvation and adsorption significantly via 

implicit function theorem. Calculations on preferential solvation and adsorption isotherm can be 

simplified significantly via Jacobians and rules of determinant evaluation, with straightforward 

generalization to multiple-component solutions.  

 

2. Preferential solvation and adsorption under constant temperature or constant pressure  

 

2.1. Setup  

 

Consider a two-component mixture consisting of species 1 and 2 at temperature 𝑇 and pressure 𝑃. 

We keep the temperature constant throughout. Through Legendre transformation of the Gibbs free 
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energy 𝐺(𝑇, 𝑃, 𝑁1, 𝑁2), where 𝑁𝑖  is the number of species 𝑖, let us introduce a thermodynamic 

function  𝐷(𝑇, 𝑃, 𝜇1, 𝜇2) = 𝐺 − 𝑁1𝜇1 − 𝑁2𝜇2 (1) 

where 𝜇𝑖  is the chemical potential of the species 𝑖 . For a macroscopic system at equilibrium, 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2) = 0  must hold true. However, when 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2) ≠ 0 , the system is not at 

equilibrium, and the chemical potentials, 𝜇1 and 𝜇2, are allowed to deviate from their equilibrium 

values. Eq. (1) can be expressed also in a differential form 𝑑𝐷 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 − 𝑁1𝑑𝜇1 − 𝑁2𝑑𝜇2 (2a) 

At equilibrium, 𝑑𝐷 = 0, when Eq. (2a) reduces to the Gibbs-Duhem equation. However, when the 

system is not at equilibrium, 𝑑𝐷 ≠ 0, which means that the system violates the Gibbs-Duhem 

equation. Let us also consider an inhomogeneous solution with a solute whose centre-of-mass is 

fixed at the origin [36,46,57]. Here, we can also define the corresponding function, 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ), where 𝜇𝑢∗  is the chemical potential of the fixed solute, via Legendre transform. 𝜇𝑢∗  is commonly referred to as the “pseudo chemical potential” and adopted widely as the free 

energy to quantify the solvation effects [36,43,58,59]. The excess solvation numbers and the 

Kirkwood-Buff integrals are routinely determined from how 𝜇𝑢∗  changes with 𝜇1 or 𝜇2 [36,43,57–

59]. We therefore adopt 𝜇𝑢∗  in our approach to preferential solvation. Using this quantity, the 

differential expression for the inhomogeneous solution is  𝑑𝐷∗ = 𝑉∗𝑑𝑃 − 𝑆∗𝑑𝑇 − 𝑁1∗𝑑𝜇1 − 𝑁2∗𝑑𝜇2 − 𝑁𝑢∗𝑑𝜇𝑢∗  (2b) 

where the asterisks were introduced to signify the quantities for the inhomogeneous solution. For 

a macroscopic system in equilibrium, 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) = 0 must hold true. Since our goal is to 

quantify the effect of the solute on 𝑁𝑖 as the measure of interaction with the solute, the volume of 
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the inhomogeneous solution is chosen to be equal to that of the bulk solution, such that 𝑉∗ = 𝑉 

[46]. From Eqs. (1) and (2), we obtain  

𝜕𝐷𝜕𝜇1 = −𝑁1 
𝜕𝐷𝜕𝜇2 = −𝑁2 

𝜕𝐷𝜕𝜇𝑢∗ = 0 
𝜕𝐷𝜕𝑃 = 𝑉 (3a) 

𝜕𝐷∗𝜕𝜇1 = −𝑁1∗ 
𝜕𝐷∗𝜕𝜇2 = −𝑁2∗ 

𝜕𝐷∗𝜕𝜇𝑢∗ = −𝑁𝑢∗ 
𝜕𝐷∗𝜕𝑃 = 𝑉 (3b) 

We could derive Eqs. (3) by considering 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) and 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) slightly off 

equilibrium and postulated that they are differentiable. Although Eq. (2a) shows that 𝐷  is a 

function of 𝑇, 𝑃, 𝜇1, and 𝜇2, we write its dependence further on 𝜇𝑢∗  in Eq (3a). Actually, the third 

equation of Eq (3a) means that 𝐷  does not depend on 𝜇𝑢∗ . By writing 𝐷  in the form of 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ), 𝐷 and 𝐷∗ can be treated in a parallel manner in the following.  

 

The derivatives in Eq. (3) were not taken while the values of 𝜇𝑖, 𝜇𝑢∗  and 𝑃 were restricted to 

maintain equilibrium. 𝜇𝑖, 𝜇𝑢∗  and 𝑃 deviate from their equilibrium values when 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) 

and 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) are not zero, as emphasized before. Therefore, Eq. (3) does not lead to an 

apparent paradox, i.e., the existence of extensive 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) and 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) that 

are the functions exclusively of intensive variables. 𝑁𝑖, 𝑁𝑖∗ and 𝑉 recover their extensive nature 

only at equilibrium under 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) = 𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) = 0.  

 

The number of independent variables of the functions 𝐷 and 𝐷∗ should agree with the degrees 

of freedom at equilibrium (even though the independent variables are allowed to deviate from their 

values at equilibrium). According to the Gibbs phase rule, there are three independent variables 

for the homogeneous solution at equilibrium. For the inhomogeneous solution, the number of 

independent variables at equilibrium is also three, because the fixed solute is treated as an external 

field on the solution in the inhomogeneous solution theory [60,61]. Accordingly, there are three 
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independent variables in (𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) while the remaining two are dependent on the three. 

Such a conclusion on the number of independent variables is incorporated already in the implicit 

function theorem: on a submanifold Σ in (𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ )-space, on which 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) =𝐷∗(𝑇, 𝑃, 𝜇1, 𝜇2, 𝜇𝑢∗ ) = 0,  the number of independent variables is three, and the two remaining 

variables are uniquely determined by the others.  

 

 

2.2. Preferential solvation under constant temperature   

 

Our goal is to derive basic thermodynamic relationships for preferential solvation of a solute in a 

two-component solvent mixture. Such relationships are dependent on thermodynamic variables 

specified by different experimental conditions; converting from one set of conditions to another 

requires thermodynamic variable conversion which may be cumbersome [57]. We will 

demonstrate here that implicit function theorem facilitates not only the derivation of preferential 

solvation theory but also thermodynamic variable conversion.  

 

Here we consider a binary solvent mixture in a single phase. To conform to a common 

experimental practice [40,57], under constant temperature, let us choose 𝜇2  and 𝑃  as the 

independent variables while 𝜇𝑢∗  and 𝜇1 are the functions of 𝜇2 and 𝑃. The independent variables 

are allowed deviate slightly from their equilibrium values. We express this emphatically as (𝜇2, 𝑃; 𝜇1, 𝜇𝑢∗ ). At equilibrium, i.e., 𝐷(𝜇2, 𝑃; 𝜇1, 𝜇𝑢∗ ) = 𝐷∗(𝜇2, 𝑃; 𝜇1, 𝜇𝑢∗ ) = 0, the implicit function 

theorem [18,19] can be applied. With the help of Eq. (3) to evaluate the partial derivatives, we 

obtain the four thermodynamic relationships in total. The first is   
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(𝜕𝜇𝑢∗𝜕𝜇2)𝑃 = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇2)𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇2 − 𝜕𝐷𝜕𝜇2 𝜕𝐷∗𝜕𝜇1𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇1 = − 𝑁2∗ − 𝑁2𝑁𝑢∗ + 𝑁2𝑁1 𝑁1∗ − 𝑁1𝑁𝑢∗   (4) 

where 
𝜕(𝐷,𝐷∗)𝜕(𝜇1,𝜇2) and 

𝜕(𝐷,𝐷∗)𝜕(𝜇1,𝜇𝑢∗ ) are Jacobians, defined in terms of partial derivatives, as has been shown 

in the second equality in Eq. (4). Eq. (4) is indeed the well-known relationship that links 

preferential solvation (l.h.s.) to the excess solvation numbers of species 1 and 2 (r.h.s.). Note that 

the standard application of the Jacobian based on explicit function relationships alone, starting 

from (𝜕𝜇𝑢∗𝜕𝜇2)𝑃 = 𝜕(𝜇𝑢∗ ,𝑃)𝜕(𝜇2,𝑃),  does not lead directly to excess numbers via Jacobian operations alone; 

the Gibbs-Duhem equations have been incorporated to the implicit function theorem (Eq. (4)) but 

not in the Jacobian calculation rules that deal with explicit function relationships. The implicit 

function theorem with differentiable 𝐷  and 𝐷∗  linked (𝜕𝜇𝑢∗𝜕𝜇2)𝑃 to Jacobians and shortened the 

derivation significantly.  

 

Thus, the differentiable 𝐷  and 𝐷∗  are a useful device to incorporate the Gibbs-Duhem 

relationships into Jacobians. The second thermodynamic relationship is  

(𝜕𝜇𝑢∗𝜕𝑃 )𝜇2 = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝑃)𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝑃 − 𝜕𝐷𝜕𝑃 𝜕𝐷∗𝜕𝜇1𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇1 = − 𝑉𝑁1 𝑁1∗ − 𝑁1𝑁𝑢∗   (5) 

where the partial derivative in the l.h.s. was taken under constant 𝜇2. Eq. (5) can be linked to a 

better-known relationship via variable conversion, this time, using the standard Jacobian approach 
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(𝜕𝜇𝑢∗𝜕𝑃 )𝜇2 = 𝜕(𝜇𝑢∗ , 𝜇2)𝜕(𝑃, 𝜇2) =
𝜕(𝜇𝑢∗ , 𝜇2)𝜕 (𝑃, 𝑁2𝑁1)𝜕(𝑃, 𝜇2)𝜕 (𝑃, 𝑁2𝑁1) = (𝜕𝜇𝑢∗𝜕𝑃 )𝑁2𝑁1 − (𝜕𝜇𝑢∗𝜕𝜇2)𝑃 (𝜕𝜇2𝜕𝑃 )𝑁2𝑁1  

(6) 

which, with the help of the partial molar volume 𝑉𝑖 of the species 𝑖 and its relationship to the total 

volume, 𝑉 = 𝑁1𝑉1 + 𝑁2𝑉2, yields 

(𝜕𝜇𝑢∗𝜕𝑃 )𝑁2𝑁1 = −𝑉1 𝑁1∗ − 𝑁1𝑁𝑢∗ − 𝑉2 𝑁2∗ − 𝑁2𝑁𝑢∗  
(7) 

This is a well-known relationship between volumetric measurement and excess numbers. Note that 

the same partial derivative, Eqs. (5) and (6), can be expressed in the two different Jacobian 

expressions: Eq. (5) incorporates the implicit Gibbs-Duhem relationships whereas Eq. (6) only 

concerns explicit function relationships.   

 

The implicit function theorem yields not only the relationships regarding excess numbers but 

also bulk solvent phases. There is no need to consider these two classes of relationships any longer. 

To demonstrate this, the third relationship derived from the implicit function theorem is  

(𝜕𝜇1𝜕𝜇2)𝑃 = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇2, 𝜇𝑢∗ )𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝜇2 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇2𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇1 = − 𝑁2𝑁1  (8) 

Note that all the terms containing 𝑁𝑢∗ vanish or cancel out automatically because 𝐷 does not 

depend on 𝜇𝑢∗ . This is how a relationship between chemical potentials in isothermal-isobaric bulk 

solution was derived. The final relationship  

(𝜕𝜇1𝜕𝑃 )𝜇2  = − 𝜕(𝐷, 𝐷∗)𝜕(𝑃, 𝜇𝑢∗  )𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝑃 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝑃𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇1 = − 𝑉𝑁1 

(9) 
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is also a property of the bulk solution under constant 𝜇2 and 𝑇.  

 

We have thus shown that the Jacobian method in chemical thermodynamics can be expanded to 

incorporate the Gibbs-Duhem relationship via the implicit function theorem, leading to simpler 

calculations for solvation and bulk properties of a solution.  

 

2.3. Preferential solvation through a semi-permeable membrane under constant temperature  

 

Here we demonstrate that our approach significantly facilitates thermodynamic variable 

conversion. We demonstrate this through the several options for measuring preferential solvation 

that refer to different thermodynamic conditions; solubility is measured under constant 𝑃 whereas 

dialysis and ultracentrifugation are measured under constant 𝜇1  [40,57]. Hence a conversion 

between (𝜕𝜇𝑢∗𝜕𝜇2)𝑃 and (𝜕𝜇𝑢∗𝜕𝜇2)𝜇1exemplifies the thermodynamic variable conversion required in the 

statistical thermodynamics of solvation. This conversion can be carried out using the standard 

Jacobian approach, starting from the Jacobian expression, followed by a division by 𝜕(𝜇2, 𝜇1) 

(𝜕𝜇𝑢∗𝜕𝜇2)𝑃 = 𝜕(𝜇𝑢∗ , 𝑃)𝜕(𝜇2, 𝑃) = 𝜕(𝜇𝑢∗ , 𝑃)𝜕(𝜇2, 𝜇1)𝜕(𝜇2, 𝑃)𝜕(𝜇2, 𝜇1)   (10a) 

Opening the Jacobians yield  
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𝜕(𝜇𝑢∗ , 𝑃)𝜕(𝜇2, 𝜇1)𝜕(𝜇2, 𝑃)𝜕(𝜇2, 𝜇1) = (𝜕𝜇𝑢∗𝜕𝜇2)𝜇1 ( 𝜕𝑃𝜕𝜇1)𝜇2 − (𝜕𝜇𝑢∗𝜕𝜇1)𝜇2 ( 𝜕𝑃𝜕𝜇2)𝜇1( 𝜕𝑃𝜕𝜇1)𝜇2= (𝜕𝜇𝑢∗𝜕𝜇2)𝜇1 − (𝜕𝜇𝑢∗𝜕𝜇1)𝜇2 ( 𝜕𝑃𝜕𝜇2)𝜇1 (𝜕𝜇1𝜕𝑃 )𝜇2  
(10b) 

Then, the use of the chain rule, ( 𝜕𝑃𝜕𝜇2)𝜇1 (𝜕𝜇1𝜕𝑃 )𝜇2 (𝜕𝜇2𝜕𝜇1)𝑃 = −1 yields  

(𝜕𝜇𝑢∗𝜕𝜇2)𝑃 = (𝜕𝜇𝑢∗𝜕𝜇2)𝜇1 + (𝜕𝜇𝑢∗𝜕𝜇1)𝜇2 (𝜕𝜇1𝜕𝜇2)𝑃 
(10c) 

However, both (𝜕𝜇𝑢∗𝜕𝜇1)𝜇2  and (𝜕𝜇1𝜕𝜇2)𝑃  still need to be evaluated. For this purpose, the standard 

approach is to go back to the pair of the Gibbs-Duhem equations (Eqs. (2a) and (2b) at 𝐷 = 𝐷∗ =0) and evaluate the partial derivatives. The lesson from this lengthy derivation process is twofold: 

(i) the explicit function relationships alone are insufficient to reach the final result and (ii) the 

Gibbs-Duhem equations must come in to evaluate the remaining partial derivatives.  

 

Simplification comes from the implicit function theorem. Let us choose 𝜇1  and 𝜇2  as the 

independent variables; 𝑃 and 𝜇𝑢∗  are now the functions of 𝜇1 and 𝜇2. Let us express this choice 

explicitly as (𝜇1, 𝜇2; 𝑃, 𝜇𝑢∗ ).  Now we allow 𝜇1 and 𝜇2 to deviate from their equilibrium values. At 

equilibrium, 𝐷(𝜇1, 𝜇2; 𝑃, 𝜇𝑢∗ ) = 𝐷∗(𝜇1, 𝜇2; 𝑃, 𝜇𝑢∗ ) . The application of the implicit function 

theorem, with the partial derivatives in Eq. (3), yields  

(𝜕𝜇𝑢∗𝜕𝜇2)𝜇1 = − 𝜕(𝐷, 𝐷∗)𝜕(𝑃, 𝜇2)𝜕(𝐷, 𝐷∗)𝜕(𝑃, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝑃 𝜕𝐷∗𝜕𝜇2 − 𝜕𝐷𝜕𝜇2 𝜕𝐷∗𝜕𝑃𝜕𝐷𝜕𝑃 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝑃 = − 𝑁2∗ − 𝑁2𝑁𝑢∗   (11) 

in a single step. This is a well-known equation for dialysis equilibrium.  
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Implicit function theorem, with the help of Eq. (3), provides 4 relationships. However, because 

of the symmetry with respect to the exchange of indexes, there are essentially 2 relationships. The 

second relationship,   

( 𝜕𝑃𝜕𝜇2)𝜇1 = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇2, 𝜇𝑢∗ )𝜕(𝐷, 𝐷∗)𝜕(𝑃, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝜇2 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇2𝜕𝐷𝜕𝑃 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝑃 = − 𝑁2𝑉  

(12a) 

is a bulk-phase relationship; there was a cancellation of terms involving 𝑁𝑢∗. Eq. (12a) is essentially 

the bulk-phase osmotic pressure of the species 2. This can be seen easily by a straightforward 

transformation  

( 𝜕𝑃𝜕𝑐2)𝜇1 = ( 𝜕𝑃𝜕𝜇2)𝜇1 (𝜕𝜇2𝜕𝑐2 )𝜇1 = − ( 𝜕𝜇2𝜕 ln 𝑐2)𝜇1 
(12b) 

 

Thus, we have demonstrated here that the application of the implicit function theorem on the 

Gibbs-Duhem equations significantly facilitates thermodynamic variable conversion.  

 

2.4. Adsorption isotherm under constant temperature  

 

We have demonstrated above that thermodynamic variable conversion can be facilitated 

significantly by the implicit function theorem. This approach can be applied straightforwardly to 

the adsorption isotherm at an interface. Consider a system composed of two species (𝑖 = 1 and 2) 

that form an interface between two phases (𝐼 and 𝐼𝐼). Here, the entire system with the interface is 

denoted by ∗. To quantify the surface effect, we also need the reference systems, namely I and II 

as bulk phases without the interfacial effect. We introduce three functions that describe slight 
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deviations from equilibrium. The first is for the entire system with the interface, 𝐷∗ = 𝐺 − 𝑁1∗𝜇1 −𝑁2∗𝜇2 − 𝐴𝛾. Its differential form is   𝑑𝐷∗ = 𝑉∗𝑑𝑃 − 𝑆∗𝑑𝑇 − 𝐴𝑑𝛾 − 𝑁1∗𝑑𝜇1 − 𝑁2∗𝑑𝜇2 (13a) 

The remaining two are for the bulk reference phases 𝐼 and 𝐼𝐼, 𝐷𝐼 and 𝐷𝐼𝐼, expressed in differential 

forms, as   𝑑𝐷𝐼 = 𝑉𝐼𝑑𝑃 − 𝑆𝐼𝑑𝑇 − 𝑁1𝐼𝑑𝜇1 − 𝑁2𝐼𝑑𝜇2 (13b) 𝑑𝐷𝐼𝐼 = 𝑉𝐼𝐼𝑑𝑃 − 𝑆𝐼𝐼𝑑𝑇 − 𝑁1𝐼𝐼𝑑𝜇1 − 𝑁2𝐼𝐼𝑑𝜇2 (13c) 

Note that we introduce the conservation of volume  𝑉∗ − 𝑉𝐼 − 𝑉𝐼𝐼 = 0 (13d) 

and the surface excess of species 𝑖 as  𝑁𝑖𝑒 = 𝑁𝑖∗ − 𝑁𝑖𝐼 − 𝑁𝑖𝐼𝐼 (13e) 

Most importantly, we postulate that 𝐷, 𝐷𝐼 and 𝐷𝐼𝐼 are all differentiable.  

  

Let us first designate the independent variables and dependent variables at equilibrium. There 

are two independent variables in the system. This can be justified in two ways. The first is from 

the equilibrium condition: on a submanifold Σ  in a (𝑇, 𝑃, 𝜇1, 𝜇2, 𝛾)-space, 𝐷(𝑇, 𝑃, 𝜇1, 𝜇2, 𝛾) =𝐷𝐼(𝑇, 𝑃, 𝜇1, 𝜇2, γ) = 𝐷𝐼𝐼(𝑇, 𝑃, 𝜇1, 𝜇2, γ) = 0 as the equilibrium condition shows that there are two 

independent variables while three others are determined uniquely by the two independent 

variables. This matches our second justification from the degrees of freedom at equilibrium. There 

are 2 components in the system that form 2 phases. According to the Gibbs phase rule, there are 2 

degrees of freedom. Let 𝜇2 and 𝑇 be the independent variables and 𝜇1, 𝑃 and 𝛾 be the functions of 𝜇2 and 𝑇. This is expressed emphatically as (𝜇2, 𝑇; 𝜇1, 𝑃, 𝛾). Now we allow the variables, 𝜇2 and 𝑇, to deviate slightly from their equilibrium values. Applying the implicit function theory for the 



 13 

equilibrium condition, 𝐷∗(𝜇2, 𝑇; 𝜇1, 𝑃, 𝛾) = 𝐷𝐼(𝜇2, 𝑇; 𝜇1, 𝑃, 𝛾) = 𝐷𝐼𝐼(𝜇2, 𝑇; 𝜇1, 𝑃, 𝛾) = 0 , the 

most important relationship, under constant temperature, is 

( 𝜕𝛾𝜕𝜇2)𝑇 = − 𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑃, 𝜇2)𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑃, 𝛾) = − ||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑃 𝜕𝐷∗𝜕𝜇2𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑃 𝜕𝐷𝐼𝜕𝜇2𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑃 𝜕𝐷𝐼𝐼𝜕𝜇2

||

||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑃 𝜕𝐷∗𝜕𝛾𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑃 𝜕𝐷𝐼𝜕𝛾𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑃 𝜕𝐷𝐼𝐼𝜕𝛾 ||

 

(14) 

With the help of Eqs. (13a)−(13c), we can evaluate the partial derivatives in Eq. (14). Using Eqs. 

(13d) and (13e), together with well-known procedures of determinant operations, we can simplify 

the determinants,  

| −𝑁1∗ 𝑉∗ −𝑁2∗−𝑁1𝐼 𝑉𝐼 −𝑁2𝐼−𝑁1𝐼𝐼 𝑉𝐼𝐼 −𝑁2𝐼𝐼|
| −𝑁1∗ 𝑉∗ 𝐴−𝑁1𝐼 𝑉𝐼 0−𝑁1𝐼𝐼 𝑉𝐼𝐼 0| = |−𝑁1𝑒 0 −𝑁2𝑒−𝑁1𝐼 𝑉𝐼 −𝑁2𝐼−𝑁1𝐼𝐼 𝑉𝐼𝐼 −𝑁2𝐼𝐼|

|−𝑁1𝑒 0 𝐴−𝑁1𝐼 𝑉𝐼 0−𝑁1𝐼𝐼 𝑉𝐼𝐼 0| = |−𝑁1𝑒 0 −𝑁2𝑒−𝑐1𝐼 1 −𝑐2𝐼−𝑐1𝐼𝐼 1 −𝑐2𝐼𝐼 |
|−𝑁1𝑒 0 𝐴−𝑐1𝐼 1 0−𝑐1𝐼𝐼 1 0|  

(15) 

which automatically yields  

( 𝜕𝛾𝜕𝜇2)𝑇 = − [𝑁2𝑒𝐴 − 𝑐2𝐼𝐼 − 𝑐1𝐼𝑐1𝐼𝐼 − 𝑐1𝐼 𝑁1𝑒𝐴 ] 
(16) 

namely, the Gibbs adsorption isotherm.  

  

Note that the three implicit functions used to derive Eq. (16) were reduced to Jacobians and 

determinant computations by virtue of the implicit function theorem. For more discussion on 

solvation and adsorption under isobaric conditions, see Appendices B and C.   
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3. Generalization and foundation   

3.1. Generalization to multiple component systems  

 

As the number of components increases, the rank of simultaneous equations increases for 

preferential solvation and adsorption. Relying solely on explicit function relationships with the ad-

hoc incorporation of the Gibbs-Duhem equations makes the calculation increasingly more difficult 

even than the case of a 2-component solution in Section 2.3. However, the implicit function 

theorem can facilitate the generalization into multiple components. To demonstrate this, let us first 

consider an 𝑛-component solution in a single phase. On a submanifold Σ in a (𝑇, 𝑃, {𝜇}, 𝜇𝑢∗ )-space, 

where {𝜇} = 𝜇1, … , 𝜇𝑛, the equilibrium condition 𝐷(𝑇, 𝑃, {𝜇}, 𝜇𝑢∗ ) = 𝐷∗(𝑇, 𝑃, {𝜇}, 𝜇𝑢∗ ) = 0 leads 

to the existence of 𝑛 + 1 independent variables while two others are determined uniquely by the 

independent variables. This matches the degrees of freedom at equilibrium. From here onwards, 

we consider the isothermal condition because it is most useful. Hence there are 𝑛 degrees of 

freedom to be chosen out of 𝑛 + 2 candidates, namely, (𝜇1, 𝜇2, … , 𝜇𝑛), 𝑃 and 𝜇𝑢∗ . To facilitate our 

discussion, let us introduce 𝜇𝑛+1 = 𝑃 as a shorthand notation. The 2 dependent variables we have 

chosen are 𝜇𝑢∗  and 𝜇𝑣. Here we choose 𝜇𝜎 as the variable with respect to which differentiation will 

be carried out, and the rest of the variables are shorthanded as {𝜇}. With the above designation of 

independent and dependent variables, and allowing the independent variables to deviate slightly 

from their equilibrium values, the equilibrium conditions can be written down as  𝐷(𝜇𝜎, {𝜇}; 𝜇𝜐, 𝜇𝑢∗ ) = 0 (18a) 𝐷∗(𝜇𝜎, {𝜇}; 𝜇𝜐, 𝜇𝑢∗ ) = 0 (18b) 

Our goal is to evaluate the following 𝑛 excess numbers:  
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𝑁𝑖𝑒 = 𝑁𝑖∗ − 𝑁𝑖𝑁𝑢  
(19) 

Under these constraints, the implicit function theorem yields the 𝑛 independent equations from 

(𝜕𝜇𝑢∗𝜕𝜇𝜎){𝜇} = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇𝜐, 𝜇𝜎)𝜕(𝐷, 𝐷∗)𝜕(𝜇𝜐, 𝜇𝑢∗ )  

(20a) 

  

There are also 𝑛 independent equations for the bulk phase from  

(𝜕𝜇𝑣𝜕𝜇𝜎){𝜇} = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇𝜎, 𝜇𝑢∗ )𝜕(𝐷, 𝐷∗)𝜕(𝜇𝜐, 𝜇𝑢∗ )  

(20b) 

All the necessary relationships can be obtained automatically via the determinant rules.  

 

For adsorption isotherm, we consider, on a submanifold Σ in a (𝑇, {𝜇}, 𝛾)-space, where {𝜇} =𝜇1, … , 𝜇𝑛, the equilibrium condition 𝐷(𝑇, {𝜇}, 𝛾) = 𝐷𝐼(𝑇, {𝜇}, 𝛾) = 𝐷𝐼𝐼(𝑇, {𝜇}, 𝛾) = 0 leads to the 

existence of 𝑛 independent variables while two others are determined uniquely by the independent 

variables. This matches the degrees of freedom at equilibrium: an 𝑛-component solution forming 

two phases has 𝑛  degrees of freedom. Under constant temperature, the system has 𝑛 − 1 

remaining degrees of freedom. This means that not all surface excesses can be determined 

independently but only relative to one species, say, the principal solvent, 1. Under the above 

designation of independent and dependent variables, and allowing the independent variables to 

deviate slightly from their equilibrium values, the equilibrium conditions are written down as  𝐷∗(𝜇𝛼, 𝑇, {𝜇}; 𝜇1, 𝑃, 𝛾) = 0 (21a) 𝐷𝐼(𝜇𝛼, 𝑇, {𝜇}; 𝜇1, 𝑃, 𝛾) = 0 (21b) 
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𝐷𝐼𝐼(𝜇𝛼, 𝑇, {𝜇}; 𝜇1, 𝑃, 𝛾) = 0 (21c) 

Under this setup, the implicit function theorem yields:  

( 𝜕𝛾𝜕𝜇𝛼)𝑇  = − 𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑃, 𝜇𝛼 )𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑃, 𝛾)  

(22) 

which consists of 𝑛 − 1 independent relationships.  

 

3.2. The origin of 𝑫 and 𝑫∗  

 

Allowing the Gibbs-Duhem equations to deviate slightly from equilibrium had a benefit in 

facilitating the calculations of preferential solvation and adsorption isotherm. With the help of the 

implicit function theorem, generalization to multiple component solutions was straightforward 

through Jacobians. The key to these advantages were the functions 𝐷 and 𝐷∗ for the deviations 

from equilibrium.  

 

Here we show that 𝐷 and 𝐷∗arise from the two sources of deviation from equilibrium. The first 

is the deviation of 𝑑𝐺 (where 𝐺 is the Gibbs free energy from equilibrium 

   −𝑑𝑄′ = 𝑑𝐺 + 𝑆𝑑𝑇 − 𝑉𝑑𝑃 − ∑ 𝜇𝑖𝑑𝑁𝑖𝑖  (23a) 

quantified via 𝑑𝑄′. The second is the deviation from a relationship in equilibrium thermodynamics 

on the extensive nature of the Gibbs free energy in terms of its natural variables 𝑁𝑖, 𝐺 = ∑ 𝑁𝑖𝜇𝑖𝑖 .  

To account for this, we introduce 𝑑𝑄′′ = 𝑑𝐺 − ∑ 𝑁𝑖𝑑𝜇𝑖𝑖 − ∑ 𝜇𝑖𝑑𝑁𝑖𝑖  
(23b) 

as the deviation from equilibrium. Combining Eqs. (23a) and (23b), and using Eq. (2a), we obtain  
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𝑑𝐷 = 𝑑𝑄′′ + 𝑑𝑄′ = 𝑆𝑑𝑇 − 𝑉𝑑𝑃 + ∑ 𝑁𝑖𝑑𝜇𝑖𝑖  
(24) 

where equilibrium condition corresponds to 𝐷 = 0. Thus, we have shown that 𝐷 comes from the 

deviations from the equilibrium expression for 𝑑𝐺 (Eq. (23a)) and the extensive nature of 𝐺 (Eq. 

(23b)). In this context, our postulate was that 𝑄′ + 𝑄′′ is a differentiable function of 𝑇, 𝑃 and {𝜇𝑖}. 

We postulated the same in inhomogeneous solutions. This postulate has been validated by a 

successful re-derivation of the preferential solvation theory and adsorption isotherm.  

 

4. Conclusion  

 

How can the preferential solvation [36,59] and adsorption [56,57,59] theories take full advantage 

of the Jacobian formalism [5–9] which has facilitated the variable transformation in the rest of 

thermodynamics? To this end, a useful lesson from phase equilibrium thermodynamics was that 

allowing the system to deviate slightly from equilibrium is crucial in deriving useful relationships. 

Inspired by this, we have considered a slight deviation from equilibrium in the Gibbs-Duhem 

equations.  Having postulated the deviation to be differentiable, the implicit function theorem 

[18,19] can be applied at equilibrium, which enables facile and straightforward calculations of 

thermodynamic quantities and variable conversions. Linking thermodynamic measurements to 

excess numbers (solvation) or surface excesses (adsorption) [56,57,59] can be automated by the 

rules of determinant calculation. The generalization to multiple-component solutions was also 

demonstrated to be straightforward.  

 

Together with the current use of the Jacobians through explicit function relationships [5–9], our 

new approach was demonstrated to simplify the intricate thermodynamic variable conversions 
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underlying the fluctuation theory. Together with our recent algebraic approach to variable 

conversions [62], the fluctuation approach to solvation and adsorption has been facilitated 

significantly.   

  

Appendix A: Clapeyron equation and its generalizations as consequences of the implicit 

function theorem 

 

Here we illustrate that the implicit function theorem is at work in thermodynamic phase equilibria. 

To this end, let us consider the simplest example of a pure component in the two phases, 𝐼 and 𝐼𝐼. 

The chemical potential of a single component in one phase has 2 degrees of freedom, hence 𝜇𝐼 =𝜇𝐼(𝑇, 𝑃) and 𝜇𝐼𝐼 = 𝜇𝐼𝐼(𝑇, 𝑃) [1,2]. The chemical potential difference,  Δ𝜇 = 𝜇𝐼𝐼 − 𝜇𝐼 (A1) 

is differentiable around Δ𝜇 = 0 and can be expanded as  

𝑑Δ𝜇 = (𝜕Δ𝜇𝜕𝑃 )𝑇 𝑑𝑃 + (𝜕Δ𝜇𝜕𝑇 )𝑃 𝑑𝑇 = Δ𝑣𝑑𝑃 − Δ𝑠𝑑𝑇 
(A2) 

where Δ𝑣 and Δ𝑠 are the partial molar volume and entropy, respectively. At Δ𝜇 = 0, the implicit 

function theorem for 2 variables [18,19] yields 

𝜕𝑃𝜕𝑇 = − (𝜕Δ𝜇𝜕𝑇 )𝑃(𝜕Δ𝜇𝜕𝑃 )𝑇 

(A3) 

which is the Clausius equation.  

 

Generalization of the Clausius equation for multiple component solutions has played a key role 

in the interpretation of experimental data via the fluctuation solution theory [14–17]. We 
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demonstrate here that such a generalization can be carried out most straightforwardly via the 

implicit function theorem. As a simple example, consider a biomolecule (fixed at origin, denoted 

as 𝑢) which can take states 𝐼 and 𝐼𝐼, in the presence of solvent components 1 and 2. A solution 

with the biomolecule in a state is considered to be an inhomogeneous solution which has 3 degrees 

of freedom. The chemical potential difference between the two states, Δ𝜇𝑢∗ , can be expanded as 

[14–17]  

Δ𝜇𝑢∗ = (𝜕Δ𝜇𝑢∗𝜕𝑃 )𝑇,𝑐 𝑑𝑃 + (𝜕Δ𝜇𝑢∗𝜕𝑇 )𝑃,𝑐 𝑑𝑇 + (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃,𝑇 𝑑𝑐 

= Δ𝑣𝑢∗𝑑𝑃 − Δ𝑠𝑢∗𝑑𝑇 + (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃,𝑇 𝑑𝑐 

(A4) 

where Δ𝑣𝑢∗  and Δ𝑠𝑢∗  represent the volume and entropy changes accompanying the transition, 

respectively, and 𝑐 is solution concentration (in a preferred unit).  

 

Our goal is to obtain (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃,𝑇 from the volumetric (Δ𝑣𝑢∗)  and calorimetric (Δ𝑠𝑢∗)  data. To do 

so, let us first consider the equilibrium condition  Δ𝜇𝑢∗ = 0 𝑑𝑃 = 0 (A5) 

Under this condition, we obtain a useful relationship,  

(𝜕𝑇𝜕𝑐)𝑃 = − 𝜕(Δ𝜇𝑢∗ , 𝑃)𝜕(𝑐, 𝑃)𝜕(Δ𝜇𝑢∗ , 𝑃)𝜕(𝑇, 𝑃) = (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃Δ𝑠𝑢∗  

(A6) 

 

through which (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃 can be calculated from calorimetry (Δ𝑠𝑢∗)  and phase diagram (
𝜕𝑇𝜕𝑐) [14–17]. 

Alternatively, under another equilibrium condition,   
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Δ𝜇𝑢∗ = 0 𝑑𝑇 = 0 (A7) 

we obtain another useful relationship, linking (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃 to volume change (Δ𝑣𝑢∗)  and phase diagram 

(
𝜕𝑃𝜕𝑐), as  [14–17] 

(𝜕𝑃𝜕𝑐)𝑇 = − 𝜕(Δ𝜇𝑢∗ , 𝑇)𝜕(𝑐, 𝑇)𝜕(Δ𝜇𝑢∗ , 𝑇)𝜕(𝑃, 𝑇) = − (𝜕Δ𝜇𝑢∗𝜕𝑐 )𝑃Δ𝑣𝑢∗  

(A8) 

Alternatively, under another equilibrium condition,   Δ𝜇𝑢∗ = 0 𝑑𝑐 = 0  (A9) 

(𝜕𝑇𝜕𝑃)𝑐 = − 𝜕(Δ𝜇𝑢∗ , 𝑐)𝜕(𝑃, 𝑐)𝜕(Δ𝜇𝑢∗ , 𝑐)𝜕(𝑇, 𝑐) = (𝜕Δ𝜇𝑢∗𝜕𝑃 )𝑐Δ𝑠𝑢∗  

(A10) 

This relationship is particularly useful for obtaining the volume change, Δ𝑣𝑢∗ = (𝜕Δ𝜇𝑢∗𝜕𝑃 )𝑐 (which is 

usually very difficult to obtain), from the more accessible data on calorimetry (Δ𝑠𝑢∗) and the phase 

diagram (𝜕𝑇𝜕𝑃)𝑐 [14–17].  

 

Appendix B: Preferential solvation and adsorption under isobaric conditions  

 

Here we apply our new approach to the temperature dependence of solvation and adsorption under 

constant pressure. There are 2 degrees of remaining freedom when we keep the pressure constant. 

Let us choose 𝜇2 and 𝑇 as the independent variables while 𝜇𝑢∗  and 𝜇1 are the functions of 𝜇2 and 𝑇. We express this emphatically as 𝐷(𝜇2, 𝑇; 𝜇1, 𝜇𝑢∗ ) and 𝐷∗(𝜇2, 𝑇; 𝜇1, 𝜇𝑢∗ ). At equilibrium, i.e., 𝐷 = 𝐷∗ = 0 , the implicit function theorem can be applied. We again obtain the four 

thermodynamic relationships in total. The two relationships under an isobaric-isothermal condition 
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are identical to Eqs. (4) and (8). There are two relationships specific to the temperature dependence 

under constant pressure. The first is  

(𝜕𝜇𝑢∗𝜕𝑇 )𝜇2 = − 𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝑇)𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝑇 − 𝜕𝐷𝜕𝑇 𝜕𝐷∗𝜕𝜇1𝜕ℰ𝜕𝜇1 𝜕ℰ∗𝜕𝜇𝑢∗ − 𝜕ℰ𝜕𝜇𝑢∗ 𝜕ℰ∗𝜕𝜇1 = − 𝑆∗ − 𝑆𝑁𝑢∗ + 𝑆𝑁1 𝑁1∗ − 𝑁1𝑁𝑢∗  

(B1) 

expresses the temperature-dependence of solvation free energy in terms of the excess number of 

solvent  
𝑁1∗−𝑁1𝑁𝑢∗  and excess entropy 

𝑆∗−𝑆𝑁𝑢∗  around the solute. To derive Eq. (B1), we have used  

𝜕𝐷𝜕𝑇 = −𝑆 
𝜕𝐷∗𝜕𝑇 = −𝑆∗ (B2) 

that can be derived straightforwardly from Eq. (2). The second is  

(𝜕𝜇1𝜕𝑇 )𝜇2 = − 𝜕(𝐷, 𝐷∗)𝜕(𝑇, 𝜇𝑢∗ )𝜕(𝐷, 𝐷∗)𝜕(𝜇1, 𝜇𝑢∗ ) = − 𝜕𝐷𝜕𝑇 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝑇𝜕𝐷𝜕𝜇1 𝜕𝐷∗𝜕𝜇𝑢∗ − 𝜕𝐷𝜕𝜇𝑢∗ 𝜕𝐷∗𝜕𝜇1 = − 𝑆𝑁1  (B3) 

is also a property of the bulk solution under constant 𝑃 and 𝜇2. Adsorption on isobaric conditions 

yields less useful results. See Appendix C for further discussion.  

 

Appendix C: Adsorption “isobary”  

 

For adsorption under constant pressure, where there are 2 degrees of freedom, we shall choose 𝜇2 

and 𝑃 be the independent variables and 𝜇1, 𝑇 and 𝛾 be the functions of 𝜇2 and 𝑃. We write this 

emphatically as 𝐷∗(𝜇2, 𝑃; 𝜇1, 𝑇, 𝛾) , 𝐷𝐼(𝜇2, 𝑃; 𝜇1, 𝑇, 𝛾)  and 𝐷𝐼𝐼(𝜇2, 𝑃; 𝜇1, 𝑇, 𝛾) , by simply 

swapping 𝑃 and 𝑇  in our discussion in Appendix B. The equilibrium condition is 𝐷𝐼 = 𝐷𝐼𝐼 =𝐷∗ = 0, when the implicit function theorem can be applied. Under constant pressure, the most 

important relationship is  
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( 𝜕𝛾𝜕𝜇2)𝑃 = − 𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑇, 𝜇2)𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑇, 𝛾) = − ||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑇 𝜕𝐷∗𝜕𝜇2𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑇 𝜕𝐷𝐼𝜕𝜇2𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑇 𝜕𝐷𝐼𝐼𝜕𝜇2

||

||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑇 𝜕𝐷∗𝜕𝛾𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑇 𝜕𝐷𝐼𝜕𝛾𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑇 𝜕𝐷𝐼𝐼𝜕𝛾 ||

 

(C1) 

With the help of Eqs. (13a)−(13c), we can evaluate the partial derivatives in Eq. (B1). Instead of 

the volume conservation condition, Eq. (13d), we introduce the excess entropy,  𝑆𝑒 = 𝑆∗ − 𝑆𝐼 − 𝑆𝐼𝐼 (C2) 

Using Eqs. (13e) and (C2), together with well-known procedures of determinant operations, we 

can simplify the determinants as 

| −𝑁1∗ −𝑆∗ −𝑁2∗−𝑁1𝐼 −𝑆𝐼 −𝑁2𝐼−𝑁1𝐼𝐼 −𝑆𝐼𝐼 −𝑁2𝐼𝐼|
| −𝑁1∗ −𝑆∗ 𝐴−𝑁1𝐼 −𝑆𝐼 0−𝑁1𝐼𝐼 −𝑆𝐼𝐼 0| = |−𝑁1𝑒 −𝑆𝑒 −𝑁2𝑒−𝑁1𝐼 𝑆𝐼 −𝑁2𝐼−𝑁1𝐼𝐼 𝑆𝐼𝐼 −𝑁2𝐼𝐼|

|−𝑁1𝑒 −𝑆𝑒 𝐴−𝑁1𝐼 𝑆𝐼 0−𝑁1𝐼𝐼 𝑆𝐼𝐼 0| = − | 𝑁1𝑒 −𝑆𝑒 𝑁2𝑒𝑁1𝐼/𝑆𝐼 1 𝑁2𝐼/𝑆𝐼𝑁1𝐼𝐼/𝑆𝐼𝐼 1 𝑁2𝐼𝐼/𝑆𝐼𝐼|
| 𝑁1𝑒 −𝑆𝑒 𝐴𝑁1𝐼/𝑆𝐼 1 0𝑁1𝐼𝐼/𝑆𝐼𝐼 1 0|  

(C3) 

The only way to arrive at a simple and useful equation is to choose the reference systems such that 𝑆𝑒 = 0. Under this condition, we obtain the adsorption “isobary” analogous to Eq. (16), as  

( 𝜕𝛾𝜕𝜇2)𝑃 = − [𝑁2𝑒𝐴 − 𝑁2𝐼𝐼𝑆𝐼𝐼 − 𝑁1𝐼𝑆𝐼𝑁1𝐼𝐼𝑆𝐼𝐼 − 𝑁1𝐼𝑆𝐼
𝑁1𝑒𝐴 ] 

(C4) 

 

The pressure-dependence of the surface free energy under constant 𝜇1 can be evaluated as   
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(𝜕𝛾𝜕𝑃)𝜇1 = − 𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑇, 𝑃)𝜕(𝐷∗, 𝐷𝐼 , 𝐷𝐼𝐼)𝜕(𝜇1, 𝑇, 𝛾) = − ||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑇 𝜕𝐷∗𝜕𝑃𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑇 𝜕𝐷𝐼𝜕𝑃𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑇 𝜕𝐷𝐼𝐼𝜕𝑃 ||

||
𝜕𝐷∗𝜕𝜇1 𝜕𝐷∗𝜕𝑇 𝜕𝐷∗𝜕𝛾𝜕𝐷𝐼𝜕𝜇1 𝜕𝐷𝐼𝜕𝑇 𝜕𝐷𝐼𝜕𝛾𝜕𝐷𝐼𝐼𝜕𝜇1 𝜕𝐷𝐼𝐼𝜕𝑇 𝜕𝐷𝐼𝐼𝜕𝛾 ||

= | −𝑁1∗ −𝑆∗ 𝑉∗−𝑁1𝐼 −𝑆𝐼 𝑉𝐼−𝑁1𝐼𝐼 −𝑆𝐼𝐼 𝑉𝐼𝐼|
| −𝑁1∗ −𝑆∗ 𝐴−𝑁1𝐼 −𝑆𝐼 0−𝑁1𝐼𝐼 −𝑆𝐼𝐼 0|  

(C4) 

Since the reference systems cannot satisfy the zero excess volume and zero excess entropy 

conditions at the same time, the resulting relationship is rather involved.  
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