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Abstract—The use of autonomous vehicles in real-world ap-
plications is often precluded by the difficulty of providing
safety guarantees for their complex controllers. The simulation-
based testing of these controllers cannot deliver sufficient safety
guarantees, and the use of formal verification is very challenging
due to the hybrid nature of the autonomous vehicles. Our work-
in-progress paper introduces a formal verification approach that
addresses this challenge by integrating the numerical computa-
tion of such a system (in GNU/Octave) with its hybrid system
verification by means of a proof assistant (Isabelle). To show
the effectiveness of our approach, we use it to verify differential
invariants of an Autonomous Marine Vehicle with a controller
switching between multiple modes.

Index Terms—theorem proving, dynamical systems, au-
tonomous vehicles, control systems, assurance cases

I. INTRODUCTION

Engineering controllers for autonomous vehicles requires a

range of models, e.g. of the dynamics and of the control algo-

rithms, for validating and verifying their key properties [1], [2].

Numerical computation (NC, e.g. with MATLAB) is a widely

used simulation technique for model validation (i.e. closing

the reality gap) and controller testing. However, simulation is,

like testing, mostly limited to the demonstration of defects,

since it can only consider a small fraction of the input space.

For correctness, particularly to assess safety, full coverage

of this space is desirable or mandatory. For hybrid systems,

full coverage can be achieved only using symbolic reasoning

techniques, such as deductive verification [3], due to the

uncountable state space. We therefore need the translation of

a validated model into a form amenable to verification in a

proof environment such as Isabelle/HOL [4].

In this work, we investigate this translation for the case of a

hybrid model of an Autonomous Marine Vehicle (AMV) and

the formal verification of its safety properties. We describe the

dynamics of the vehicle’s motion, and controllers for waypoint

approach and obstacle avoidance. We model the controller

using hybrid state charts, including the mode switching for

mitigating accidents between the operator and the safety con-

troller. We simulate our model in the NC tool GNU/Octave,1

for the purpose of validation against real-world trials, and

translate this into an implementation of differential Dynamic

Logic [3], [5] (dL) in Isabelle/HOL for deductive verification.

1GNU/Octave. http://octave.sourceforge.io/

To support this, we extend it to support matrices, discrete state,

and a form of modular verification.

Our preliminary work serves as a template for how a

translation from an NC tool to Isabelle can be achieved, and

provides additional evidence that Isabelle provides a credible

and flexible solution for hybrid systems verification. Our

work is inspired by Mitsch et al. [6] who provide a generic

verified model for collision avoidance in KeYmaera X [7]. We

advance their work through provision of explicit support for

transcendental functions in the system dynamics, a higher-level

notation in our tool that bridges the semantic gap with control

engineers, and access to Isabelle’s automated proof facilities.

After an overview of the technologies we use in Section II,

we present our approach to validation-based formal verifica-

tion in Section III and close with a discussion in Section IV.

II. BACKGROUND

Isabelle/HOL [4] is a proof assistant for Higher Order Logic

(HOL). It includes a functional specification language and

an array of proof facilities, including sledgehammer [8],

which integrates automated provers. Isabelle has a variety of

mathematical libraries, notably for Multivariate Analysis [9]

and Ordinary Differential Equations [10], [11] (ODEs), which

provide the foundations for verification of hybrid systems.

Isabelle/UTP [12] is a semantic framework based on Hoare

and He’s Unifying Theories of Programming (UTP) [13], built

on Isabelle/HOL. It supports diverse semantic models in a

variety of paradigms, such as reactive, concurrent, and hybrid

systems, and their application to verification. For example,

it contains a tactic, hoare-auto, that automates verification of

sequential programs using Hoare logic that uses sledgehammer

to discharge verification conditions.

dL is a logic for deductive verification of hybrid systems,

which is supported by the KeYmaera X tool [7]. dL can

be used to prove invariants both of control algorithms and

continuous dynamics, which makes it ideal for verifying

hybrid systems. It avoids the need for explicit solutions to

differential equations, by using a technique called differential

induction. Recently, differential induction has been embedded

into Isabelle [14] and Isabelle/UTP [5] to create differential

Hoare logic (dH), which also supports verification of hybrid

programs, but in a more general setting. In this paper, we apply

dH with Isabelle/UTP, and extend it.

https://orcid.org/0000-0002-9889-9514
https://orcid.org/0000-0002-9445-6863
https://orcid.org/0000-0002-2678-9260
http://octave.sourceforge.io/
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Figure 1: An AMV in real and a model of its physics

III. APPROACH

Our case study, the C-Worker 52 (Figure 1a) is an AMV

designed to support hydrographic survey work. It operates in

the open sea and so must avoid collisions with both static and

dynamic obstacles, such as rocky outcrops and other vessels.

We consider a safety controller that (1) avoids collisions with

obstacles where possible by taking evasive maneuvers; and

(2) mitigates the effects where avoidance is impossible. Our

industrial partner, D-RisQ3, is developing a safety controller

called the Last Response Engine (LRE) [15] implementing the

above functionality when the boat is operating autonomously.

For verification, we focus on avoidance of static obstacles.

A. Modelling the Dynamics and the Controller

Modelling the AMV Dynamics: The dynamical model

should be close enough to reality to do NC and abstract

enough to reduce the complexity of formal verification to a

level appropriate for a credible assurance case [16], [17].

Indicated in Figure 1b, at time t ∈ T , we consider the

velocity vA = [vxA, v
y
A]

T and position pA of the AMV, the

position pW of a next waypoint to be approached, and a set

O of obstacles, the nearest described by its velocity vO and

position pO. p and v are vectors in planar coordinates (x, y)
over R2. These parameters form a state space X with tuples

x = [pA,vA,pO,vO]
T .

Below, we abbreviate pE by E where E ∈ {A,O,W}.

We also consider parameters calculated from x, such as the

distance to the next waypoint
∥
∥AW

∥
∥ or the angle φAO

between the AMV velocity vector and the distance vector AO.

For sake of simplicity, we consider the AMV as a particle

with mass m and formulate its dynamics as the following

system of ordinary differential equations

ṗA = v, v̇A = f/m, v̇O = 0, and ṗO = 0 (1)

where f/m implements Newton’s second law of the kinetics

of particle masses relating a force applied to the vehicle and

this vehicle’s acceleration at time t. To remain in scope of our

investigation, we further simplify the AMV dynamics, omit-

ting disturbances (e.g. crosswind) and perturbations (e.g. flow

resistance), and restricting our analysis to static obstacles.

2C-Worker 5. https://www.asvglobal.com/product/c-worker-5/
3D-RisQ Software Systems. http://www.drisq.com/

LRE

Mon.

B

LRE AP

AP

Mon.

−
D/C AMV Dyn.

Env. Sim. Env. Dyn.

C/DAggregator

w f

vA

pA

x

Figure 2: Block structure diagram of the dynamical model and

the two-layered controller with the corresponding monitors

Modelling the AMV Controller: Figure 2 shows the struc-

ture of the plant consisting of the dynamical model of the

AMV and its environment (as explained before) and a two-

layered controller comprising the autopilot (AP) and the LRE.

The discrete low-level control of the vehicle is facilitated

by the AP through generating the propulsive force f of the

AMV as an input to the AMV dynamics. Within the frame

of reference of the trajectory of the AMV, we model the

AMV’s single thruster by calculating two components of f ,

the longitudinal (or tangential) acceleration force fl collinear

with the AMV’s velocity v and the radial acceleration force

ft perpendicular to fl, such that

f = fl + ft = fl

[
cos(φA)
sin(φA)

]

+ ft

[
−sgn(φA) sin(φA)
sgn(φA) cos(φA)

]

.

The discrete high-level control of the AMV is partially

facilitated by the LRE through switching between several

operating modes: an Operator Control Mode (OCM), a Main

Operating Mode (MOM), a High Caution Mode (HCM), and

a Collision Avoidance Mode (CAM). When in OCM, the

operator has responsibility for the AMV. When in MOM,

the AMV navigates towards the next waypoint at maximum

speed. If it gets close to, but not on collision course with,

an obstacle then it switches to HCM. If a potential future

collision is detected, it transitions to CAM to make evasive

maneuvers. Each of these modes provides the AP with a

particular setpoint w = [rs,pW ]T (i.e. target speed and

location of next waypoint) for the calculation of f by the

AP as described by the hybrid automaton in Figure 3

fl = klp · |rs − ‖vA‖ | (2)

ft =

{
ktp · φAW , in MOM

ktp · sgn(φAW ) · fmax, in CAM/HCM
(3)

In this example, we use a simple proportional controller for

f with directional proportionality factors kp as shown in

Equation (2). For obstacle avoidance manoeuvres, we calculate

the safe braking distance by

dsb =
sb · ‖vA‖

2
·m

−2 · kbp · fmax
(4)

with a safety margin sb to capture modelling uncertainty and

define the near-Obstacle (nO) and on-Collision-Course (oCC)

hazards as the predicates

nO ≡
∥
∥AO

∥
∥ < dsb and oCC ≡ nO ∧ |φAO| < ǫφ. (5)

In MOM, we add a hysteresis ǫh to ǫφ in order to delay ma-

noeuvre cancellation. Figure 3 describes the overall behaviour

https://www.asvglobal.com/product/c-worker-5/
http://www.drisq.com/
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Figure 3: Behaviour of the LRE and AP as a Moore machine,

the ∗-operator indicates a non-deterministic assignment

of the LRE switching between the four modes to provide w to

the AP. From the components LRE and AP shown in Figure 2

and from the modes in Figure 3, one can then derive interfaces

for the detailed software design.

Note on Abstraction: The transition from the discrete LRE

and AP to the continuous AMV physics is accomplished

by a conversion of (D)iscretely timed f inputs in form

of (C)ontinuous, piece-wise constant signals, processed by

actuators. Vice versa, the digital controller (particularly, the

Aggregator in Figure 2) samples the environment through

sensors at a certain rate. Figure 2 indicates this abstraction

by D/C and C/D converters. Although we chose to apply this

abstraction to the generation of f , in practice, this will happen

inside the thrusters where, e.g. digital signals control a servo

motor of a combustion engine and a rudder to generate f .

Simulation: We implemented the AMV model in an

integrator-based simulator in GNU/Octave. We derived param-

eters, such as weight, maximum speed and propulsive force,

from the C-Worker 5 specification. We identified controller

constants, such as klp, during simulation. Figure 4 shows a

trajectory of the AMV (green dot) turning to make its way to

the next waypoint W (blue dot) while circumventing a floating

obstacle (pink dot). The initial state x0 ∈ X is set to

x0 = [−.5,−3.8
︸ ︷︷ ︸

vA[m/s]

,−10,−10
︸ ︷︷ ︸

pA[m]

, 0, 0
︸︷︷︸

vO1
[m/s]

,−12,−18
︸ ︷︷ ︸

pO1
[m]

, . . . ]T

and the simulation run for the constants rs = 4m/s, pW =
[0, 0]T , and the time interval T = [0, 35] sec. Note, the 2D

trajectory from the AMV exhibits a deviation from its course

where oCC turned true. The lower middle graph shows this

as the event of dsb ≈ 13 > |AO| where the magenta curve

touches the red curve at t ≈ 5s, simultaneous to the reduction

of ‖vA‖ after the switch to CAM (cf. top right graph).

Beyond Simulation: Our quest for covering the input

space (Section I) requires us to ask how we can know that from

wherever in X we start, wherever an obstacle is, in whatever

interval T we evaluate a trajectory, will the AMV always

steer away from an obstacle in CAM, will it always reduce

speed in HCM, will it reach the next waypoint within a given

time in MOM? Such questions require a more fundamental

investigation of the model discussed in the next section.
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Figure 4: Simulation: the AMV (green dot) approaching next

waypoint (blue dot) while crossing an obstacle (pink dot)

B. Verification

Here, we use Isabelle/dH [5] to support deductive veri-

fication of the AMV. We extend it with matrices, discrete

variables, and modular reasoning [12]. Along with standard

Hoare logic laws, Isabelle/dH includes the key dL rules as

theorems, including differential induction and cut4.

Theorem III.1. Differential Induction and Cut

differentiable(P ) ∧ (B ⇒ LF (P ))

{P} 〈ẋ = F (x) | B(x)〉 {P}
(6)

{P} 〈F | B〉 {P} {Q} 〈F | B ∧ P 〉 {Q}

{P ∧ Q} 〈F | B〉 {Q}
(7)

Here, 〈ẋ = F (x) | B(x)〉 is a system of ODEs with an

evolution domain B. The dynamical system is permitted to

evolve provided that the ODEs in F , and predicate B, are

satisfied for all points on the solution trajectory. (6) states that

if P is everywhere differentiable, and its differentiated form

follows from B, then P is an invariant. (7) shows that if we

can prove that P is invariant, then we can use it as an axiom

of the dynamics to prove that Q is also an invariant [3].

We extend [5] with automated Lie derivative [18] evaluation.

ODEs are encoded as a vector field F : Rn → R
n. LF (P )

denotes the Lie derivative of the predicate P along F . P is

restricted to the form e R f , for R ∈ {=,≤, <}, over dif-

ferentiable expressions e, f : Rn → R, and their conjunctions

and disjunctions, such as 2x ≤ 5. We exemplify L below.

LF (e ≤ f) = (LF (e) ≤ LF (f)) (8)

LF (e+ f) = LF (e) + LF (f) (9)

LF (e · f) = LF (e) · f + e · LF (f) (10)

LF (sin(e)) = LF (e) · cos(e) (11)

LF (x) = (λs : Rn. getx F (s)) (12)

4Proofs can be found in our repository (https://github.com/isabelle-utp/

utp-main) and the accompanying links.

https://github.com/isabelle-utp/utp-main/blob/cfcac3847198564f09a99931a74543d8ca64ce11/theories/hyprog/utp_hyprog_dinv.thy#L303
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/utp_hyprog_deriv.thy#L113
https://github.com/isabelle-utp/utp-main
https://github.com/isabelle-utp/utp-main


These are largely standard, such as the product rule (10). Of

note, (12) shows the treatment of a continuous variable x : R.

We encode mutable variables using lenses [19], which are pairs

(x : V =⇒ S) , (getx : S → V, putx : S → V → S)

for some suitable state space S and variable type V , that

obey intuitive algebraic laws [12]. Here, we require that every

continuous variable has a bounded linear get function, which

is satisfied, for example, when x is a projection of a Euclidean

space. The derivative of x is an expression that applies the get

function to the derivative of the state (F (s)). This can be seen

as a semantic substitution of x by its derivative [12].

Invariants can contain transcendental functions such as

sin and log. We also support equalities between arbitrary

Euclidean spaces, such as matrices. To close the gap between

Octave and Isabelle, we have implemented a smart matrix

parser. A matrix in Isabelle is represented by a function:

A mat[M,N ] , N → M → A, where N and M are finite

types denoting the dimensions, and A is the element type,

usually R. Thus, the Isabelle type system can be used to ensure

that matrix expressions are well-formed. We use the syntax
[
[x1

1, x
1
2, · · ·x

1
n], · · · , [x

m
1 , xm

2 , · · · , xm
n ]

]

to represent a m by n matrix in Isabelle, which is a list of

lists. Our parser can infer the dimensions of a well-formed

matrix, and produce suitable dimension types, which aids

proof. Moreover, we have proved theorems that allow symbolic

evaluation of certain vector operations, for example:

[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2]

n · [x, y] = [n · x, n · y]

We also define the matrix lens

mat-lens(m : M,n : N) : A =⇒ A mat[M,N ]

which accesses an element. With it, we can model both

variables that refer to an entire matrix and also its elements.

We have developed a tactic in Isabelle/dH called dInduct,

which automates the application of Theorem III.1 by deter-

mining whether P is indeed differentiable everywhere, and

if so applying differentiation and substitution. The resulting

predicate can be discharged, or refuted, using Isabelle’s tactics.

Hybrid systems in Isabelle/dH follow the pattern of Sys ,
(Ctrl ; Dyn)⋆, where the controller and dynamics iteratively

take turns in updating the variables [6]. Proving a safety

property P of Sys entails finding an invariant I both of Ctrl
and Dyn, such that I ⇒ P . Isabelle/dH splits the state space

of a hybrid system into its continuous and discrete variables.

Continuous variables change during evolution, but discrete

variables are constant and updated only by assignments.

The continuous state space (ΣC) must form a Euclidean

space, and so is typically composed of reals, vectors, and

matrices. There are no restrictions on the discrete state space,

and it may use any Isabelle data type.
Case Study: We describe each of the continuous variables

using lenses, e.g. p,v : R mat[1, 2] =⇒ ΣC
5. In addition to

5We omit the A subscripts for brevity.

those mentioned in §III-A, we also include a : R mat[1, 2] for

the acceleration, and s : R, for the linear speed. Technically, s
can be derived as ‖v‖, but its inclusion makes proving invari-

ants easier. Most are monitored variables of the environment,

except a, which is updated by the AP. The discrete variables

include waypoint location (wp : R
2); obstacle set (ob :

P(R2)); linear speed and heading set points (rs, rh : R); force

vector (f : R2); and mode (m : {OCM,MOM,HCM,CAM}).

Next, we describe the dynamics.

Definition III.2 (AMV Dynamics).

dynAV ,








ṫ = 1; ṗ = v; v̇ = a; ȧ = 0;

ṡ =
v · a

s
2 s 6= 03 ‖a‖ ;

φ̇ = acos

(
(v + a) · v

‖v + a‖ · ‖v‖

)

2 s 6= 03 0








axAV ,

(

0 ≤ s ∧ s ≤ S ∧ s ·

[
sin(φ)
cos(φ)

]

= v ∧ t < ǫ

)

Dyn , t := 0 ; 〈dynAV | axAV 〉

Dynamics dynAV is a system of six ODEs. For the linear

speed derivative, we consider the special case when s = 0,

where the speed derivative is derived from a, and the rota-

tional speed is 0. We also axiomatise some properties of the

dynamics in axAV : (1) the linear speed must be in [0, S]; (2)

v must be the same as s multiplied by the orientation unit

vector; (3) time must not advance beyond ǫ, which puts an

upper bound on the time between control decisions.

Next, we model the LRE, which is encoded as a set of

guarded commands derived from Figure 3. In each iteration,

the LRE updates state variables and can transition to a different

state. Whilst in MOM, the speed set point is the maximum

speed (S), and the LRE invokes the command steerToWP that

updates the heading towards the current way point.

Definition III.3 (Simplified LRE). LRE ,

















m = MOM →







rs := S ; steerToWP ;

if oCC then m := CAM fi ;

if ∃o ∈ ob. ‖o− p‖ ≤ D
then m := HCM ; rs := H fi







m = HCM →





rs := H ; steerToWP ;

if ∀o ∈ ob. ‖o− p‖ > D
then m := MOM fi





m = OCM → skip

m = CAM → · · ·

















If oCC is detected the LRE transitions to CAM. If nO holds

but not oCC, then the LRE switches to HCM. From HCM, the

speed set point is decreased to H . Once the AMV is no longer

close to an obstacle, the LRE may return to MOM. OCM

exhibits no behaviour since the operator provides the control

inputs. Finally, CAM is where collision avoidance procedures

are executed. Its behaviour is left unspecified for now. The

final component we model is the autopilot.

https://github.com/isabelle-utp/utp-main/blob/cfcac3847198564f09a99931a74543d8ca64ce11/theories/hyprog/utp_hyprog_prelim.thy#L51
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L257
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L278


Figure 5: Autopilot in Isabelle/UTP

Definition III.4 (Autopilot Controller). AP ,

if ‖rs− s‖ > sǫ

then ft := sgn(rs− s) ·min

(
kpgv · ‖rs− s‖ ,

fmax

)

else ft := 0 fi ;

if ‖rh− φ‖ > φǫ

then fl := sgn(rh− φ) ·min

(
kpgr · ‖rh− φ‖ ,

fmax

)

else fl := 0 fi ;

f := fl ·

[
cos(φ)
sin(φ)

]

+ ft ·

[
sin(φ)
cos(φ)

]

; a := f/m

The AP takes rs and rh as inputs, computes f , and calcu-

lates a. The constants sǫ and φǫ limit the controller activity

when the speed is close to the set point. Its representation

in Isabelle/UTP is shown in Figure 5. Continuous variables

are distinguished using the namespace c, e.g. c:x. Scalar

multiplication and division are distinguished operators, n∗R x

and x /R n. Finally, we describe the overall AMV behaviour.

Definition III.5. AMV , (LRE ; AP ; Dyn)⋆

The LRE executes first to determine the new speed set points.

Following this, the autopilot calculates the new acceleration

vector. Finally, the dynamical system evolves the continuous

variables for up to ǫ seconds, and then the cycle begins again.

We will now proceed to verify some properties of the system

using Isabelle/dH. We begin with some structural properties.

Theorem III.6 (Structural Properties).

• LRE nmods {t,p,v,a, s, φ}
• AP nmods {t,p,v, s, φ}
• Dyn nmods {wp, ob, rs, rh, ft, f l,f ,m}

P nmods A means that P does not modify the variables in A.

It enables modular verification using the following theorem:

S nmods x =⇒ {p(x)}S {p(x)}

If x is not modified by S, then any predicate in x is invariant.

We can verify that the LRE does not modify any of the

continuous variables, as it only updates the (discrete) set

points. The AP modifies only the continuous variable a. We

can prove that axAV is an invariant of both LRE and AP , and

therefore of the entire system. The dynamics can potentially

change any of the continuous variables, but does not change

any of the discrete variables. These structural properties are

automatically proved, and are useful to ensure structural well-

formedness of a controller under development.

Figure 6: Example proof in Isabelle/dH

We next prove some invariants of the system using dH.

Theorem III.7 (Collinearity of v and a).

{a · v = ‖a‖ · ‖v‖}Dyn {a · v = ‖a‖ · ‖v‖}

Proof. We first prove that a·v ≥ 0 and (a·v)2 = (a·a)·(v·v)
are both invariants by theorem III.1. We can then show these

are equivalent with a · v = ‖a‖ · ‖v‖.

Collinearity means that v and a have the same direction and

the AMV is travelling straight. A corollary is below.
{

a · v = ‖a‖·‖v‖

}

Dyn

{

p =
t2

2
· a+ t · old(v) + old(p)

}

This states that if the AMV is travelling in a straight line,

then its position can be obtained through integration of ṗ. By

Theorem III.6, collinearity is also trivially an invariant of the

LRE, since it does not modify any continuous variables.

We show proof of a further corollary in Figure 6 in

Isabelle/UTP: if the AMV is moving straight, then the heading

is constant. We introduce a ghost variable X for the current

heading φ. The proof proceeds by performing a differential

cut (dCut split’), which allows us to assume collinearity in

the dynamical system. Theorem III.7 corresponds to the fact

collinear vector accel in Isabelle. Then, we use differential

induction via the dInduct auto tactic, which also applies

algebraic simplification laws. Finally, we call sledgehammer

which provides SMT proofs to discharge the remaining proof

obligation, which is essentially a·v = ‖a‖·‖v‖ ⇒ φ̇ = 0. This

technique allows us to harness all the mathematical results

proved in HOL and HOL-Analysis in our proofs [9], [10].

Collinearity is established by AP when the heading set

point is the same as the actual heading:

Theorem III.8 (Autopilot Collinearity).






‖rh− φ‖ < φǫ ∧ 0 ≤ s ∧

s ≤ rs ∧ v = s ·

[
sin(φ)
cos(φ)

]






AP







a · v
= ‖a‖ · ‖v‖







Proof. Hoare logic reasoning and vector arithmetic. A crucial

fact is that [sin(φ), cos(φ)] · [sin(φ), cos(φ)] = 1.

The theorem shows that if the linear speed is between 0 and

rs, φ and rh are sufficiently close, and v can be derived from

the linear speed and heading, then afterwards a and v are

again collinear. Now, by the sequential composition law, we

can compose this with III.7 to obtain the same Hoare triple

for AP ; Dyn. Finally, we show a property of the LRE.






m = MOM ∧
‖ang(wp− p)− φ‖ ≤ φǫ

∧ (∃o ∈ ob. ‖p− o‖ ≤ D)






LRE







m = HCM
∧ rs = H ∧

‖rh− φ‖ ≤ φǫ







https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L291
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L308
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L452
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L487
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L369
https://github.com/isabelle-utp/utp-main/blob/2152a303f6a517f125a44c7709010b00e6e2b0a8/theories/hyprog/examples/AMV.thy#L419


This shows that if the LRE is in MOM, and the heading is

currently towards the waypoint, but an obstacle is close, then

it will transition to HCM, drop the set point speed to H and

the requested heading remains close to the actual heading.

IV. DISCUSSION AND CONCLUSION

In this paper, we have made preliminary steps to integrating

NC with theorem proving in Isabelle. Octave and Isabelle’s

approaches to mathematics are, in many ways, quite different.

Octave is focused on efficient NC, whereas Isabelle is based

on foundational mathematics and proof. Nevertheless, our in-

vestigation indicates that they can effectively be used together.

Most of the required Octave functions, such as, sin, sgn,

and the vector operations are present in Isabelle, and are

accompanied by a large body of theorems [9], [10], [11].

The Archive of Formal Proofs6 (AFP) has several useful

libraries; for example, we used Eberl’s library for calculating

angles [20]. Combining libraries with the flexible syntax of

Isabelle, the program notation of Isabelle/UTP, and our matrix

syntax, we can achieve a fairly direct translation of Octave

functions, as Figure 5 illustrates. Verification can be automated

by the hoare-auto tactic, though this depends on arithmetic

lemma libraries, some of which we needed to prove manually

for the verification. Nevertheless, in our experience, sledge-

hammer [8] performs quite well with arithmetic problems.

Moreover, Isabelle has the approximation tactic, which can

prove real and transcendental inequalities [21].

For the dynamics, it is necessary to produce an explicit

system of first order ODEs, as shown in Definition III.2.

Consequently, any algebraic equations must be converted. For

example, we could not include the value of φ, but needed to

give its derivative and include an axiom linking this with s and

v. The challenge is finding invariants, and having sufficient

background lemmas to prove the verification conditions.

There have been previous works on integrating NC with de-

ductive verification. Notably, Zhan et al. [22] have used Hybrid

CSP and an accompanying Hoare logic to verify Simulink

block diagrams in Isabelle. Our work is more modest, in

that we focus on sequential hybrid programs, but with a

transparent translation and a high degree of automation. The

dominant and most automated tool for hybrid systems deduc-

tive verification remains KeYmaera X [6], [7]. Nevertheless,

we believe that our preliminary results show the advantages of

targeting Isabelle. Firstly, this allows integration of a variety of

mathematical libraries to support reasoning about matrices and

transcendental functions, which are both currently unsupported

by KeYmaera X. Secondly, we can combine notations with

ODEs, and in the future aim to support refinement to code

using libraries like Isabelle/C [23]. Thirdly, as illustrated by

the obstacle register, with Isabelle/HOL we have the potential

to extend dL with additional features like collections as used

in quantified dL [24].

6Archive of Formal Proofs. https://www.isa-afp.org/.
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