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Joining the Dots: Linking Disconnected
Networks of Evidence Using Dose-Response
Model-Based Network Meta-Analysis

Hugo Pedder , Sofia Dias , Meg Bennetts, Martin Boucher, and Nicky J. Welton

Background. Network meta-analysis (NMA) synthesizes direct and indirect evidence on multiple treatments to esti-

mate their relative effectiveness. However, comparisons between disconnected treatments are not possible without

making strong assumptions. When studies including multiple doses of the same drug are available, model-based

NMA (MBNMA) presents a novel solution to this problem by modeling a parametric dose-response relationship

within an NMA framework. In this article, we illustrate several scenarios in which dose-response MBNMA can con-

nect and strengthen evidence networks. Methods. We created illustrative data sets by removing studies or treatments

from an NMA of triptans for migraine relief. We fitted MBNMA models with different dose-response relationships.

For connected networks, we compared MBNMA estimates with NMA estimates. For disconnected networks, we

compared MBNMA estimates with NMA estimates from an ‘‘augmented’’ network connected by adding studies or

treatments back into the data set. Results. In connected networks, relative effect estimates from MBNMA were more

precise than those from NMA models (ratio of posterior SDs NMA v. MBNMA: median = 1.13; range = 1.04–

1.68). In disconnected networks, MBNMA provided estimates for all treatments where NMA could not and were

consistent with NMA estimates from augmented networks for 15 of 18 data sets. In the remaining 3 of 18 data sets,

a more complex dose-response relationship was required than could be fitted with the available evidence.

Conclusions. Where information on multiple doses is available, MBNMA can connect disconnected networks and

increase precision while making less strong assumptions than alternative approaches. MBNMA relies on correct spe-

cification of the dose-response relationship, which requires sufficient data at different doses to allow reliable estima-

tion. We recommend that systematic reviews for NMA search for and include evidence (including phase II trials) on

multiple doses of agents where available.
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Health care policy decisions increasingly use cost-

effectiveness analysis to support decision making by

health care professionals, a key element of which involves

estimating the relative clinical effectiveness of multiple

treatment options. This is typically done using network

meta-analysis (NMA), which pools the results of rando-

mized controlled trials (RCTs), enabling a comparison of

multiple treatments simultaneously, provided they form

a connected network of treatment comparisons.1,2 A con-

nected network is one in which there is a path of RCT

comparisons that can be followed between any pair of

treatments in the network. For example, Figure 1a illus-

trates a connected network, whereas Figure 1b illustrates

a network where treatments A and X are not connected

to treatments B and Y. It is not possible to obtain a
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relative effect estimate for pairs of treatments that are

not connected, for example B versus A in the network in

Figure 1b, using standard NMAmethods.

In health technology assessment (HTA) it is common

for networks of evidence to be disconnected or weakly

connected, so that relative effects are either not estimable

or very imprecisely estimated. This is in part due to new

drugs obtaining marketing authorization before mature

phase III RCT evidence has become available, partly

because of the different comparator treatments being

needed for marketing approval than by reimbursement

agencies and also because of drugs being marketed in

precisely defined patient populations, limiting the avail-

able evidence on comparator treatments.3,4

Various methods have been proposed to deal with dis-

connected networks in NMA.5 These include using obser-

vational or registry data,6 evidence in other populations,7

expert opinion,8–10 population adjustment methods,11–13

hierarchical models,14 and modeling intervention compo-

nents15,16 to connect networks. For example, in an HTA

comparing treatments for plaque psoriasis in children

and young people,7 adalimumab was disconnected from

the network, and evidence from an adult trial was used to

enable an NMA comparing the treatments of interest. In

another HTA on follicular lymphoma, different therapies

with or without rituximab were compared, resulting in no

common comparators17; however, by assuming the effects

of the components in the combination therapies to be

additive (with no interactions), the effects of the therapy

Figure 1 Network diagrams of potential network structures. Each node represents a different treatment, and each solid

connecting line represents a head-to-head comparison for which evidence is available in a data set. A and B represent agents,

whereas P represents placebo (equivalent to dose = 0 for any agent in the model-based network meta-analysis [MBNMA]

modeling framework). Subscript numbers represent hypothetical doses. X and Y represent clustered ‘‘subnetworks’’ of

treatments, which could be of any size but are only connected to other shown treatments via A and B, respectively. (a) All

treatments are connected, and NMA can be used to estimate relative effects between any treatments. (b) Placebo data connecting

treatments A and B are missing, meaning that they are disconnected and relative effects cannot be estimated for them or for any

treatments in X versus Y. (c, d) Relative effects between A and B at any doses (or subsequently between treatments in X v. Y)

cannot be estimated using NMA as they are not connected, but they can be estimated by using MBNMA to model the dose-

response relationship.
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given in both arms ‘‘cancels out,’’ so that each trial pro-

vides information on rituximab as an adjunct versus no

adjunct, and the network connects.

A third example is an HTA for relapsed and refrac-

tory multiple myeloma,18 where there was no RCT evi-

dence connecting pomalidomide with comparators

panobinostat or bendamustine. Analysis of individual

patient data from single arms and population adjustment

methods were used to connect the network. However, all

of these methods make strong and typically untestable

assumptions.

Model-based network meta-analysis (MBNMA) is a

new methodology that has the potential to connect net-

works of evidence in situations in which there is evidence

on multiple doses of 1 or more agents, or observations at

multiple follow-up times, by combining parametric mod-

els of dose response19 or time course20 with NMA in a

statistically robust way that preserves randomization in

included RCTs. One advantage of this approach is that

it allows inclusion of trials from earlier phases of drug

development into the network so that evidence on agents

at unlicensed doses, or evidence at a variety of time

points can be used to strengthen the evidence on the

licensed treatments and time points that are of interest.

For example, in the plaque psoriasis example,7 phase II

dose-response information may be available on children

for each treatment, which could connect the network

without needing to rely on evidence in a different popu-

lation (adults). Similarly, for the multiple myeloma

example,18 there was evidence on multiple doses of bend-

amustine, which could potentially connect the network.

Subsequent appraisals of newer drugs for multiple mye-

loma have compared multiple doses.21

Figures 1c and 1d illustrate 2 scenarios in which there

are studies of A1 versus X and B1 versus Y (where treat-

ments are defined by agent, A, B, X, Y, with subscript

indicating dose, where dose = 1 is the licensed dose). A1

and B1 are disconnected, but there is evidence for a range

of doses for at least 1 of the agents. In Figure 1c, by

explicitly modeling the dose-response relationship using

MBNMA, a placebo response (i.e., at dose = 0, where

A0 = B0) is estimated for both agents (even agent A, for

which a placebo has not been included in any trial). This

connects the network, and a relative effect estimate

between A1 and B1 can be obtained. In Figure 1d, A1 is

connected only to B at a suboptimal dose and is not con-

nected to placebo. However, by using MBNMA to

model the dose-response relationship, B0.5 can be con-

nected to other doses of B by interpolation, thus con-

necting the network and allowing for a comparison of

A1 versus B1.

In this article, we aim to illustrate the potential of

dose-response MBNMA to connect and strengthen evi-

dence networks in a range of different scenarios. We

begin by describing the MBNMA method.19 We then

introduce a network of triptans for migraine relief and

describe how we manipulate this data set to obtain a

set of scenario networks with different features with

which to illustrate the performance of the MBNMA

method. We then present and compare results from

MBNMA and NMA of the scenarios and end with a

discussion.

Methods

We first describe standard NMA, then the extension to

dose-response MBNMA, and then how we generated a

range of scenarios from the triptans data sets on which

the methods are illustrated.

Network Meta-Analysis

Following the methods of Lu and Ades,1 we define

NMA as follows. For each study i, the aggregated data

for arm k provides information on some parameter ui, k
(e.g., probability, mean outcome), which is modeled

using a generalized linear model22:

g(ui, k)=
mi when k= 1

mi + di, k when k � 2

�

ð1Þ

where g is a link function that transforms the outcome

onto an appropriate scale (e.g., a logistic function for

binary outcomes or an identity function for continuous

outcomes), mi is the control arm (reference) treatment of

study i, which is modeled as a nuisance parameter and

given a vague prior, and di, k is the study-specific relative

treatment effect for the treatment used in arm k relative

to the reference treatment in arm 1 of study i. In a ran-

dom effects model, these are assumed to be normally dis-

tributed around a mean treatment effect that adheres to

consistency relationships, with between-study variance t2

that is common across treatment comparisons:

di, k ;N dti, k � dti, 1 , t
2

� �

ð2Þ

where dti, k is the mean treatment effect of treatment ti, k
compared with the network reference treatment. The

consistency relationships reflect the comparison made

between the treatment ti, k used on arm k and the treat-

ment ti, 1 used on arm 1 of each study. A common effects

Pedder et al. 3



model that assumes no between-study heterogeneity can

be obtained by setting t2 = 0.

Dose-Response MBNMA

The dose-response MBNMA model extends the standard

NMAmodel to incorporate a dose-response relationship.19

We define a treatment in arm k of study i as a specific

dose, xi, k , of a specific agent, ai, k . The model is exactly as

for the NMA equation (1) above, but equation (2) is

replaced with

di, k ;N (f (xi, k , ai, k)� f (xi, 1, ai, 1), t
2) ð3Þ

where f (xi, k , ai, k) is a dose-response function for dose xi, k ,

agent ai, k , and t2 is the between-study heterogeneity (set

to zero for a common effects model). Multi-arm trials are

dealt with in the same way as in standard NMA.2

Any dose-response function could be fitted, although

this will be limited by the number of doses of an agent

included in RCTs in the network. For example, for an

exponential model,

f (xi, k , ai, k)=E0, i +bai, k
(1� e�xi, k )

where E0, i is the placebo response at xi, k = 0 in study i,

and bai, k
is the rate parameter for the agent in arm k of

study i. The consistency equation in equation (3) means

that the E0, i terms cancel out when forming the relative

effects, so E0, i is not explicitly estimated within the model.

In the exponential model, there is a single dose-response

parameter to be estimated for each agent, meaning that

studies with at least 2 doses (one of which could be pla-

cebo) of each agent are required to estimate ba.

Another commonly used dose-response model is the

Emax function,23 which estimates the maximum response

relative to placebo (Emax, a) and the dose at which half the

maximum response can be achieved (ED50, a):

f (xi, k , ai, k)=E0, i +
Emax, ai, kxi, k

ED50, ai, k + xi, k
ð4Þ

Again, we do not explicitly estimate E0, i, as these terms

cancel out when equation (4) is inserted into equation

(3). The Emax, a and ED50, a parameters may be correlated,

and this correlation can be estimated by specifying a

bivariate normal distribution with a Wishart prior on the

covariance matrix (see the Analyses and Implementation

section and equation [5]). This extends to models with

more than 2 parameters, in which a multivariate normal

distribution can be specified.

To estimate both parameters of the Emax function,

studies with at least 3 doses of a specific agent are

required.

Example Data Sets

A data set of published RCTs for the efficacy of triptans

in migraine relief24 was used to illustrate the analyses.

The outcome measured was the proportion of patients

who were headache free at 2 h. This data set contains 22

treatments, 7 agents, and a placebo and was investigated

in 70 studies. Doses are standardized to multiples of each

agent’s ‘‘common’’ dose.24

From this complete data set, we generated manipu-

lated data sets by removing specific treatments and stud-

ies to represent several scenarios that might be found in

practice to compare the performance of NMA and

MBNMA methods. If only a single arm remained in a

study after excluding treatments, then that study was

excluded. Complete and manipulated data sets generated

for all scenarios can be found in the Supplementary

Materials.

Scenario 1: Connected network. In scenario 1, data sets

illustrate the use of MBNMA in connected networks

with different amounts of dose-response information. Com-

parisons of interest are at the common dose (dose = 1).

Scenario 1A. Scenario 1A is a manipulated data set

composed of only a single common dose of each agent

and placebo in the triptans data set (Figure 2A), which left

59 studies, 7 treatments (all common doses of different

agents), and a placebo. This scenario may be similar to

data sets found in HTAs or clinical guidelines, in which

only comparisons between licensed doses of each agent are

of interest and included in the evidence network.

Scenario 1B. Scenario 1B is the complete triptans

data set including all doses and agents. This includes 70

studies, investigating 22 treatments, 7 agents, and a pla-

cebo (Figure 2B).

Scenarios 2 and 3: Disconnected networks. For simpli-

city, we suppose the objective is to compare 2 treatments

of interest (agents of interest at the common dose). We

take each pair of agents in turn and remove evidence on

all other agents from the network, leaving only different

doses of each agent of interest. These data sets are then

manipulated further to obtain disconnected networks for

scenarios 2 and 3 (see below). Manipulating the original

data set in this way provides us with a number of differ-

ent, simpler data sets that can be used to examine how

4 Medical Decision Making 00(0)



the reliability of MBNMA changes depending on the

agents and doses included.

We follow the approach taken by Beliveau et al.25 to

compare MBNMA models fitted to disconnected net-

works with NMA models fitted to connected networks.

We first fit MBNMA models to disconnected networks

and calculated relative effects for the treatment compari-

son of interest in the network. Then we added in data to

connect the networks, generating ‘‘augmented’’ data sets

on which it was possible to fit NMA models. The relative

effects calculated between the 2 sets of data were com-

pared to assess the level of agreement.

Scenario 2: Disconnected due to absence of common

comparator (e.g., placebo). This illustrates a situation in

which there is evidence on different doses for an agent of

interest (e.g., from early-phase drug development trials)

but there is no common comparator (Figure 1c).

To explore this, we generated a disconnected data set

by removing all placebo arms from the data sets for each

pair of agents (having already removed agents not of

interest). For each of these networks, we also constructed

an ‘‘augmented’’ data set by including comparisons

between any doses of the included agents versus placebo

so that the networks were fully connected and both

MBNMA and NMA models could be fitted.

Scenario 3: Disconnected due to comparison with a dose

that has not been evaluated in other trials. This illustrates a

scenario shown in Figure 1d in which the treatment of inter-

est (A1) has been investigated only in a study comparing a

nonlicensed or nonoptimal dose of a comparator (B0.5) that

is not connected to the dose of interest (B1) via any pathway

of head-to-head evidence. In practice, this nonlicensed

comparison might occur with a suboptimal dose of a com-

parator, such as in the GALLIUM trial comparing obinu-

tuzumab for untreated advanced follicular lymphoma to

rituximab administered for a shorter series of doses.26

Disconnected data sets were therefore generated such

that studies comparing a common dose of one agent ver-

sus a nonoptimal dose of another were not connected to

studies comparing other doses. Augmented data sets were

then generated, which included comparisons between all

doses of both agents, including the common dose, so that

the networks were fully connected.

Analyses and Implementation

All models were implemented using the package

MBNMAdose version 0.2.727 in R version 3.6.1 with a seed

of 210489. Models were run until convergence was reached

for all monitored parameters, as assessed by the Gelman-

Rubin statistic28 and visual inspection of the chains.

Figure 2 Network plots at the treatment level illustrating data sets in scenario 1A (A) and 1B (B). Each node represents a

different treatment, and each solid connecting line represents a comparison for which evidence is available in the data set. The

thickness of the connecting lines is proportional to the number of studies that compare the connected treatments. A treatment is

defined as a specific dose of a specific agent. Treatments are named by the first letter of their agent and their dose, standardized

to the common dose for each agent.
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The effective number of parameters were estimated

using the plug-in method29 for NMAs and using the

Kullback-Leibler divergence30 for MBNMAs. Deviance

information criterion (DIC) was used to compare mod-

els, defined as the sum of the effective number of para-

meters added to the residual deviance.

Each data set was analyzed where possible using stan-

dard NMA and dose-response MBNMA. For both

NMA and MBNMA, common and random effects mod-

els were compared. For MBNMA, a model selection

strategy was used to determine a suitable model, in which

first all models that were within 3 DIC points of the

model with the lowest DIC were identified.31 Of these

models, the simplest was preferred: models with common

treatment effects were selected in preference to those with

random treatment effects, and models with an exponen-

tial dose-response function were selected in preference to

those with an Emax dose-response function.

This approach was used to allow selection of a dose-

response function that could potentially explain as much

heterogeneity as possible. Exponential and Emax were

the only dose-response functions examined as there was

a biological justification for their use over other possible

functions (e.g., linear, quadratic).23

Vague normal prior distributions (N (0, 1000)) were given

to d1, k , mi, bai, k
. For MBNMAs using the Emax function, a

correlation was modeled between dose-response parameters

by assigning them a multivariate normal prior:

Emax, ai, k

log ED50, ai, k

� �

� �

;MVN(0,S) ð5Þ

ED50, ai, k was modeled on the log scale to ensure positive

values. A minimally informative Wishart prior was used

for S
�1
;Wishart(

1 0

0 1

� �

, 2). The between-study SD, t,

was given a half-normal prior distribution (N(0, 400)).

Unless otherwise stated, results are presented as posterior

medians and 95% credible intervals (95% CrIs).

Results

Scenario 1A

In the network involving only licensed doses of each

agent and placebo, it was only possible to fit an

MBNMA model with a single parameter (i.e., linear or

exponential models). Based on the exponential MBNMA

model, relative effects estimated from selected NMA and

MBNMA models were very similar (Figure 3). Between-

study SD was reasonably high in both NMA (0.36; 95%

CrI: 0.25, 0.50) and MBNMA (0.36; 95% CrI: 0.25,

0.50) models, and random effects models were selected in

both instances. Model fit was similar for MBNMA and

NMA models (Table 1). Because of the lack of dose-

response information, there was no gain in precision of

the estimates in the MBNMA model as compared with

the NMA model.

Scenario 1B

In Scenario 1B, all available doses of each agent and pla-

cebo were included. Random effects models were selected

Table 1 Model Fit Statistics for All Models Investigated in Scenario 1A and 1B Data Sets

Data Set
No. of

Data Points
Residual
Deviance DICa pDb Model

Dose-Response
Function

Treatment
Effects

Between-Study
SD (95% CrI)

Scenario 1A 122 202.3 66.6 268.9 NMA NA Common NA
Scenario 1A 122 124.0 96.3 220.3 NMA NA Random 0.36 (0.25, 0.50)
Scenario 1A 122 201.7 66.1 267.8 MBNMA Exponential Common NA
Scenario 1A 122 124.0 96.2 220.2 MBNMA Exponential Random 0.36 (0.25, 0.50)
Scenario 1A 122 NC NC NC MBNMA Emax Common NA
Scenario 1A 122 NC NC NC MBNMA Emax Random NC
Scenario 1B 182 269.0 93.3 362.3 NMA NA Common NA
Scenario 1B 182 190.6 131.6 322.2 NMA NA Random 0.27 (0.18, 0.37)
Scenario 1B 182 296.5 77.1 373.6 MBNMA Exponential Common NA
Scenario 1B 182 189.4 125.1 314.5 MBNMA Exponential Random 0.28 (0.20, 0.37)
Scenario 1B 182 266.8 80.9 347.7 MBNMA Emax Common NA
Scenario 1B 182 191.7 121.6 121.6 MBNMA Emax Random 0.24 (0.16, 0.34)

aDIC: deviance information criterion = pD + residual deviance.
bpD: The effective number of parameters calculated using the Kullback-Leibler divergence30 for model-based network meta-analysis (MBNMA)

and the plugin method29 for NMA.

NC, Markov chain Monte Carlo chains did not converge; model was not identifiable.
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for the NMA and MBNMA models. An Emax dose-

response function was selected for the MBNMA model,

with an estimated correlation between Emax and ED50

dose-response parameters of 0.57 (95% CrI 20.53, 0.93;

Table 1).

The relative effects from both NMA and MBNMA

were more precise for all agents at the common dose

than in scenario 1A because of the inclusion of trials

comparing nonlicensed doses (Figure 4). Furthermore,

MBNMA estimates were more precise than NMA esti-

mates because of the additional information gained from

modeling the dose-response relationship (Figure 4). The

between-study SD was also slightly reduced for the

MBNMA model (0.24; 95% CrI: 0.16, 0.34) as compared

with the NMA model (0.27; 95% CrI: 0.18, 0.38).

Scenario 2

It was possible to fit MBNMA models for 15 different

agent versus agent comparisons generated in scenario 2

(Supplementary Figure S1), but this was not possible for

agent pairs that included naratriptan because removing

the placebo arms left only single arms of studies includ-

ing naratriptan.

In all disconnected data sets, an exponential dose-

response MBNMA was selected with common treatment

effects (Table 2). NMA models could not be estimated

because of the networks being disconnected.

Relative effects estimated using MBNMA had high

uncertainty (Figure 5), reflecting both the sparsity of data

in the networks (number of data points per data set:

median = 22; range = 8 to 36) and the fact that no pla-

cebo evidence was available with which to inform the

dose-response relationship at lower doses.

Augmenting the data sets by adding in placebo arms

to connect the network enabled NMA models to be esti-

mated. For MBNMA models, an Emax dose-response

function was selected for 12 of 15 data sets. Random

treatment effects were selected over common effects in

12 of 15 data sets for both NMA and MBNMA models.

For most comparisons, results in the disconnected

data sets were consistent with those in augmented data

sets (Figure 5). However, for comparisons of almotrip-

tan, rizatriptan, and sumatriptan with eletriptan, esti-

mates from the disconnected data sets were further away

from the posterior medians of augmented data set esti-

mates, and results were less consistent.

Within augmented data sets, MBNMA estimates were

very similar to corresponding NMA estimates but with

slightly increased precision leading to narrower 95%

CrIs, which were typically within those of the NMA esti-

mates. The ratio of posterior SDs for the NMA estimates

compared with the MBNMA estimates for each compar-

ison had a median of 1.13 (range, 1.04 to 1.68).

Scenario 3

Given the constraints of the original triptans data set, we

were only able to generate suitable manipulated data sets

for this scenario using higher doses of sumatriptan than

the common dose. We were able to construct 3 networks

to illustrate this scenario. Disconnected data sets

Figure 3 Forest plot showing the relative efficacy for each agent in scenario 1A at the common dose versus placebo, estimated

from a common effects network meta-analysis (NMA) model and the selected common effects exponential model-based model.

For each estimate, central points represent posterior medians and error bars represent 95% credible intervals.

Pedder et al. 7



therefore included a study comparing a common dose

of one agent (either almotriptan/eletriptan/rizatriptan) ver-

sus twice the common dose of sumatriptan that was discon-

nected from studies comparing other doses of sumatriptan

(including placebo; Supplementary Figure S3). Augmented

data sets were similar but included comparisons between

the common dose of almotriptan/eletriptan/rizatriptan and

all doses of sumatriptan so that the network was fully con-

nected (Supplementary Figure S4).

For all data sets generated in scenario 3, exponential

MBNMA models with random treatment effects were

selected (Table 3). NMA models could not be estimated

because the networks were disconnected. Precision was

typically higher in relative effects for data sets generated

in scenario 3 than in scenario 2, although it is unclear

whether this was due to the specific inclusion of placebo

within the data set or due to the increased evidence avail-

able in scenario 3 (Tables 2 and 3). When augmenting

the data sets to enable estimation of NMA models, ran-

dom effects models were selected in all data sets for both

NMA and MBNMA models.

For all three comparisons, relative effects (either from

MBNMA or NMA) in augmented data sets were entirely

within the 95% CrIs of those estimated from MBNMAs

in the disconnected data sets (Figure 6), suggesting that

results were in agreement.

For augmented data sets, MBNMA estimates were

very similar to NMA estimates. There was slightly

increased precision in MBNMA estimates, leading to

narrower 95% CrIs. The ratios of the posterior SDs for

the NMA estimates compared with the corresponding

MBNMA estimates for each comparison at the common

dose were 1.03, 1.16, and 1.13 for almotriptan, eletrip-

tan, and rizatriptan, respectively, versus sumatriptan.

Discussion

This study illustrates several scenarios in which dose-

response MBNMA can add value as compared with stan-

dard NMA methods, either by improving precision or by

connecting networks to enable comparisons between

treatments of interest to be made. Connecting and

strengthening networks is enabled by including addi-

tional evidence on nonoptimal doses and via the model-

ing of a functional dose-response relationship, which can

act as a link between disconnected treatments, either

between different doses of the same agent along the dose-

response curve or between different agents via extrapola-

tion of the placebo response.

Evidence on nonlicensed doses is not typically

included in HTA submissions; however, such evidence

will often exist and, if included using MBNMA, could

add value by increasing precision even in connected net-

works. HTAs where multiple doses are of interest could

also benefit from modeling using MBNMA. Examples

include treatments for moderate-to-severe plaque psoria-

sis32–34 and retigabine for the adjunctive treatment of

partial-onset seizures in epilepsy.35

In scenarios in which the networks were disconnected

(scenarios 2 and 3), we found that MBNMA allowed

estimation of relative effects, which were consistent with

Figure 4 Forest plot showing the relative efficacy for each agent in scenario 1B at the common dose versus placebo, estimated

from a random effects network meta-analysis (NMA) model and random effects exponential and Emax model-based NMA

models. For each estimate, central points represent posterior medians and error bars represent 95% CrIs.

8 Medical Decision Making 00(0)



NMA estimates obtained in augmented data sets where

connections were added back into the network.

In the situation in which dose-response information is

available on 2 agents but there is no direct comparison

connecting the agents (scenario 2), we found that,

although MBNMA models could be estimated, there was

limited information with which to estimate a complex

dose-response function because of the comparatively few

Table 2 Model Fit Statistics for Selected Models in Each Data Set Analyzed in Scenario 2

Data Set

Number Data Set Agent 1 Agent 2

No. of

Data

Points

Residual

Deviance DICa pDb Model

Dose-Response

Function

Treatment

Effects

Between-Study

SD

1 Initial Almotriptan Rizatriptan 13 12.0 20.0 8.0 MBNMA Exponential Common NA

1 Augmented Almotriptan Rizatriptan 45 48.9 81.5 32.6 MBNMA Exponential Random 0.27 (0.0920.5)

1 Augmented Almotriptan Rizatriptan 45 48.1 83.3 35.3 NMA NA Random 0.32 (0.1220.59)

2 Initial Almotriptan Zolmitriptan 14 11.0 19.2 8.2 MBNMA Exponential Common NA

2 Augmented Almotriptan Zolmitriptan 44 42.1 63.0 21.0 MBNMA Emax Common NA

2 Augmented Almotriptan Zolmitriptan 44 45.3 71.6 26.3 NMA NA Common NA

3 Initial Eletriptan Almotriptan 22 24.0 36.3 12.3 MBNMA Exponential Common NA

3 Augmented Eletriptan Almotriptan 46 48.1 81.7 33.6 MBNMA Emax Random 0.3 (0.1420.5)

3 Augmented Eletriptan Almotriptan 46 48.3 84.5 36.3 NMA NA Random 0.34 (0.1620.58)

4 Initial Eletriptan Frovatriptan 18 21.6 31.9 10.2 MBNMA Exponential Common NA

4 Augmented Eletriptan Frovatriptan 42 42.1 76.0 34.0 MBNMA Emax Random 0.4 (0.2320.67)

4 Augmented Eletriptan Frovatriptan 42 42.8 77.0 34.2 NMA NA Random 0.43 (0.2320.71)

5 Initial Eletriptan Rizatriptan 23 27.9 39.9 12.1 MBNMA Exponential Common NA

5 Augmented Eletriptan Rizatriptan 61 63.1 110.2 47.2 MBNMA Emax Random 0.38 (0.2320.57)

5 Augmented Eletriptan Rizatriptan 61 63.9 112.0 48.1 NMA NA Random 0.4 (0.2420.63)

6 Initial Eletriptan Sumatriptan 36 42.7 60.8 18.1 MBNMA Exponential Common NA

6 Augmented Eletriptan Sumatriptan 90 92.3 157.0 64.7 MBNMA Emax Random 0.31 (0.1920.44)

6 Augmented Eletriptan Sumatriptan 90 92.4 158.3 65.9 NMA NA Random 0.31 (0.1920.45)

7 Initial Eletriptan Zolmitriptan 22 24.4 35.3 10.9 MBNMA Exponential Common NA

7 Augmented Eletriptan Zolmitriptan 57 57.6 98.9 41.3 MBNMA Emax Random 0.29 (0.1320.48)

7 Augmented Eletriptan Zolmitriptan 57 59.1 102.1 43.0 NMA NA Random 0.32 (0.1520.53)

8 Initial Frovatriptan Almotriptan 8 5.8 12.1 6.3 MBNMA Exponential Common NA

8 Augmented Frovatriptan Almotriptan 26 31.6 44.7 13.1 MBNMA Exponential Common NA

8 Augmented Frovatriptan Almotriptan 26 34.7 50.8 16.2 NMA NA Common NA

9 Initial Frovatriptan Rizatriptan 9 9.7 16.1 6.5 MBNMA Exponential Common NA

9 Augmented Frovatriptan Rizatriptan 41 42.3 74.8 32.5 MBNMA Emax Random 0.41 (0.2120.71)

9 Augmented Frovatriptan Rizatriptan 41 42.4 76.0 33.5 NMA NA Random 0.45 (0.2220.8)

10 Initial Frovatriptan Zolmitriptan 10 8.6 14.3 5.7 MBNMA Exponential Common NA

10 Augmented Frovatriptan Zolmitriptan 38 44.4 62.9 18.5 MBNMA Emax Common NA

10 Augmented Frovatriptan Zolmitriptan 38 47.2 70.5 23.3 NMA NA Common NA

11 Initial Sumatriptan Almotriptan 24 25.8 39.0 13.2 MBNMA Exponential Common NA

11 Augmented Sumatriptan Almotriptan 77 78.4 130.3 51.9 MBNMA Emax Random 0.25 (0.1320.39)

11 Augmented Sumatriptan Almotriptan 77 79.2 134.2 55.1 NMA NA Random 0.25 (0.120.41)

12 Initial Sumatriptan Frovatriptan 22 24.6 36.3 11.7 MBNMA Exponential Common NA

12 Augmented Sumatriptan Frovatriptan 72 71.9 123.2 51.4 MBNMA Exponential Random 0.32 (0.1820.48)

12 Augmented Sumatriptan Frovatriptan 72 72.2 126.2 54.0 NMA NA Random 0.32 (0.1720.49)

13 Initial Sumatriptan Rizatriptan 25 28.7 41.4 12.7 MBNMA Exponential Common NA

13 Augmented Sumatriptan Rizatriptan 93 96.7 163.5 66.8 MBNMA Emax Random 0.3 (0.1820.43)

13 Augmented Sumatriptan Rizatriptan 93 96.6 165.0 68.4 NMA NA Random 0.3 (0.1820.44)

14 Initial Sumatriptan Zolmitriptan 28 29.9 43.7 13.9 MBNMA Exponential Common NA

14 Augmented Sumatriptan Zolmitriptan 88 88.0 150.0 61.9 MBNMA Emax Random 0.26 (0.1220.4)

14 Augmented Sumatriptan Zolmitriptan 88 89.1 151.6 62.5 NMA NA Random 0.26 (0.0920.41)

15 Initial Zolmitriptan Rizatriptan 15 14.9 22.9 8.0 MBNMA Exponential Common NA

15 Augmented Zolmitriptan Rizatriptan 56 58.9 95.0 36.1 MBNMA Emax Random 0.26 (0.0720.47)

15 Augmented Zolmitriptan Rizatriptan 56 58.8 100.7 41.9 NMA NA Random 0.3 (0.1120.55)

aDIC: deviance information criterion = pD + residual deviance.
bpD: The effective number of parameters calculated using the Kullback-Leibler divergence30 for model-based network analysis (MBNMA) and

the plugin method29 for NMA.
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different doses of each agent in the triptans data set, par-

ticularly at lower doses, when there is no placebo infor-

mation. This was more problematic for eletriptan, as the

dose-response relationship was better described by an

Emax than an exponential function, which resulted in

relative effects that were typically lower as compared

with those estimated from augmented data sets for ele-

triptan versus several other agents. Although phase II

studies would typically include a placebo arm, these stud-

ies may remain unpublished, so a manufacturer may

have placebo evidence for their own agent but not neces-

sarily for that of their competitors.

In the situation in which there was a direct compari-

son of the agents of interest but the network was discon-

nected because one of the agents was trialed at a

nonoptimal dose (scenario 3), MBNMA was able to link

Figure 5 Forest plot showing the relative efficacies between focal treatments (two agents at their common dose) in each distinct

data set generated for scenario 2 (see Supplementary Figures S1 and S2), estimated from selected NMA and MBNMA models in

disconnected and augmented data sets. Relative effects cannot be estimated in NMA models for the disconnected data sets

because treatments are not connected via pathways of head-to-head evidence. For each estimate, the central points represent

posterior medians, and error bars represent 95% CrIs.

Table 3 Model Fit Statistics for Selected MBNMA and NMA Models in Each Data Set Analyzed in Scenario 3

Dataset

Number Data Set Agent 1 Agent 2

No. of Data

Points

Residual

Deviance DICa pDb Model

Dose-Response

Function

Treatment

Effects

Between-Study

SD

1 Initial Almotriptan Sumatriptan 38 37.5 66.6 29.1 MBNMA Exponential Random 0.30 (0.1020.54)

1 Augmented Almotriptan Sumatriptan 74 74.3 127.5 53.3 MBNMA Exponential Random 0.28 (0.1620.44)

1 Augmented Almotriptan Sumatriptan 74 75.3 128.6 53.3 NMA NA Random 0.27 (0.1220.42)

2 Initial Eletriptan Sumatriptan 38 37.2 66.8 29.6 MBNMA Exponential Random 0.29 (0.1120.54)

2 Augmented Eletriptan Sumatriptan 80 81.1 141 59.8 MBNMA Exponential Random 0.35 (0.2220.52)

2 Augmented Eletriptan Sumatriptan 80 81 142.5 61.6 NMA NA Random 0.36 (0.2220.53)

3 Initial Rizatriptan Sumatriptan 40 38.6 69.2 30.6 MBNMA Exponential Random 0.28 (0.1120.53)

3 Augmented Rizatriptan Sumatriptan 87 89 152.9 63.9 MBNMA Exponential Random 0.32 (0.2120.48)

3 Augmented Rizatriptan Sumatriptan 87 89.5 154.1 64.6 NMA NA Random 0.32 (0.2020.47)

a
DIC: deviance information criterion = pD + residual deviance.

bpD: The effective number of parameters calculated using the Kullback-Leibler divergence30 for model-based network meta-analysis (MBNMA)

and the plugin method29 for NMA.
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agents at the optimal dose. Although there were only 3

possible combinations of agents in the triptans data set

for which it was possible to examine this scenario, esti-

mates from augmented and disconnected data sets were

in agreement. The reliability of the results from this sce-

nario were due to considerable information at different

doses for the agent connected via the dose-response rela-

tionship (sumatriptan in all 3 data sets). It is unclear how

frequently these evidence structures might arise in HTAs,

as submissions typically compare only licensed doses.

Comparison with Other Methods for

Disconnected Networks

Dose-response MBNMA has several advantages as

compared with other methods for linking disconnected

networks provided sufficient data are available for

estimation. In particular, the method uses only rando-

mized evidence, and the statistical approach respects the

randomization in RCTs. This means that the estimates

are unbiased provided there are no differences in treat-

ment effect modifiers between studies (the standard

assumption made in NMA) and the dose-response func-

tion is not misspecified. The assumptions made regard-

ing the dose-response relationship are also testable by

evaluating the model’s fit. Furthermore, MBNMA can

be fitted using aggregate data only, without the need for

individual patient data.

MBNMA is distinct from model-based meta-analysis

(MBMA), which models dose response but typically

pools absolute rather than relative effects.36–38 MBMA

can be used with disconnected networks and allows

inclusion of single-arm studies. However, it can produce

biased estimates because of differences between studies

in prognostic factors, as it violates randomization by

ignoring within-study comparisons.39

Another approach for dealing with disconnected net-

works is to fit a random effects model for the absolute

effects on a specific reference treatment A. This random

effects model is used to predict a treatment A effect in

any study that is disconnected from the network, thus

enabling that study to connect via treatment A.14 This

method does not require individual patient data and can

incorporate single-arm studies. However, it can introduce

important bias because it breaks randomization by allow-

ing within-study information to be influenced by infor-

mation outside the study.40 It also relies on there being

sufficient studies that include treatment A to enable esti-

mation of the random effects model. If there is substan-

tial heterogeneity between studies, then the predicted A

effect in disconnected studies will be imprecisely esti-

mated, and network connections will be tenuous. The

model also assumes that the baseline model has been cor-

rectly specified, which may require adjusting for study-

level factors that affect the baseline response.8 Beliveau

et al.25 applied random baseline effect NMA models to dis-

connected networks, finding that there was generally good

overlap between random baseline models and standard

NMA models in subsets of 2 different data sets. However,

White et al.40 showed that bias would occur if underlying

studies had different baseline predictors,40 and it is not clear

how frequently this might be the case in practice. There is

also no way of testing the assumption that the baseline

effect has been correctly specified, and important predictors

may not be reported in included studies.

Population adjustment methods such as matched

adjusted indirect comparisons11,12 or simulated treat-

ment comparisons13 have also been used to link

Figure 6 Forest plot showing the relative efficacies between

focal treatments (2 agents at their common dose) in each

distinct data set generated for scenario 3 (see Supplementary

Figure S3 and S4), estimated from selected network meta-

analysis (NMA) and model-based NMA (MBNMA) models in

disconnected and augmented data sets. Relative effects cannot

be estimated in NMA models for the disconnected data sets

because treatments are not connected via pathways of head-to-

head evidence. For each estimate, the central points represent

posterior medians and error bars represent 95% credible

intervals.
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disconnected treatments. These methods predict an abso-

lute effect of a disconnected treatment Y in the popula-

tion of a trial including treatment X, and the prediction

is analyzed as if it were an additional arm in the trial

including X. However, the validity of comparisons relies

on the assumption that the differences in absolute effects

between studies can be fully explained by adjustment of

prognostic variables (those that affect the outcome) as

well as effect modifiers (those that alter the treatment

effect).41 This is a very strong assumption that is impos-

sible to test within the analysis, and it is unlikely that

each trial has collected information on the same set of

potential effect modifiers and prognostic factors. If this

assumption does not hold, then the resulting relative

effects between disconnected treatments will be biased.41

These methods also require individual patient data to be

available for at least 1 RCT, although in HTA, this is

typically available for the manufacturer’s trial.

An alternative method that makes use of functional

assumptions regarding treatment definitions and can be

performed using aggregate data is component network

meta-analysis.15,16 This splits combinations of treatments

into different components, allowing for networks to be

connected if treatments in separate subnetworks share at

least 1 common component,42 and it has been used for

this purpose in an analysis of cognitive behavioral thera-

pies for panic disorder.43

Although a network may be disconnected for a partic-

ular outcome, other correlated outcomes may be avail-

able, and a joint analysis using multivariate NMA may

provide relative effect estimates between treatments that

are disconnected for a given outcome, although correla-

tions must be high to enable this.44 This approach was

used to model the effects of first- and second-line thera-

pies for rheumatoid arthritis.45

A more powerful approach is to model a structural

relationship between multiple outcomes. Lu et al.46 used

piecewise constant models to synthesize different net-

works (some of which were disconnected) at multiple

follow-up times, and fractional polynomial models have

also been used.47 Time-course MBNMA20 provides a

general framework to fit a functional time-course rela-

tionship, which can connect networks and provide con-

siderably more precision than modeling the correlation

alone.20 Time-course MBNMA could have potential ben-

efit in HTAs; for example, treatments for relapsing multi-

ple sclerosis typically report at multiple time points, but

economic models are based on 6-mo follow-up, which is

not reported for all treatments.48

Assuming a common or exchangeable effect among

similar treatments can be used as a way of connecting

networks or dealing with sparse evidence structures,49,50

for example, drugs in the same class with a similar

mechanism of action or biosimilar products. However,

assuming a common effect is a very strong assumption

that can be difficult to justify, and assuming exchange-

able effects will shrink treatment effects toward a class

mean effect, which may not be realistic.

Other approaches that have been proposed to connect

networks include incorporating nonrandomized evi-

dence6 or expert opinion8–10 to inform a prior distribu-

tion for the relative effect between the disconnected

treatments. However, observational evidence is vulnera-

ble to a range of biases, which may invalidate relative

effect estimates, and although expert opinion may be

useful to put some bounds on plausible effect sizes, it is

subjective and prone to bias.

Limitations

Although there are advantages of using dose-response

MBNMA, there are also some clear limitations. The

method is sensitive to misspecification of the dose-

response function, and more complex dose-response

models such as the Emax model require data on multiple

doses of different agents to be able to estimate them.

Doses that are more widely distributed will be more

informative in identifying points of curvature in the

dose-response function and are therefore likely to be

important for mitigating bias.51 This is highlighted by

the lack of placebo data in scenario 2, which generally

resulted in underestimated relative effects for eletriptan

versus other agents in disconnected data sets.

With only a single dose and placebo (or 2 doses with-

out placebo) for each agent, only simple MBNMA mod-

els can be fitted, such as linear or exponential functions.

Model fit statistics cannot help distinguish between mod-

els in this situation, although there may be some biologi-

cal justification for an exponential function.23 External

evidence may be helpful to support the choice of dose-

response function, perhaps from data on related agents,

or the same agents in different populations. Sharing

either ED50 or Emax across agents within a class may

make the Emax model easier to fit when data are limited,

although this should be done only if there is clinical justi-

fication. Simulation studies to explore the performance

of MBNMA models for different evidence structures

would be a useful area for further work.

Conclusions

NMA relies on networks of treatments being connected.

MBNMA allows reconnecting of networks via the
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dose-response relationship when evidence on multiple

doses of agents is available. In our manipulated data

sets, MBNMA estimates were in agreement with those

from NMA, had connecting studies been available.

MBNMA makes fewer assumptions than other methods

for linking disconnected networks, with the only addi-

tional assumption over NMA being that the dose-

response relationship is correctly specified. This assump-

tion can be tested by examining the fit of the model to

the data and/or based on the agent pharmacology.

MBNMA can be performed using aggregate data and

can add precision over NMA even in connected net-

works, when multiple doses are available.

MBNMA does, however, require information on mul-

tiple doses for each agent, particularly to estimate more

complex dose-response functions. We therefore recom-

mend that systematic reviews supporting HTA should

broaden their scope to include all doses in instances in

which the use of dose-response MBNMA is expected to

be of value. We also urge manufacturers to publish their

phase II study results, so that reimbursement decisions

can make full use of the evidence available. Early-phase

evidence is taken into consideration when gaining regula-

tory approval, and incorporating this information into

HTA may help bridge the evidence gap between regula-

tors and reimbursement bodies.3,4
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