
Device-independent randomness expansion against
quantum side information

Wen-Zhao Liu1,2, Ming-Han Li1,2, Sammy Ragy3, Si-Ran Zhao1,2, Bing Bai1,2, Yang Liu1,2, Peter

J. Brown3, Jun Zhang1,2, Roger Colbeck3, Jingyun Fan1,2,4, Qiang Zhang1,2, Jian-Wei Pan1,2

1Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of

Modern Physics, University of Science and Technology of China, Shanghai 201315, P. R. China.

2Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum

Information and Quantum Physics, University of Science and Technology of China, Shanghai

201315, P. R. China.

3Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

4Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern

University of Science and Technology, Shenzhen, 518055, P. R. China

The ability to produce random numbers that are unknown to any outside party is crucial for

many applications. Device-independent randomness generation1–4 does not require trusted

devices, thus providing strong guarantees about the security of the output, but comes at the

price of requiring the violation of a Bell inequality to implement. A further challenge is to

make the bounds in the security proofs tight enough to allow randomness expansion with con-

temporary technology. Although randomness has been generated in recent experiments5–9,

the amount of randomness consumed in doing so has been too high to certify expansion based

on existing theory. Here we present an experiment that demonstrates device-independent
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randomness expansion1–3, 10–15. By developing a Bell test setup with a single photon detec-

tion efficiency of around 84% and using a spot-checking protocol, we achieve a net gain

of 2.57 × 108 certified bits with soundness error 3.09 × 10−12. The experiment ran for

19.2 hours corresponding to an average rate of randomness generation of 13,527 bits/s.

By developing the Entropy Accumulation Theorem4, 16, 17, we establish security against quan-

tum adversaries. We anticipate that this work will lead to further improvements that push

device-independence towards commercial viability.

According to quantum theory, measurement outcomes are in general unpredictable, even to

observers possessing quantum devices. Quantum processes have hence been extensively studied

as a source of randomness18, 19. In a typical quantum random number generator, the user relies

on the device working in a particular way, for instance, by having single photons pass through a

50:50 beam splitter and being detected. Deviations in the device behaviour affect the randomness

of the outputs, while being difficult to detect. Furthermore, any real device will be too complicated

to model in its entirety, leaving open the possibility that an adversary can exploit a feature of the

device outside the model, as has been seen in quantum key distribution20. To circumvent this,

device-independent protocols were introduced, which are proven secure without any assumptions

about the devices used. This leads to a significantly higher level of security by removing any

problems caused by unmodelled features.

Recently we have witnessed significant advances in experimental device-independent ran-

domness generation (DIRNG). Some previous works required additional assumptions3, 5–7, and
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even the most advanced to date8, 9 consumed more randomness than they generated. Hence, ran-

domness expansion, which is a quantum feature without classical counterpart, remained elusive

and technically challenging. For example, with our previous experimental setup8, almost 118, 000

experimental hours (at 200 kHz repetition rate) would be required to achieve randomness expan-

sion with the protocol presented below, putting it out of reach in practice.

Here we report the experimental realization of device-independent randomness expansion

(DIRNE) with high statistical confidence, the success of which is based on substantial improve-

ments on both the theoretical and experimental sides. We derive a tighter bound on entropy ac-

cumulation in the randomness generation process and construct a photonic entanglement platform

to realise a record-high violation of the Clauser-Horne-Shimony-Holt (CHSH)21 inequality. The

significance of this work is twofold in that it advances both our understanding of randomness and

our experimental quantum optical capabilities. Such improvements bring us closer to being able to

realise a number of other critical quantum information tasks such as device-independent quantum

key distribution22.

The entropy accumulation theorem (EAT)4, 16, 17 provides relatively tight bounds on the amount

of randomness that can be extracted against an adversary limited only by quantum theory. Roughly

speaking, the EAT shows that in an n-round protocol achieving a CHSH game score of ω, the

amount of output randomness is lower bounded by

randout ≥ nh(ω)−
√
nv , (1)

where h(ω) is the worst-case von Neumann entropy of an individual round of the protocol with
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expected score ω. The score on round i is 1
2
(1 + (−1)Ai⊕Bi⊕(Xi·Yi)), where Ai and Bi are measure-

ment outcomes and Xi and Yi are measurement setting choices at the two sites, with Ai, Bi, Xi

and Yi ∈ {0, 1} (see Fig. 1), and v is a correction factor accounting for the finite statistics. Using

ideas from the improved EAT17, we derive a tighter lower bound on the accumulated entropy (see

the Methods). This allows us to use a spot-checking protocol to experimentally realise randomness

expansion with a state-of-art experimental quantum optical technique.

Fig. 1 shows a conceptual drawing of our spot-checking device-independent protocol, where

the assumptions are outlined. The underlying idea is to check that devices situated in a secure

lab violate a Bell inequality, hence it is important to ensure that the devices at both sites (labelled

Alice and Bob) cannot signal to one another or to the outside of the lab. If a Bell inequality is

violated while satisfying our assumptions, then the devices must be generating randomness, even

relative to an adversary who may share entanglement with the devices. The generated randomness

can be extracted by appropriate post-processing. In this protocol (Box 1), the initial randomness

is required to decide whether a round is a test round, Ti = 1 (with probability γ), or a generation

round, Ti = 0 (with probability 1 − γ). Ti is then communicated to two separate sites (but not to

the measurement devices). In a test round, an independent uniform random number generator at

each site generates the input to each device to perform the CHSH game. A test round consumes

2 bits of randomness. In a generation round, the devices at the two sites are given the input “0”.

Crucially, each measurement device only learns its own input and not whether a round was a test

or generation round.
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Figure 1: Conceptual sketch of the DIRNE protocol setup (cf. Box 1). The protocol takes place

in a secure lab, which is shielded from direct communication to the outside. The lab contains two

black-box devices which accept inputs and yield outputs from the binary alphabet {0, 1} and these

can be shielded from communicating at will. In particular, we assume the user can completely

control the flow of classical communication in and out of these regions (indicated by the dashed

lines). In our experiment, the secure lab contains two sites Alice and Bob. They share a pair

of entangled particles which may be distributed from a central station. (If we had good enough

quantum storage, then all entanglement could be pre-shared.) Alice and Bob’s respective inputs

are Xi and Yi and their outputs Ai and Bi. The user also possesses a trusted classical computer

(with which to process the classical data) and sources of initial randomness. In our experiment the

initial randomness is depicted by an extractor seed R and three RNGs that determine the inputs

to the devices. These output either 0 or 1, where the number in the box (γ or 1/2) denotes the

probability of 1. The central RNG determines the round-type (Ti = 1 meaning test and Ti = 0

meaning generate) and the peripheral ones determine the inputs if a test round is chosen. The final

randomness output is denoted by Z.
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Box 1 : CHSH-based DIRNE Protocol

Arguments:

n ∈ N – number of rounds

γ ∈ (0, 1] – test probability

ωexp – expected CHSH score given a test round

δ ∈ (0, 1) – width of the statistical confidence interval for the CHSH score

R – random seed for the extractor

Protocol:

1. For every round i ∈ {1, . . . , n} do 2− 4.

2. Set Ui =⊥. Choose Ti ∈ {0, 1} such that Pr(Ti = 1) = γ.

3. If Ti = 0 use the devices with inputs (Xi, Yi) = (0, 0), record Ai, replace Bi with 0

and set Ui = ⊥.

4. If Ti = 1, choose the inputs Xi and Yi uniformly at random from {0, 1} and record Ai

and Bi and set Ui = 1
2
(1 + (−1)Ai⊕Bi⊕(Xi·Yi)).

5. If |{Ui : Ui = 0}| > nγ(1− (ωexp − δ)), then abort the protocol.

6. Apply a strong quantum-proof randomness extractor to get output randomness M =

Ext(AB,R). (Because we use a strong extractor M can be concatenated with R to

give Z = (M,R).)

We implement the protocol on a quantum optical platform (see Fig. 2). Pairs of polarization-

entangled photons with wavelength 1560 nm are generated via spontaneous parametric downcon-
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version and are delivered to two sites through spatial optical paths, where polarization-dependent

measurements are conducted. Previously and with space-like separation between Alice and Bob,

this platform proved to be robust enough to realise loophole free violation of a Bell inequality and

DIRNG, in which the CHSH game scores ω violated the classical bound ωclass = 3/4 by 0.000278.

Under these conditions and using the same error parameters as elsewhere in this paper, it would

take about 8.52×1013 rounds of the experiment to witness randomness expansion according to our

revised EAT theory (open square in Extended Data Fig. 1a). To go beyond this, in the present work,

we reduced the distance between Alice and Bob by replacing the fibre links with spatial optical

paths to achieve record-high single-photon detection efficiencies of 83.40 ± 0.32% for Alice and

84.80±0.31% for Bob, enabling the detection loophole to be closed in the CHSH game. Following

the spot-checking protocol, a biased quantum random number generator (QRNG) is used to decide

whether to test or not. Its output Ti is transmitted to Alice and Bob to determine whether to use the

local unbiased QRNGs in each round. When Ti = 1, the setting choices Ai and Bi are randomly

determined, while when Ti = 0, the local unbiased QRNGs are turned off and fixed measurements

are made.

Before the start of the main experiment, a systematic experimental calibration is imple-

mented and some calculations performed to predetermine several parameters mentioned in the

protocol. The calibration yielded a CHSH game score of 0.752487, and we compute that for

γopt = 3.393× 10−4 corresponding to an average input entropy rate of 0.0049 bits per round, ran-

domness expansion with a soundness error (see the Methods) of 3.09×10−12 can be witnessed after

at least 8.951× 1010 rounds (cross in Extended Data Fig. 1a), i.e., the randomness produced in the
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experiment surpasses the consumed entropy after this number of rounds (see the Supplementary

Information, Section III.A).

In the main experiment, we set ωexp = 0.752487, δ = 3.52 × 10−4, γ = 3.264 × 10−4, and

conservatively set the number of rounds to n = 1.3824 × 1011, which is slightly larger than the

8.951×1010 rounds required (see Section III.A of the Supplementary Information for computation

of the latter). We complete all the rounds of the experiment in 19.2 hours at a repetition rate of

2 MHz, which is much smaller than 118, 000 hours8. The resulting CHSH game score is ωCHSH =

0.752484, which is consistent with the value we expect (and the protocol did not abort), |ωCHSH −

ωexp| < δ. The raw experimental output has size 0.138Tb. According to the development of the

EAT presented in the Supplementary Information, it contains at least 9.350×108 quantum-certified

bits of randomness, exceeding the amount of entropy (6.778× 108 bits) required for its generation

(see the Supplementary Information, Section III.A and the Methods). We use a personal computer

to perform a Toeplitz matrix (0.935Gb × 0.138Tb) multiplication to extract the quantum-certified

random bits from the raw output. The soundness error of the final output is 3.09× 10−12.

Because a quantum-proof strong extractor is applied, the seed required for the extraction

remains random after its use and hence is not consumed23. (Technically, the seed degrades by a very

small amount, which is accounted for in the soundness error given above; see the Supplementary

Information, Section I.C). Note that we do not consider the other randomness required in the

protocol (i.e., for choosing the test rounds and the inputs on the test rounds) to be reusable because

of the possibility of some subtle attacks (see Section 4.2 of Ref. 2). Overall we achieve DIRNE,
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gaining 2.57 × 108 net bits with a net rate of 1.86 × 10−3 bits per round against an eavesdropper

limited by quantum theory (shown by the red cross in Extended Data Fig. 1b).

When playing the CHSH game we close the detection loophole. Given the assumption that

the devices are well shielded, it is not necessary to close the locality loophole (see the Supplemen-

tary Information, Section I.B). Considering the demanding experimental requirements to close

both loopholes24–28, using shielding assumptions instead of space-like separation improves effi-

ciency and brings DIRNE closer to commercialization. We also remark that the randomness we

generate is secure according to a composable security definition (see the Methods) and hence can

be used in any application requiring random numbers. Strictly, because of an issue with the com-

posability of device independent protocols29, without further assumption, ongoing security of the

output randomness relies on the devices not being reused.

We also upgraded our previous platform where we closed the locality loophole to use higher

efficiency detectors8. The efficiencies there are sightly reduced giving 80.41 ± 0.34% for Alice

and 82.24± 0.32% for Bob. As a comparison, we analyse the performance of that setup using the

EAT framework with the same error parameters as our main experiment. Because of the need for

additional rounds, we increased the repetition rate to 4 MHz for this. The parameters used and a

comparison of the results are listed in Tab. 1. Overall, we obtained 6.496× 109 random bits within

3.168 × 1012 experimental rounds, exceeding the amount of entropy (6.233 × 109 bits) required

for its generation (see the Supplementary Information, Section III.A and the Methods), gaining

2.63 × 108 net bits with a net rate of 8.32 × 10−5 bits per round against an eavesdropper limited
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Figure 2: Schematic of the experiment. a Entanglement Source, Creation of pairs of entangled

photons: Light pulses of 10 ns are injected at a repetition rate of 2 MHz into a periodically poled

potassium titanyl phosphate (PPKTP) crystal in a Sagnac loop to generate polarization-entangled

photon pairs8. The two photons of an entangled pair at 1560 nm travel in opposite directions to

two sites Alice and Bob, where they are subject to polarization projection measurements. b Alice

and Bob, Single photon polarization measurement: In the measurement sites, Alice (Bob) uses a

Pockels cell to project the single photon into one of two pre-determined measurement bases, and

then detects single photons with a superconducting nanowire single-photon detector (SNSPD). In

each round, a biased QRNG in the lab creates a random bit Ti with probability distribution (γ, 1−γ)

to determine in advance whether this round will be a test or generation round. In test rounds Alice

and Bob each receive a random bit “0” or “1” from a local quantum random number generator

(QRNG) to set Pockels cell to zero and half-wave voltage accordingly (in generation rounds they

always use zero). HWP – half-wave plate; QWP – quarter-wave plate; DM – dichroic mirror; PBS

– polarizing beam splitter. 10
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Figure 3: Rounds needed and expansion rate depending on rounds for the main and space-

like experiments. a: We estimate the minimum number of experimental runs with our revised

EAT theory to witness randomness expansion as a function of CHSH violation (smooth curve)

with soundness error 3.09 × 10−12. The red square, yellow circle and green cross indicate the

previous8, space-like and main experimental conditions, respectively. b: We estimate the random-

ness expansion rate based on our revised EAT theory as a function of number of rounds (smooth

line) and the asymptotic rate (dashed line) with soundness error 3.09× 10−12. The cross and circle

indicate the experimental parameters used, red indicates the main experiment and blue indicates

the space-like experiment.
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by quantum theory (shown by the blue open circle in Extended Data Fig. 1b). The outputs of both

experiments are available online at https://tinyurl.com/qssxxaq.

Going beyond the work here we would like protocols that have an improved rate. Robust

protocols that achieve up to two bits of randomness per entangled qubit pair are known15. However,

to experimentally use such protocols to gain an advantage requires a significant improvement in

the detection efficiency, which is challenging with a photonic setup. On the theory side, better

rates could be achieved by developing tighter bounds on the output randomness. It would also

be interesting to put into practice a protocol for randomness amplification30, hence reducing the

assumption on the input randomness.
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Methods

Security definition. In this work we use a composable security definition31–33.

Definition 1 (security). A protocol with an output Z is called (εS , εC)-secure if it satisfies

1. (Soundness) For an implementation of the protocol that produces m bits of output we have

1

2
pΩ‖ρZE|Ω − τm ⊗ ρE|Ω‖1 ≤ εS , (2)

where τm represents a completely mixed state on m qubits, E represents all systems that

could be held by an adversary (Eve), Ω the event that the protocol does not abort, pΩ the

probability of this occurring. ‖ · ‖1 is the trace norm.

2. (Completeness) There exists an honest implementation such that pΩ ≥ 1− εC .

The soundness error bounds the distance between the output of the protocol and that of

an idealized protocol where Eve’s marginal is the same as in the real protocol, but the output is

perfectly uniform and independent of Eve.

In general, the raw output of a protocol can have a lot of randomness, while being easily

distinguishable from uniform. However, by applying an appropriate randomness extractor, which

is a classical function taking a random seed and the raw output, an almost uniform output can be

recovered. The length of this output can be taken to be roughly equal to the smooth min-entropy

of the raw string conditioned on the side information held by Eve34, 35.
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Definition 2 (Smooth min-entropy). For any classical-quantum density matrix ρAE =
∑

a p(a) |a〉〈a|⊗

ρaE acting on the joint Hilbert spaceHAE , the εh-smooth min-entropy is defined by

Hεh
min(A|E)ρAE

= max
ρ̃AE

(
− log max

{Πa}

∑
a

p̃(a)Tr(Πaρ̃aE)

)
, (3)

where the outer maximisation is over the setBεh(ρAE) of all sub-normalized states ρ̃AE =
∑

a p̃(a) |a〉〈a|⊗

ρ̃aE within purified distance36 εh of ρAE . Note that max{Πa}
∑

a p̃(a)Tr(Πaρ̃aE) can be interpreted

as the maximum probability of guessing A given access to the system E.

The interpretation in terms of guessing probability makes clear that this quantity is a measure

of unpredictability. Bounding the smooth min-entropy for a device-independent protocol is chal-

lenging. We do this by means of the entropy accumulation theorem and state an informal version

that is applicable to the CHSH game below.

Theoretical details about the protocol. In the protocol, the user has two devices which are pre-

vented from communicating with one another and with which the CHSH game can be played. To

do so each device is supplied with a uniformly chosen inputs denoted by X, Y ∈ {0, 1}, and each

produces an output, denoted A,B ∈ {0, 1} respectively. The CHSH game is scored according

to the function 1
2
(1 + (−1)A⊕B⊕(X·Y )). In other words, the game is won (with a score of 1) if

A⊕B = X · Y and is lost (with a score of 0) otherwise.

At the end of the protocol the number of rounds in which the CHSH game was lost is counted

and compared to nγ(1 − (ωexp − δ)). The challenge in a randomness expansion protocol is to go

from this to the amount of extractable randomness. For this we use the EAT, which we state

informally here (note that the version we use is a development of Ref. 17; for more details, see the
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Supplementary Information).

Theorem 1 (Entropy accumulation, informal). Suppose the protocol of Box 1 is performed and

that devices are such that pΩ is the probability that the protocol does not abort. Let α ∈ (1, 2),

εh ∈ (0, 1) and f(s) be an affine lower bound on the single-round von Neumann entropy for any

strategy achieving an expected score of s. If the protocol does not abort, we can assume

Hεh
min(AB|E) ≥ nf(ω) + n∆(f, ω)− n(α− 1)V (f, γ, ω)

− α

α− 1
log

(
1

pΩ(1−
√

1− ε2h)

)

+ n(α− 1)2Kα(f, γ), (4)

where ω = ωexp − δ and the explicit forms of the functions ∆, V and Kα can be found in the

Supplementary Information.

By setting α − 1 ∝ 1√
n

, the subtracted terms scale as
√
n whereas the leading rate term

scales with n, leading to the relation in Eqn. (1) when f(ω) is a good approximation to h(ω), the

worst-case von Neumann entropy for the observed score.

In order to produce the output string M, we apply a strong quantum-proof randomness ex-

tractor. The reason we use a strong extractor is that the random seed, R, required for the extractor

remains random even conditioned on the extractor’s output and is hence not consumed. This means

that M can be concatenated with the extractor seed R to give output Z = (M,R). We discuss the

extraction in more detail in the Supplementary Information. Importantly, the length of the output

(excluding the recycled seed), will be roughly randout ≈ Hεh
min(AB|E). We need this to be greater

than the randomness consumed.
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Remark 1 (Input randomness). The expected input randomness, randin of the protocol in Box 1 is

randin = n(Hbin(γ) + 2γ) + 2 , (5)

where Hbin denotes the binary Shannon entropy. The contribution Hbin(γ) comes from the selec-

tion of the test rounds and 2γ from the selection of the input bits for the CHSH game. The interval

algorithm37 can be used to turn uniform random bits to biased ones at the claimed rate.

We do not include the randomness necessary for seeding the extractor in the above because

it is not consumed, although it is needed to run the protocol.

Suppose that a protocol has some fixed expected score ωexp. To demonstrate randomness

expansion, i.e., randout− randin > 0, at this performance we have to choose the parameters n and

γ appropriately. Increasing n leads to an improvement in the rate, but takes longer and increases

the experimental difficulty. The tradeoff with γ appears in the randout and randin terms. The input

randomness evidently decreases as γ shrinks, which is favourable since this term is subtracted.

However, the min-entropy also decreases because the error term scales roughly as 1√
γ

17. Moreover,

the statistical confidence decreases with less frequent testing and as such the threshold score for

successful parameter estimation must be lowered (i.e., δ increased) in order to obtain a small

completeness error. This also has a negative impact on the randomness produced. We outline how

to calculate the completeness error in the Supplementary Information.

Data availability Source data are available for this paper. All other data that support the plots within this

paper and other findings of this study are available from the corresponding author upon reasonable request.
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Code availability All relevant codes or algorithms are available from the corresponding author upon rea-

sonable request.
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Table 1: Comparison between the two experiments. Here γopt is the optimal test probability to

witness expansion in the minimum number of rounds nmin with the error parameters chosen.

main expt. space-like expt.

expected CHSH score (ωexp) 0.752487 0.750809

γopt 3.393× 10−4 9.851× 10−5

nmin 8.951× 1010 2.888× 1012

test probability (γ) 3.264× 10−4 1.194× 10−4

number of rounds (n) 1.3824× 1011 3.168× 1012

confidence width (δ) 3.52× 10−4 1.22× 10−4

soundness error (εS) 3.09× 10−12 3.09× 10−12

completeness error (εC) 1× 10−6 1× 10−6

observed CHSH score (ωCHSH) 0.752484 0.750805

repetition rate 2 MHz 4 MHz

time taken 19.2 hours 220 hours

entropy in output 9.350× 108 bits 6.496× 109 bits

entropy in input 6.778× 108 bits 6.233× 109 bits

net gain 2.57× 108 bits 2.63× 108 bits
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