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Stochastic Camassa-Holm equation with

convection type noise ∗

Sergio Albeverio†

Zdzis law Brzeźniak and Alexei Daletskii‡

August 30, 2020

Abstract

We consider a stochastic Camassa-Holm equation driven by a one-

dimensional Wiener process with a first order differential operator as

diffusion coefficient. We prove the existence and uniqueness of local

strong solutions of this equation. In order to do so, we transform

it into a random quasi-linear partial differential equation and apply

Kato’s operator theory methods. Some of the results have potential

to find applications to other nonlinear stochastic partial differential

equations.

1 Introduction

The (deterministic) Camassa-Holm (CH) equation is a non-local partial dif-
ferential equation describing propagation of waves in shallow water. Al-
though first introduced by Fuchssteiner and Fokas in [25] as part of a family
of integrable Hamiltonian equations, it was rediscovered by Camassa and
Holm [12], who gave its physical derivation and interpretation. In contrast
to the Korteveg-de-Vries equation, the CH equation admits so-called peaked
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solutions describing wave breaking phenomena. Various aspects of the CH
equation have been extensively studied, see literature reviews in, e.g., [17]
and [3]. In particular, it is known that the CH equation is locally well-posed
in Sobolev spaces Hs := Hs,2(R), s > 3/2. Depending on the shape of the
initial data, the solution can either exist globally or blow up in any Sobolev
space, with its slope becoming vertical in finite time [17].

The CH equation has the form

ut − uxxt + 3uux − 2uxuxx − uuxxx

≡ (1 − ∂2x)ut + (1 − ∂2x) [uux] + ∂x

[
u2 +

1

2
(ux)2

]
= 0, t > 0, x ∈ R, (1.1)

where u(t, x) denotes the fluid velocity at time t. Here ∂x := ∂
∂x

. Introducing
a momentum density

y := u− uxx ≡ (1 − ∂2x)u =: Q2u,

one can rewrite equation (1.1) in a quasi-linear form

yt(t) + A(y(t))y(t) = 0 (1.2)

in any other suitable functional space. Here A(v) := a(v)∂x+b(v) is the first-
order differential operator with coefficients a(v) = Q−2v, b(v) = 2 (∂xQ

−2v),
that is,

[A(v)f ] (x) = a(v)∂xf(x) + b(v)f(x), x ∈ R. (1.3)

Recently, Holm [27] proposed an approach for including stochastic pertur-
bations in hydrodynamics equations. This approach is based on a stochastic
extension of the variational principle in fluid dynamics. The corresponding
stochastic version of the CH equation (1.1) was introduced by Crisan and
Holm in [19]. It has the following form:

dy(t) + A(y(t))y(t)dt+
n∑

k=1

(∂xy(t) + y(t)∂x) ξk ◦ dwk(t)

≡ dy(t) + A(y(t))y(t)dt+
n∑

k=1

Dky(t) ◦ dwk(t) = 0, t > 0, y ∈ R. (1.4)

Here Dk := ξk∂x+∂xξk ≡ ξk∂x+2 (∂xξk) , k = 1, ..n, are first-order differential
operators associated with suitable functions (vector fields) ξk : R → R,
wk, k = 1, ..n, are independent Wiener processes and ◦dwk(t) stands for
the Stratonovich stochastic differential (see Def. 2.1 below). For further
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developments from [27], [19] see, e.g., [28], [29]; these also relate to stochastic
thermodynamics and turbulence, for which we refer to, e.g., [7], [13], [23],
[24].

In this paper, we study the case of a single vector field ξ (with n = 1). In
order to deal with the diffusion term of equation (1.4), we transform it into
a partial differential equation with random coefficients. This approach goes
back to the paper [36] by Sussman , see also Doss [22]. These works were con-
cerned with stochastic ordinary differential equations and motivated by the
control theory. In stochastic partial differential equations (SPDEs) theory,
the Doss-Sussman method was first used in [1] and [6]. Both papers studied
the Wong-Zakai approximations (or robustness) of linear SPDEs with drift
being the generator of an analytic semigroup. The corresponding Banach
space setting generalizations can be found in [10]. One should also mention
the paper [21] by Da Prato and Tubaro, where fully nonlinear equations are
considered. This paper only deals with the parabolic situation and therefore
its results cannot be applied to our model.

Recently, the Doss-Sussman method was used in [26] to study the con-
vergence of a finite element method for stochastic Landau-Lifshitz-Gilbert
equations. The Wong-Zakai approximations to such equations were stud-
ied in [8]. Other related papers are [9] and [14], where it was noted that
the Doss-Sussman method could lead to an alternative proof of the main
result therein, and then applied to (nonlinear) stochastic compressible Euler
equations. Another example of the use of the Doss-Sussman method is its
application to the stochastic nonlinear Schrödinger equation, see [2].

After applying the Doss-Sussman method to equation (1.4) (with n = 1),
we study the resulting partial differential equation (PDE) using a modified
version of the approach of [17] based on Kato operator theory techniques.
Our main result is the proof of the existence and uniqueness of local strong
solutions of equation (1.4) in the Sobolev spaces H2,p, 1 < p < ∞. We
hope that with an additional work it should also be possible to prove the
robustness of this equation. Also, a modification of our method based on
a paper [38] by Tubaro should allow for the study of the case of multiple
(non-commuting) vector fields ξk on the right-hand side of (1.4).

Let us mention that a stochastic CH equation with additive noise was
introduced and studied in [15]; the case of a multiplicative noise given by a
one-dimensional Wiener process with Hs-continuous diffusion coefficient was
considered in [16] and [37]. Those studies do not cover the case of the noise as
in (1.4), where the diffusion coefficient is generated by an unbounded linear
operator. The importance of studying equation (1.4) has been stressed by
Crisan and Holm in [19] because of its geometric and physical motivations,
and its relevance in geophysical applications.
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The structure of the paper is as follows. In Section 2, we formulate the
main result and derive the explicit form of the PDE obtained by the Doss-
Sussman method. Section 3 is devoted to the general Kato method and its
application to the latter PDE, which leads to the proof of our main result
in Section 3.3. In Section 4.1 we provide the proofs of (auxiliary) technical
results on the regularity of one-parameter groups generated by first order dif-
ferential operators. Section 4.2 deals with the Doss-Sussman correspondence
between SDEs and (random) ordinary differential equations in some Sobolev
spaces, adapted to our setting. Finally, in Section 4.3 we give a brief account
of the technical result from [35] on the boundedness of commutators, which
is used in the proof of Theorem 3.4.

Acknowledgement. We are very grateful to Darryl Holm for his in-
terest to this work and stimulating discussions. We would like to thank an
anonymous referee for important remarks that enabled us to improve the pa-
per. Part of this research was carried out during AD’s stay at Mathematical
Institute of the University of Bonn. Financial support of that stay by the
Alexander von Humboldt Foundation is gratefully acknowledged.

2 Stochastic Camassa-Holm equation

2.1 Formulation of the main result

Throughout the paper, we will use the following standard notations: Lp

– the space of (equivalence classes of) p-integrable functions on R; Hn,p –
the Sobolev space on R; Cn

b – the space of bounded n-times continuously
differentiable functions on R with bounded derivatives; L(X, Y ) – the space of
bounded linear operators between generic Banach spaces X and Y ; L(X) :=
L(X,X).

We will consider a stochastic Camassa-Holm equation (SCH) of the form

dy(t)+F (y(t))dt+Dy(t)◦dw(t) = 0, t ≥ 0, F (y) := A(y)y, y ∈ H1,p, (2.1)

on a suitable filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
, where A(v) is given

by formula (1.3), D = ξ∂x + η, ξ ∈ C4
b , η ∈ C3

b and w is a one-dimensional
Wiener process. We will be looking for a solution of this equation in H2,p,
1 < p <∞.

Definition 2.1 A strong solution of equation (2.1) is an H2,p-valued contin-
uous adapted process y(t), t ∈ [0, θ], where θ is a finite stopping time, such
that

(i) the function [0, τ ] ∋ s 7→ F (y(s)) ∈ Lp is integrable, P-a.s.;
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(ii) for every t ≥ 0, E
∫ t∧θ

0
|Dy(s)|pLp ds <∞,

and the equality

y(t ∧ θ) = y0 +

∫ t∧θ

0

F (y(s))ds+

∫ t∧θ

0

Dy(s) ◦ dw(s), t ≥ 0,

is satisfied in Lp, P-a.s., for every t ≥ 0. Here ◦dw(s) stands for the
Stratonovich stochastic differential, that is,

∫ t∧θ

0

Dy(s) ◦ dw(s) =
1

2

∫ t∧θ

0

D2y(s)ds+

∫ t∧θ

0

Dy(s)dw(s)

(the latter integral being the Itô stochastic integral).

We can now formulate the main result of this work.

Theorem 2.2 For any y0 ∈ H2,p, 1 < p < ∞, there exists a stopping
time θ > 0 and a strong solution y(t) ∈ H2,p, t ∈ [0, θ], of equation (2.1)
with initial condition y(0) = y0. If y1(t) and y2(t), t ∈ [0, θ], are two such
solutions then y1 = y2.

The proof will go along the following lines: first, we reduce equation (2.1)
to a PDE of a form similar to (1.2) but with time-dependent coefficients, and
then apply the general Kato method, in a similar way as for the case of the
deterministic Camassa-Holm equation, see [17].

2.2 Reduction to a random PDE

Let us fix ξ ∈ C4
b , η ∈ C3

b and consider the one-parametric group U =(
U ξ,η
t

)
t∈R

of operators in the Lebesgue space Lp defined by the formula

[
U ξ,η
t f

]
(x) = ec(t,x)f(ϕ−t(x)), f ∈ Lp, x ∈ R, t ≥ 0, (2.2)

where ϕt, t ∈ R, is a diffeomorphism generated by the vector field ξ∂x and
c(t, x) =

∫ t

0
η(ϕs−t(x))ds, see Lemma 4.6 in Section 4.1 below.

According to the results of Section 4.1 (Lemma 4.5), U is a strongly
continuous group not only in the Lebesgue space Lp but also in the Sobolev
spaces X := H1,p and Y := H2,p. Note that all these spaces are UMD Banach
spaces. Thus there exist constants C1, C2 <∞ such that

∥∥∥U ξ,η
t

∥∥∥
L(X)

,
∥∥∥U ξ,η

t

∥∥∥
L(Y )

≤ C1e
C2|t|, t ∈ R. (2.3)

5



For the corresponding generators (DX ,Dom(DX)) and (DY ,Dom(DY )) we
have

H2,p ⊂ Dom(DX) and H3,p ⊂ Dom(DY ),

and the restrictions of DX and DY on H2,p and H3,p, respectively, coincide
with the first order differential operator D = ξ∂x+η. It is clear that D,D2 ∈
L(H2,p, Lp). Note also that Dom(DY ) ⊂ Dom(DX). In this section, we will
write Ut in place of U ξ,η

t , whenever possible.
According to the results of Section 4.2, with Y = H2,p and X = Lp,

equation (2.1) is equivalent to the following random integral equation in Lp:

z(t) = z(0) −

∫ t

0

F̂ (s, z(s))ds, t ≥ 0, (2.4)

where

F̂ (t, z) := Uw(t)F
(
U−1
w(t)z

)
≡ Â(w(t), z)z, t ≥ 0, z ∈ H2,p,

and
Â(t, v) := UtA(U−1

t v)U−1
t , t ≥ 0, v ∈ H2,p. (2.5)

Our next goal is to study the structure of operator Â(t, v).
Consider a generic first order differential operator A = a0∂x + b0 with the

coefficients a0 ∈ H3,p and b0 ∈ H2,p and define the operators

C(t) := UtAU
−1
t , t ≥ 0, (2.6)

on the domain H2,p. Note that C(t) ∈ L(H2,p, H1,p).

Lemma 2.3 Assume that a0 ∈ H3,p, b0 ∈ H2,p. The operator C(t) defined
above by formula (2.6) has the form

C(t)v = a(t, ·)∂xv + b(t, ·)v, v ∈ H2,p, t ≥ 0, (2.7)

where a(t, x) and b(t, x) solve the system of first order partial differential
equations

at(t, x) = ξ(x)ax(t, x) − ξx(x)a(t, x), a(0, x) = a0(x),

bt(t, x) = ξ(x)bx(t, x) − ηx(x)a(t, x), b(0, x) = b0(x),

(with subscript x denoting as usual the derivative ∂x). Moreover, a(t) :=
a(t, ·) ∈ H3,p and b(t) := b(t, ·) ∈ H2,p and

‖a(t)‖H3,p ≤ C1e
tC2 ‖a0‖H3,p , ‖b(t)‖H2,p ≤ C1e

tC2 (‖a0‖H3,p + ‖b0‖H2,p)
(2.8)

for some constants C1, C2 > 0 (depending only on ξ and η).
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Proof of Lemma 2.3. Let us fix f ∈ H3,p and consider the map R ∋ t 7→
C(t)f ∈ H1,p. Observe that H3,p⊂DomY (D) and AU−1

t : H3,p→DomX(D)
for all t, which implies that the function C(t)f , t ≥ 0, with C(t) being given
by (2.6), is differentiable and satisfies equation

d

dt
C(t)f = [D,C(t)] f,

where [·, ·] stands for the commutator. The substitution of the explicit ex-
pression (2.2) in the formula C(t) = UtAU

−1
t shows that C(t) has the form

(2.7). We can now compute the commutator:

[D,C(t)] = [ξ∂x + η, a(t)∂x + b(t)] = α(t)∂x + β(t),

where
α(t) = ξax(t) − ξxa(t), β(t) = ξbx(t) − ηxa(t).

Observe that f ∈ H3,p belongs to the domain of the operators DC(t) and
C(t)D. Thus we have

d

dt
C(t)f = (ξax(t) − ξxa(t)) ∂xf + (ξbx(t) − ηxa(t)) f, t ≥ 0,

On the other hand, by (2.7),

d

dt
C(t)f = at∂xf + btf, t ≥ 0,

so that

at = ξax − ξxa, a(0) = a0, t ≥ 0,

bt = ξbx − ηxa, b(0) = b0, t ≥ 0.

Thus for any t ≥ 0 we have

C(t)f = a(t)∂xf + b(t)f, f ∈ H3,p. (2.9)

Observe, on the other hand, that the operators C(t) and a(t)∂x + b(t) belong
to L(H2,p, H1,p). Thus equality (2.9) can be extended to any f ∈ H2,p.

Thus, recalling that U ξ,−ξ′

t is a one-parameter group generated by the
operator ξ∂x − ξx, we have the representation

a(t) = U ξ,−ξ′

t a0, t ≥ 0, (2.10)

and

b(t) = U ξ,0
t b0 +

∫ t

0

U ξ,0
t−τ (η′a(τ)) dτ, t ≥ 0. (2.11)
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Since by Lemma 4.5 below both U ξ,−ξ′

t and U ξ,0
t leave the spaces H1,p, H2,p

and H3,p invariant, we infer that a(t) ∈ H3,p and b(t) ∈ H2,p. The bound
(2.8) follows now easily from (2.3), (2.10) and (2.11). The proof is complete.

We can now return to the operator family Â(t, v) given by (2.5).

Proposition 2.4 For any t ≥ 0 and v ∈ H1,p, the operator Â(t, v) has the
form

Â(t, v) = a(t, v)∂x + b(t, v)

on the domain H2,p, where a(t, v) ∈ H3,p and b(t, v) ∈ H2,p are given by
formulae (2.10) and (2.11) with

a0 = Q−2U−1
t v and b0 = 2∂xQ

−2U−1
t v, (2.12)

respectively, and satisfy the bound

‖a(t)‖H3,p ≤ C1e
tC2 ‖v‖H1,p , ‖b(t)‖H2,p ≤ C1e

tC2 ‖v‖H1,p . (2.13)

for some C1, C2 <∞.

Proof. We can first fix any s and apply Lemma 2.3 to operator (2.6) with
A : =A(U−1

s v) and then set s = t. The bound (2.13) follows from (2.8) and
estimate (4.14) of the norm of Ut. �

Corollary 2.5 For any v ∈ H1,p we have Â(t, v) ∈ L(H2,p, H1,p) and the

map R ∋ t 7→ Â(t, v) ∈ L(H2,p, H1,p) is continuous.

Proof. The result follows from formulae (2.10), (2.11), (2.12) and the strong

continuity of the one-parameter groups U ξ,−ξ′

t , U ξ,0
t and Ut. �

3 Quasi-linear equations via Kato’s method

3.1 General Kato’s method

Consider a pair of densely embedded Banach spaces Y ⊂ X and a quasi-linear
equation in X:

d

dt
v + A(t, v)v = 0, v(0) = v0 ∈ Y, t ∈ [0, T ] , (3.1)

for some T > 0, where A(t, v) is a linear (unbounded) operator in X with
domain Dt,v := Dom(A(t, v)) ⊃ Y .

We introduce the following condition, which is a version of the condition
given in [31, page 34] adapted to our setting. Let I ⊂ R be an interval.
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Condition 3.1 There exists R > 0 such that the operator family A(t, v), v ∈
Y , t ∈ I, satisfies the following:

• for any v ∈ Y and t ∈ I operator −A(t, v) is quasi-m-accretive, that is,
it generates a C0-semigroup in X and there exists β = β(R) ∈ R such
that ∥∥e−sA(t,v)

∥∥
X
≤ eβs, s ≥ 0, ‖v‖Y ≤ R; (3.2)

• there exists an isomorphism Q : Y → X and B(t, v) ∈ L(X,X) such
that, for all v ∈ Y and t ∈ I, we have

QA(t, v)Q−1 = A(t, v) + B(t, v); (3.3)

the map I ∋ t 7→ B(t, v) ∈ X is strongly measurable and

λ = λ(R) := sup
t∈I

sup
v:‖v‖Y ≤R

‖B(t, v)‖ <∞; (3.4)

• for any v ∈ Y and t ∈ I we have A(t, v) ∈ L(Y,X) and the map

I ∋ t 7→ A(t, v) ∈ L(Y,X) (3.5)

is continuous;

• there exists µA = µA(R) such that for all u ∈ Y and ‖v1‖Y , ‖v2‖Y ≤ R
we have

‖(A(t, v1) − A(t, v2)) u‖X ≤ µA ‖v1 − v2‖X ‖u‖Y . (3.6)

Theorem 3.2 Let Condition 3.1 hold on the time interval I = [0, T ]. Then
for every v0 ∈ Y there exists T ′ = T ′(v0) ≤ T and a unique solution v ∈
C ([0, T ′], Y ) ∩ C1 ([0, T ′], X) of equation (3.1).

Proof. See [31, Theorem 6, page 36] �

Remark 3.3 T ′ is an arbitrary number satisfying the following bounds:

exp ((β + λ)T ′) < R ‖v0‖
−1
Y ,

T ′ exp (βT ′) < R−1µ−1
A ,

Here the constants β = β(R), λ = λ(R) and µA = µA(R) are defined in (3.2),
(3.4) and (3.6), respectively, see [31, p. 45]. The corresponding solution of
equation (3.1) will satisfy the bound ‖v(t)‖Y ≤ R.
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3.2 Kato’s condition for first order differential opera-
tors

We set X = H1,p, Y = H2,p and Q = (1−∂2x)1/2. It is known that Q : H2,p →
H1,p is an isometric isomorphism. We first consider the family of first order
differential operators

A(y) = a(y)∂x + b(y), y ∈ H1,p, (3.7)

defined on H2,p, with coefficients a(y) ∈ H3,p, b(y) ∈ H2,p, y ∈ H1,p. We
assume that the maps

a : H1,p → H3,p, b : H1,p → H2,p are Lipschitz continuous (3.8)

and bounded (uniformly in y), that is,

sup
y∈H1,p

‖a(y)‖H3,p <∞, sup
y∈H1,p

‖b(y)‖H2,p <∞. (3.9)

It is clear that A(y) ∈ L(Y,X) with the uniformly (in y ∈ H1,p) bounded
norm.

According to the results of Section 4.1 (Lemma 4.5 below), for any y ∈
H1,p, there exists a one-parameter C0-group in H1,p such that its generator
contains H2,p in its domain and coincides with A(y) on H2,p. We will preserve
the notation A(y) for this operator. Observe that, again by Lemma 4.5,
there exists an operator A(0)(y) in Lp, which coincides with A(y) on H2,p

and generates a one-parameter C0-group in Lp.

Theorem 3.4 The operator family (3.7) satisfies Condition 3.1 on the time
interval I = [−τ, τ ], with arbitrary R > 0 and τ > 0.

Proof. (i) The first point in Condition 3.1 immediately follows from the
results of Section 4.1 below. Indeed, the fact that −A(y) is the generator of
the C0-semigroup in X and estimate (3.2) follow from Lemma 4.5 below and
the bound (3.9).

(ii) Condition (3.3) is proved in [17, Remark 2.6 b)] for p = 2, a(y) = Q−2v
and b(y) = 2 (∂xQ

−2v) , v = Qy ∈ Lp, cf. (1.3). The proof does not use
the explicit form of the coefficients and can be extended to the case of any
p ∈ [0,∞). Here we give its main steps adapted to our setting.

We fix y ∈ H1,p and use the shorthand notation A := A(y) and A(0) :=
A(0)(y). The first step is to prove equality (3.3) for the operator A(0) in the
pair of spaces H1,p ⊂ Lp. Denote by Ma and Mb the operators of multipli-
cation by a := a(y) ∈ H3,p and b := b(y) ∈ H2,p, respectively. Define an
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operator B by the equality Bf := QA(0)Q−1f −A(0)f for f ∈ S := C∞∩Lp.
Then on S we have the equality

B= [Q,Ma] ∂xQ
−1 +QMbQ

−1 −Mb,

because ∂xQ
−1f = Q−1∂xf for f ∈ S. The operators Mb, QMbQ

−1 and
∂xQ

−1 are bounded in both spaces Lp and H1,p, with ‖Mb‖L(Lp) ≤ ‖b‖H1,p

and ∥∥QMbQ
−1
∥∥
L(Lp)

= ‖Mb‖L(H1,p) ≤ ‖b‖H1,p , (3.10)
∥∥QMbQ

−1
∥∥
L(H1,p)

= ‖Mb‖L(H2,p) ≤ ‖b‖H2,p (3.11)

(because H1,p and H2,p are Banach algebras).
We denote by k1, k2, .., k5 generic locally bounded functions R+ → R+. It

follows from the results of [35, Sections VII.3.5 and I.5.2] that the commu-
tator [Q,Ma] is bounded in Lp and the exists k1 such that

‖[Q,Ma]‖L(Lp) ≤ k1(‖∂xa‖H1,p), (3.12)

see Section 4.3. This bound together with (3.10) implies that B is a bounded
operator in Lp and

‖B‖L(Lp) ≤ k2(max(‖∂xa‖H1,p , ‖b‖H1,p)).

It is proved in [17, Proposition 2.3 a)] that S is a core for A(0). Although
the paper [17] deals with the case of p = 2 only, the proof can be directly
extended to any p > 1.

This is sufficient for the equality

QA(0)Q−1 = A(0) +B (3.13)

to hold ([31, Remark 7.1.3.]).
We observe that the operator A coincides with the part of A(0) in H1,p

([34, Theorem 4.5.5 and Lemma 5.4.4 ]). Thus, equality (3.3) for A will
follow from (3.13) provided B ∈ L(H1,p). For this, it is sufficient to show
that [Q,Ma] ∈ L(H1,p). Similar to [17, Remark 2.6 b)], we can write

‖[Q,Ma]‖
2
L(H1,p) =

∥∥[Q,Ma]Q
−1
∥∥2

L(Lp,H1,p)

≤
∥∥[Q,Ma]Q

−1
∥∥2

L(Lp)
+
∥∥∂x [Q,Ma]Q

−1
∥∥2

L(Lp)
.

The first term is bounded by ‖Q−1‖
2
L(Lp) k1

(
‖∂xa‖

2
H1,p

)
≤ k3

(
‖∂xa‖

2
H2,p

)
, cf.

(3.12). For the second term we have

∂x [Q,Ma]Q
−1 = QM∂xaQ

−1 −M∂xa + [Q,Ma] ∂xQ
−1,
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which, together with (3.11) applied to the operator QM(∂xa)Q−1 and a new
use of (3.12), leads to the bound

∥∥∂x [Q,Ma]Q
−1
∥∥2

L(Lp)
≤ k4 (‖∂xa‖H2,p) ,

and so
‖B‖L(H1,p) ≤ k5 (max (‖∂xa‖H2,p , ‖b‖H2,p)) . (3.14)

Finally, estimate (3.4) follows now from assumption (3.8).
(iii) Condition (3.5) trivially holds because A(v) is independent of t. Con-

dition (3.6) can be checked directly using (3.8).
�

Remark 3.5 We observe that (3.3) remains true if the coefficients a and
b in (3.7) are t-dependent and such that ‖∂xa‖H2,p and ‖b‖H2,p are bounded
uniformly in t (for every y ∈ H1,p). For condition (3.5) to hold, it is sufficient
that, for every y ∈ H1,p, the maps R ∋ t 7→ a(t, y) ∈ H2,p and R ∋ t 7→
b(t, y) ∈ H1,p are continuous.

Remark 3.6 In [17, Remark 2.6 b)], the authors took a slightly different path
(for p = 2). They proved Condition 3.1 for the pair X = L2 and Y = H1,2,
which implies the existence of a solution of the Camassa-Holm equation (1.2)
in H1,2. Then they show that the solution actually belongs to H2,2 provided
the initial condition does so.

Remark 3.7 We do not know if Condition 3.1, which is required for an
application of Kato’s theory, holds for X = Hn,p with n ≥ 2. Indeed, we
can prove the quasi-contractivity of the semigroup generated by −A(y) only
in H0,p = Lp and H1,p, see the proof of Lemma 4.3 below.

3.3 Proof of the main result.

In this section we will show that Kato’s theory can be applied to the integral
equation (2.4). Recall that

Â(t, v) = UtA(U−1
t v)U−1

t , v ∈ H2,p, t ∈ R, (3.15)

cf. (2.5). It has been proved in Proposition 2.4 that Â(t, v) = a(t, v)∂x +
b(t, v) with a(t, v) ∈ H3,p and b(t, v) ∈ H2,p. As before, we retain the same
notation for the generator of the corresponding one-parameter C0-group in
Lp (see Lemma 4.5 below).
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Theorem 3.8 The operator family (3.15) satisfies Condition 3.1 with X =
H1,p and Y = H2,p on the time interval I = [−τ, τ ], with arbitrary R > 0
and τ > 0.

Proof. It is clear that the coefficients a(t, v) ∈ H3,p and b(t, v) ∈ H2,p are
bounded uniformly in t so that (3.14) is satisfied. Also, the Lipschitz condi-
tion (3.8) holds because of the explicit form (2.10), (2.11) of the coefficients
and uniform in t ∈ [−τ, τ ] boundedness of the group Ut in both L(X,X) and
L(Y, Y ) (cf. (2.3)). Thus, according to Theorem 3.4 and Remark 3.5, the

operator family Â(t, v), t ∈ [−τ, τ ], satisfies the first two parts of Condition
3.1 with arbitrary R.

The continuity condition (3.5) is proved in Corollary 2.5. Estimate (3.6)
immediately follow from (3.15) and (2.3). �

Remark 3.9 (Change of time) Let f : [0, T ] → [−τ, τ ] be a continuous

function. It is clear that operator family Af (t, v) := Â(f(t), v), t ∈ [0, T ],
satisfies Condition 3.1. Moreover, since supt∈[0,T ]

∥∥Uf(t)

∥∥ ≤ supt∈[−τ,τ ] ‖Ut‖,
the constants β, λ and µA remain unchanged.

We return now to the stochastic Camassa-Holm equation (2.1), defined
on the filtered probability space

(
Ω,F , (Ft)t≥0 ,P

)
.

Theorem 3.10 For any R > 0 and z0 ∈ R and each continuous Brownian
path w(t) there exists θ > 0 and a unique solution z ∈ C([0, θ] , H2,p), of the
integral equation (2.4), such that z(0) = z0 and ‖z(t)‖H2,p ≤ R, t ∈ [0, θ].

Proof. Fix R > 0 and a continuous Brownian path w(t). Fix in addition T >
0 and define τ = τ(w) := inf {t > 0 : |w(t)| ≥ T}. According to Theorem 3.8

and Remark 3.9, the operator family Â(w(t), v), t ∈ [0, τ ] , satisfies Condition
3.1 with the constants β, λ and µA (depending on R and T ).

Next, we choose any T ′ > 0 such that

exp ((β + λ)T ′) ≤ R ‖v0‖
−1
H2,p ,

T ′ exp (βT ′) < R−1µ−1
A ,

and define θ := min {τ, T ′}. Then, by Theorem 3.2, there exists a solution
z ∈ C([0, θ] , H2,p) of the integral equation (2.4), such that ‖z(t)‖H2,p ≤ R,
t ∈ [0, θ]. �

Remark 3.11 It is clear that, for any R > 0, both τ and θ are stopping
times.

Proof of Theorem 2.2. The process z(t) constructed in Theorem 3.10
satisfies the conditions of Theorem 4.8 with Y = H2,p and X = Lp, which
implies that y(t) := U−1

w(t)z(t), t ∈ [0, θ], is the unique strong solution of

equation (2.1). �
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4 Auxiliary results

In this section we present some general results used in the main part of the
paper.

4.1 One-parameter groups generated by first order dif-
ferential operators

The aim of this section is to discuss properties of one-parameter groups in
Sobolev spaces Hn,p, n = 0, 1, 2, ..., generated by first order differential oper-
ators. We will use the convention H0,p = Lp.

We need some preparations. Recall that Cn
b , n ≥ 1, denotes the Banach

space of n-times continuously differentiable functions f : R → R. We equip
it with the norm

‖f‖(n) := max
m=0,...,n

sup
x∈R

∣∣f (m)(x)
∣∣ <∞,

where f (m) stands for the m-th derivative, f (0) ≡ f . We set C0
b := Cb

endowed with the usual supremum norm.
Given a function g(t, x), t, x ∈ R, we will keep the notation g(m)(t, x) :=

∂mx g(t, x) for the m-th derivative w.r.t. x. We will use, where possible,
notations g(t) and g(m)(t) for the mappings x 7→ g(t, x). and x 7→ g(m)(t, x),
respectively. Thus, we have, e.g., g(1)(t) : x 7→ ∂xg(t, x).

The following statement is essentially well-known and we give only a
sketch of its proof.

Lemma 4.1 Fix n ∈ N and assume that ξ ∈ Cn+1
b .Then there exist constants

c1, c2, c3, c4 > 0 such that the following statements hold.
(i) The equation

d

dt
ψ(t, x) = −ξ(ψ(t, x)), ψ(0, x) = x, x ∈ R, (4.1)

has a unique solution ψ(t), t ∈ R. This solution satisfies the estimate

|ψ(t, x)| ≤ c1e
c2|t| (|x| + c3) . (4.2)

(ii) The solution ψ is differentiable with respect to the x-variable; moreover,
for any t ∈ R, the derivative ψ(1)(t, ·) ∈ Cn

b , and the map

R+ ∋ t 7→ ψ(1)(t, ·) ∈ Cn
b

is continuously differentiable.
(iii) The following estimate holds:

sup
x∈R

∣∣ψ(1)(t, ·)
∣∣ ≤ ec4|t|, t ∈ R. (4.3)
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Proof of Lemma 4.1.
(i): For any fixed x ∈ R, equation (4.1) has a unique solution because

its right-hand side is globally Lipschitz. Estimate (4.2) follows in a standard
way from the Gronwall Lemma.

(ii) and (iii): Consider the linear operator ξ̂(t) acting on functions u :
R → R by multiplication by ξ(1)(ψ(t, ·)), that is,

(ξ̂(t)u)(x) := ξ(1)(ψ(t, x))u(x).

It is immediate that ψ(1)(t) := ψ(1)(t, ·) solves the equation

d

dt
ψ(1)(t) = −ξ̂(t)ψ(1)(t), ψ(1)(0) = 1. (4.4)

A direct calculation shows that ξ̂(t) is a bounded operator in Cb with norm

∥∥∥ξ̂(t)
∥∥∥
L(Cb)

≤ ‖ξ‖(1) .

Thus equation (4.4) has a unique solution in Cb, which satisfies the bound
(4.3) and is continuously differentiable in t. In a similar way,

∥∥∥ξ̂(t)
∥∥∥
L(C1

b
)
≤

(∥∥ψ(1)(t)
∥∥(0)

+ 1
)
‖ξ‖(2) <∞,

which shows that ψ(1)(t) ∈ C1(R, C1
b ). Statement (ii) for an arbitrary n ∈ N

follows now by a repeated application of similar arguments.

Remark 4.2 In particular, Lemma 4.1 implies in a standard way that (ψ(t))t∈R
is a one-parameter group of Cn+1-diffeomorphisms of R1, generated by the
vector field −ξ∂x.

Let us introduce an operator family U ξ
t , t ∈ R, by the formula U ξ

t f =
f(ψ(t)), f : R → R.

Lemma 4.3 Fix n ∈ N and assume that ξ ∈ Cn+1
b . Then U ξ

t , t ∈ R, is
a strongly continuous one-parameter group of bounded operators in Hn,p. If
n = 0 or n = 1 than U ξ

t is quasi-contractive, that is, there exists a constant
c <∞ such that ∥∥∥U ξ

t

∥∥∥
L(Hn,p)

≤ ec|t|, t ∈ R. (4.5)

The domain of the generator D0 of U
ξ
t contains Hn+1,p and one has D0 = ξ∂x

on Hn+1,p.
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Proof. In this proof, c, c1, c2, ... will stand for universal positive constants
(depending only on n and ‖ξ‖(n+1)).

1) Let us prove that the operators U ξ
t , t ∈ R, are bounded in Hn,p.

Consider first the case of n = 0. Then, for f ∈ H0,p ≡ Lp, we have

∥∥∥U ξ
t f

∥∥∥
p

Lp
=

∫
f(ψ(t, x))pdx

≤ sup
x∈R

∣∣ψ(1)(−t, x)
∣∣p ‖f‖pLp ≤ e2c4|t| ‖f‖pLp , (4.6)

cf. (4.3), and estimate (4.5) holds.
Let now n ≥ 1. By Faà di Bruno’s theorem for any k = 1, 2, ...n we have

∂kxf(ψ(t, x)) =
k∑

m=1

f (m)(ψ(t, x))Bk.m(ψ(1)(t, x), ..., ψ(k−m+1)(t, x)), (4.7)

where Bk.m is the exponential Bell polynomial. Hölder’s inequality implies
that

∣∣∂kxf(ψ(t, x))
∣∣p

≤ kp−1 max
m=1,...,k

sup
x∈R

∣∣Bk.m(ψ(1)(t, x), ..., ψ(k−m+1)(t, x))
∣∣p

k∑

m=1

∣∣f (m)(ψ(t, x))
∣∣p .

(4.8)

It follows from Lemma 4.1 (ii) that supx

∣∣ψ(m)(t, x)
∣∣ <∞ for any m = 1, ..., n.

Thus supx∈R

∣∣Bk.m(ψ(1)(t, x), ..., ψ(k−m+1)(t, x))
∣∣ < ∞ for any k = 1, 2, ...n,

and we obtain the estimate

‖f(ψ(t))‖Hn,p ≤ c(t) ‖f‖Hn,p , (4.9)

for some c(t) <∞, which implies that U ξ
t ∈ L(Hn,p), t ∈ R.

We observe that in the case of n = 1 formula (4.8) gets the form

|∂xf(ψ(t, x))|p ≤ sup
x∈R

∣∣ψ(1)(t, x)
∣∣p ∣∣f (1)(ψ(t, x))

∣∣p .

It follows now from (4.3) and (4.6) that

‖f(ψ(t))‖pH1,p ≤

∫ [
|f(ψ(t, x))|p + sup

x∈R

∣∣ψ(1)(t, x)
∣∣p ∣∣f (1)(ψ(t, x))

∣∣p
]
dx

≤

∫
sup
x∈R

∣∣ψ(1)(−t, x)
∣∣p
[
f(x)p + sup

x∈R

∣∣ψ(1)(t, x)
∣∣p f (1)(x)p

]
dx

≤ e4|t|c4 ‖f‖2H1,p ,
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and estimate (4.5) holds.
2) The fact that the operators U ξ

t ∈ L(Hn,p), t ∈ R, form a one-parameter
group, that is, U ξ

t1U
ξ
t2 = U ξ

t1+t2 , t1, t2 ∈ R, and U ξ
0 = I, follows in a standard

way from the group properties of the family of diffeomorphisms ψ(t), t ∈ R.
3) Now we shall prove that the map R ∋ t 7→ U ξ

t is strongly continuous.

Let f ∈ C∞
0 . Observe that ψ(m)(t, x) → x(m) =

{
1, m = 1
0, m ≥ 2

, t → 0,

uniformly on compact sets. Thus for the r.h.s. of (4.7) we have

k∑

m=1

f (m)(ψ(t, x))Bk.m(ψ(1)(t, x), ..., ψ(k−m+1)(t, x))

⇒

k∑

m=1

f (m)(x))Bk.m(x(1), ..., x(k−m+1) = f (k)(x), t→ 0,

where ⇒ stands for the uniform convergence in x ∈ R. The last equal-

ity holds because x(m) =

{
1, m = 1
0, m ≥ 2

and thus Bk.m(x(1), ..., x(k−m+1) =
{

1, m = k
0, m ≤ k − 1

. Therefore ∂kxf(ψ(t))
Lp

→ f (k), t → 0, for any k ≤ n, which

implies the Hn,p-convergence f(ψ(t)) → f , as t→ 0.
Let now u ∈ Hn,p. We have the estimate
∥∥∥U ξ

t u− u
∥∥∥
Hk,p

≤
∥∥∥U ξ

t u− U ξ
t f

∥∥∥
Hk,p

+
∥∥∥U ξ

t f − f
∥∥∥
Hk,p

+ ‖f − u‖Hk,p

≤
∥∥∥U ξ

t f − f
∥∥∥
Hk,p

+ c ‖f − u‖Hk,p ,

and the required result follows from the fact that C∞
0 is dense in Hn,p.

3) Let us prove that t 7→ U ξ
t u ∈ Hn,p is differentiable for u ∈ Hn+1,p.

Let v ∈ C∞
0 . Formula (4.7) implies that t 7→ ∂kxv(ψ(t, x)) is continuously

differentiable for any x ∈ R. Denote

F (x) :=
d

dt
∂kxv(ψ(t, x))t=0.

Then, because v has compact support,

∂kxv(ψ(t, x)) − v(k)(x)

t
= ∂kx

v(ψ(t, x)) − v(x)

t
⇒ F (x), t→ 0,

and so we infer that

v(ψ(t)) − v

t
−→

d

dt
v(ψ(t))t=0, in Hn,p as t→ 0. (4.10)

17



We will prove now that (4.10) holds for any u ∈ Hn+1,p. Set g(t, x) =
∂kxu(ψ(t, x)) and f(t, x) = ∂kxv(ψ(t, x)). Then (denoting the derivative w.r.t.
the first variable by ”dot”) we obtain

ġ(s, x) =
d

ds
∂kxu(ψ(s, x)) = ∂kx

d

ds
u(ψ(s, x))

= ∂kx [ξ(x)∂xu(ψ(s, x))] =
k∑

m=0

(
k
m

)
ξ(m)(x)∂k−m

x ∂xu(ψ(s, x)). (4.11)

In particular,

ġ(0, x) =
k∑

m=0

(
k
m

)
ξ(m)(x)∂k−m+1

x u(x). (4.12)

Of course, similar formulae hold for f .
Thus, applying Hölder’s inequality, we obtain for any t > 0:

∫

R

∣∣∣∣
1

t

∫ t

0

(
ġ(s, x) − ḟ(s, x)

)
ds

∣∣∣∣
p

dx

≤
1

t

∫

R

∫ t

0

∣∣∣ġ(s, x) − ḟ(s, x)
∣∣∣
p

dsdx

≤
∑

m

(
k
m

)
1

t

∫ t

0

∫

R

∣∣ξ(m)(x)
∣∣p ∣∣∂k−m+1

x (u(ψ(s, x)) − v(ψ(s, x)))
∣∣p dxds

≤ c ‖ξ‖p
Ck

b

∑

m

(
k
m

)
1

t

∫ t

0

∫

R

∣∣u(k−m+1)(ψ(s, x)) − v(k−m+1)(ψ(s, x))
∣∣p dxds.

The last inequality is due to the formulae (4.7) and (4.9). Taking into account
that

∫
p(ψ(s, x))dx =

∫
|∂xψ(s, x)−1| p(x)dx for any integrable function p we

obtain

∫

R

∣∣∣∣
1

t

∫ t

0

(
ġ(s, x) − ḟ(s, x)

)
ds

∣∣∣∣
p

dx ≤ c1 ‖u− v‖2Hk+1,p .

Observe that (4.12) implies that

∫

R

∣∣∣ġ(0, x) − ḟ(0, x)
∣∣∣
p

dx ≤ c2 ‖u− v‖p
Hk+1,p .
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The following general relation holds for any t > 0, x ∈ R:

g(t, x) − g(0, x)

t
− ġ(0, x) =

1

t

∫ t

0

ġ(s, x)ds− ġ(0, x)

=
1

t

∫ t

0

(
ġ(s, x) − ḟ(s, x)

)
ds+

[
1

t

∫ t

0

ḟ(s, x)ds− ḟ(0, x)

]

+
[
ḟ(0, x) − ġ(0, x)

]

=
1

t

∫ t

0

(
ġ(s, x) − ḟ(s, x)

)
ds+

[
f(t, x) − f(0, x)

t
− ḟ(0, x)

]

+
[
ḟ(0, x) − ġ(0, x)

]
.

Recalling that g(t, x) = ∂kxu(ψ(t, x)) and f(t, x) = ∂kxv(ψ(t, x)), we obtain

∫

R

∣∣∣∣∂
k
x

(
u(ψ(t, x)) − u(x)

t
−

d

dt
u(ψ(t, x))t=0

)∣∣∣∣
p

dx

=

∫

R

∣∣∣∣
g(t, x) − g(0, x)

t
− ġ(0, x)

∣∣∣∣
p

dx

≤ 3p−1c1 ‖u− v‖p
Hk+1,p + 3p−1c3

∥∥∥∥
v(ψ(t)) − v

t
−

d

dt
v(ψ(t))t=0

∥∥∥∥
p

Hk,p

+ 3p−1c2 ‖u− v‖p
Hk+1,p .

This estimate holds for all k ≤ n, which implies that

∥∥∥∥
u(ψ(t)) − u

t
−

d

dt
u(ψ(t))t=0

∥∥∥∥
p

Hn,p

≤ c4 ‖u− v‖pHn+1,p

+ c5

∥∥∥∥
v(ψ(t)) − v

t
−

d

dt
v(ψ(t))t=0

∥∥∥∥
p

Hn,p

,

and the result follows from (4.10) and the fact that C∞
0 is dense in Hn+1,p.

�

We will use the following well-known result.

Theorem 4.4 ([34, Theorem 3.1.1.]) Let X be a Banach space and let
A be the infinitesimal generator of a C0 semigroup T (t) on X, satisfying
‖T (t)‖X ≤ Meωt for some positive constants M and ω. If B is a bounded
linear operator on X then A+B is the infinitesimal generator of a C0 semi-
group S(t) on X, satisfying

‖S(t)‖X ≤Me(ω+M‖B‖X)t. (4.13)
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Let us now define for η ∈ Cn
b the operator D = D0 + η , Dom(D) =

Dom(D0), so that D = ξ∂x + η on Hn+1,p, n ∈ N.

Lemma 4.5 Fix n ∈ N and assume that ξ ∈ Cn+1
b and η ∈ Cn

b . Then D

generates a strongly continuous one-parameter group
(
U ξ,η
t

)
t∈R

in Hn,p. If

n = 0 or n = 1 then U ξ
t is quasi-contractive,

∥∥∥U ξ,η
t

∥∥∥
L(Hn,p)

≤ ec|t|, t ∈ R, (4.14)

for a constant 0 < c <∞.

Proof. We observe that the operator D −D0 = η is bounded in Hn,p. The
statement follows now from Theorem 4.4 and Lemma 4.3. �

The group U ξ,η
t has the following explicit form.

Lemma 4.6 For any f ∈ Hn,p we have

U ξ,η
t f(x) = ec(t,x)f(ϕ−t(x)), t, x ∈ R, (4.15)

where (ϕt)t∈R is the diffeomorphism group generated by the vector field ξ∂x
and

c(t, x) =

∫ t

0

η(ϕs−t(x))ds, t, x ∈ R (4.16)

Proof. A direct calculation shows that the function u(t, x) := ec(t,x)f(ϕ−t(x)),
t, x ∈ R, is a solution of the initial value problem ut = Du, u(0, x) = f(x),
if and only if c(t, x) satisfies

ct = ξcx + η, c(0, x) = 0.

Formula (4.16) can be obtained by the method of characteristics or checked
directly (as in fact formula (4.15) itself). �

4.2 From SDE to ODE

Let us consider a pair of densely embedded UMD Banach spaces Y ⊂ X,
a continuous map F : Y → X and a bounded linear operator D : Y → X

such that D2 ∈ L(Y,X). Our theory could be posed in a general setting of
UMD Banach spaces but because our main application is for concrete Sobolev
spaces, we assume that the spaces Y and X are isomorphic to Lq spaces, see
Remark A.7. In this way, stochastic integration is meaningful, see section
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A.7, and an appropriate version of an Itô formula is available, see Theorem
A.8.

Assume that T > 0 is fixed. Our aim is to study the stochastic differential
equation

dy(t) + F (y(t))dt+Dy(t) ◦ dw(t) = 0, y(0) = y0 ∈ Y, t ∈ [0, T ] , (4.17)

where w is an R-valued Wiener process on a filtered probability space(
Ω,F , (Ft)t≥0 ,P

)
, and ◦ means the Stratonovich stochastic differential. We

suppose without loss of generality that all trajectories of w are continuous.

Definition 4.7 A strong solution of equation (4.17) is a Y -valued continu-
ous adapted process y(t), t ∈ [0, θ], where θ is a stopping time, 0 < θ ≤ T ,
such that

E

∫ t∧θ

0

|Dy(s)|2
X
ds <∞

and the equality

y(t ∧ θ) = y0 +

∫ t∧θ

0

F (y(s))ds+
1

2

∫ t∧θ

0

D2y(s)ds+

∫ t∧θ

0

Dy(s)dw(s),

t ≥ 0, is satisfied in X, P-a.s.

Assume now thatD is the generator of a one-parameter C0 group {U(t)}t∈R
in X, which leaves Y invariant and satisfies the estimates

‖U(t)‖L(X) ≤Mem|t|, ‖U(t)‖L(Y ) ≤Mem|t| (4.18)

for some positive constants M and m. Let us define a (random) map F̂ :
R+ × Y → X

F̂ (t, z) := U(w(t))F (U−1(w(t))z), z ∈ Y, t ≥ 0.

Obviously, for all t ≥ 0, F̂ (t, ·) is a continuous map Y → X. Observe also

that the map R ∋t 7→ F̂ (t, z) ∈ R is continuous for any trajectory w(t) and
z ∈ Y .

In what follows, we will impose the following integrability condition on
a stopping time θ and Y -valued process z(t), t ∈ [0, T ] such that for some
p > 1

E

∫ t∧θ

0

‖z(s)‖2pY ds <∞, t ∈ [0, T ]. (4.19)

The next theorem is the main result of this section.
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Theorem 4.8 Assume that θ is a stopping time, 0 < θ ≤ T . Let z(t),
t ∈ [0, θ], be a continuous adapted Y -valued process such that condition (4.19)
holds. Then z(t) satisfies the random integral equation

z(t) = y0 −

∫ t

0

F̂ (s, z(s))ds, y0 ∈ Y, t ∈ [0, θ] , (4.20)

if and only if the process y(t) := U(−w(t))z(t) ∈ Y , t ∈ [0, θ], is a strong
solution of (4.17).

Remark 4.9 For technical reasons, we require strict inequality p > 1 in
condition (4.19), cf. estimate (4.29) below.

Remark 4.10 Observe that condition (4.19) is obviously satisfied if there
exists a constant R > 0 such that

‖z(t)‖Y ≤ R for all t ∈ [0, θ] , a.s. (4.21)

To prove Theorem 4.8, we first need the following general result, which
follows by an application of the Itô formula stated in Theorem A.8.

Lemma 4.11 Assume that θ is a stopping time, 0 < θ ≤ T .Let χ(t),
t ∈ [0, θ], be a progressively measurable X-valued random process. Define
a process z(t), t ∈ [0, θ], by the formula

z(t) := y0 −

∫ t

0

χ(s)ds, y0 ∈ Y, (4.22)

and assume that z(t) ∈ Y for all t ∈ [0, θ] and condition (4.19) holds. Set

y(t) := U(−w(t))z(t) ∈ Y, t ∈ [0, θ] .

Then y(t) satisfies the equation

y(t ∧ θ) = y0 +

∫ t∧θ

0

U(−w(s))χ(s)ds+

∫ t∧θ

0

DU(−w(s))z(s) ◦ dw(s)

= y0 +

∫ t∧θ

0

U(−w(s))χ(s)ds+

∫ t∧θ

0

Dy(s) ◦ dw(s), t ≥ 0, (4.23)

in X.
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Proof of Lemma 4.11. Let us put K := R×Y and observe that K satisfies
the assumptions of Theorem A.8. Consider a time independent map

f : K ∋ (τ, y) 7→ f(τ, y) ∈ X.

and assume that it satisfies assumptions of Theorem A.8. Then ∂f
∂y

(τ, y) ∈

L(Y,X), ∂f
∂τ

(τ, y) ∈ X and ∂2f
∂τ2

(τ, y) ∈ X. Observe that ∂f
∂τ

(τ, y) can be iden-
tified with a bounded linear operator R → X acting on h ∈ R by

∂f

∂τ
(τ, y)h := h

∂f

∂τ
(τ, y) ∈ X,

with the norm equal to
∥∥∂f

∂τ
((τ, y))

∥∥
X
.

Define a stochastic process ξ by ξ(t) = (w(t), z(t)) ∈ K, t ∈ [0, θ]. It is a
K-valued Itô process such that

dξ(t) = α(t)dt+ βdw(t), t ∈ [0, θ] ,

where α : [0, θ] ∋ t 7→ (0, χ(t)) ∈ K and β := (1, 0Y ) ∈ K. Here 0Y stands
for the zero element of Y .

Assume in addition that

E

∫ θ

0

∥∥∥∥
(
∂

∂τ
f

)
(ξ(s))

∥∥∥∥
2

X

ds <∞ and E

∫ θ

0

∥∥∥∥
(
∂2

∂τ 2
f

)
(ξ(s))

∥∥∥∥
2

X

ds <∞.

(4.24)
Define now a K-valued process ξθ(t), t ≥ 0, by setting

ξθ(t) = ξ(0) +

∫ t

0

α(s)1[0,θ](s)ds+

∫ t

0

β1[0,θ](s)dw(s), t ≥ 0.

It is clear that ξθ(t) = ξ(t) for t ∈ [0, θ]. Moreover, since θ is a stopping time,
the process 1[0,θ](s), s ≥ 0, is progressively measurable.

It follows then from the general Itô formula UMD Banach spaces, see
[10] and Theorem A.8 for a version adapted to our purposes (and e.g. [20,
Theorem VII.1.2] for a corresponding result in Hilbert spaces), that f(ξ(t))
is an X-valued Itô process such that

f(ξθ(t)) = f(ξ(0)) +

∫ t

0

∂f

∂y
(ξθ(s))χ(s)1[0,θ](s)ds

+
1

2

∫ t

0

∂2f

∂τ 2
(ξθ(s))ds+

∫ t

0

∂f

∂τ
(ξθ(s))dw(s), t ≥ 0. (4.25)
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Here ∂f
∂y

(ξ(s)) is a bounded operator Y → X and ∂f
∂τ

(ξ(s)) is a bounded linear
operator R → X acting on h ∈ R by

∂f

∂τ
(ξ(s))h := h

∂f

∂τ
(ξ(s)) ∈ X.

Finally, ∂2f
∂τ2

(ξ(s)) can be identified with an element of X.
Set now

f(τ, y) = U(−τ)y (4.26)

so that y(t) = f(ξ(t)). Taking into account that Y ⊂ Dom(D2) we deduce
that f ∈ C2(K,X) and

∂f

∂τ
(τ, y) = −DU(−τ)y,

∂2f

∂τ 2
(τ, y) = D2U(−τ)y,

∂f

∂y
(τ, y) = U(−τ).

It follows now from (4.25) that

f(ξθ(t)) = f(ξ(0)) +

∫ t

0

U(−w(s))χ(s)1[0,θ]ds

+
1

2

∫ t

0

D2U(−w(s))z(s)1[0,θ]ds−

∫ t

0

DU(−w(s))z(s)1[0,θ]dw(s), t ≥ 0,

which implies (4.23).
Now it is only left to prove (4.24), which is equivalent to the pair of

inequalities

E

∫ θ

0

‖DU(−w(s))z(s)‖2
X
ds <∞, E

∫ θ

0

∥∥D2U(−w(s))z(s)
∥∥2

X
ds <∞.

(4.27)
Observe that both D and D2 are bounded operators from Y to X, so that
(4.27) becomes equivalent to the bound

E

∫ θ

0

‖U(−w(s))z(s)‖2Y ds <∞. (4.28)

The Hölder inequality implies that

E

∫ θ

0

‖U(−w(s))z(s)‖2Y ds

≤

(
E

∫ θ

0

‖U(−w(s))‖2qL(Y ) ds

)1/q (
E

∫ θ

0

‖z(s)‖2pY ds

)1/p

(4.29)
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for any p, q > 1 such that p−1 + q−1 = 1. Taking into account that, for any
real x and λ, eλ|x| ≤ eλx + e−λx and Eeλw(s) = e

1

2
λ2s, we obtain the bound

(
E

∫ θ

0

‖U(−w(s))‖2qL(Y ) ds

)1/q

≤ M2

(∫ T

0

Ee2qm|w(s)|ds

)1/q

≤ 2M2T 1/qe2qm
2T

with M and m from (4.18). Condition (4.19) shows now that (4.28) holds.
The proof is complete. �

Remark 4.12 It can be shown by similar arguments that, if a process y(t) ∈
Y , t ∈ [0, θ], is a solution of integral equation (4.23), then

z(t) := U(w(t))y(t) ∈ Y

satisfies (4.22).

Now we can proceed with the proof of the main result of this section.

Proof of Theorem 4.8. Let θ be a finite stopping time and z(t), t ∈
[0, θ], a Y -valued process solving the integral equation (4.20). It is clear that
y(t) = U(−w(t))z(t) ∈ Y is a solution of the equation

y(t) = U(−w(t))

(
y0 −

∫ t

0

U(w(s))F (y(s))ds

)
, t ∈ [0, θ]. (4.30)

We can now apply Lemma 4.11 with χ(t) = U(w(t))F (y(t)), t ∈ [0, θ], and
obtain

y(t ∧ θ) =

∫ t∧θ

0

U(−w(s))χ(s)ds−

∫ t∧θ

0

DU(−w(s))z(s) ◦ dw(s)

=

∫ t∧θ

0

F (y(s))ds−

∫ t∧θ

0

DU(−w(s))z(s) ◦ dw(s)

=

∫ t∧θ

0

F (y(s))ds−

∫ t∧θ

0

Dy(s) ◦ dw(s).

The converse implication can be shown by similar arguments, cf. Remark
4.12.

4.3 Boundedness of the commutator

In this section we explain that the general result on the boundedness of com-
mutators stated in the book by Stein [35] in the L2-setting, can be extended
to Lp, p > 1, following the scheme outlined in that same book.
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Let T be a pseudo-differential operator (PDO) of order m = 1, that is,
with a smooth symbol h satisfying the bound

∣∣∂βx∂αξ h(x, ξ)
∣∣ ≤ Aαβ (1 + |ξ|)m−α , m = 1,

for all α, β > 0. Let a : R → R be such that ∂xa ∈ L∞ and set B := [T,Ma] ,
defined on S. Observe that B is not a PDO of order m = 0 unless a is smooth
with bounded derivatives of any order, which is insufficient for our purposes.

Remark 4.13 In our case, T = Q = (1 − ∂2x)
1/2

so that h(x, ξ) = (1 + ξ2)
1/2

,
and a ∈ H2,p.

Theorem 4.14 [35, VII.3.5, page 309] B extends to a bounded operator in
L2, and there exists a constant C such that

‖B‖L(L2) ≤ A =: C ‖∂xa‖L∞ ,

where C depends on T but is independent of a.

Idea towards the proof. B can be considered as the integral operator
with a kernel K(x, y) satisfying conditions of Theorem 3 of [35, VII.3.2, page
204], which states L2-boundedness of such operators. �

Remark 4.15 The proof of Theorem 3 [35, VII.3.2, page 294] is compli-
cated, even for PDOs of order 0.

Theorem 4.16 B extends to a bounded operator in Lp for any p > 1, and
there exists a locally bounded function kp : R+ → R+ such that

‖B‖L(Lp) ≤ Ap =: kp(A).

Proof. The proof follows the scheme outlined in [35, VI.5] for PDOs of order
0. The scheme is as follows: first prove L2-boundedness and then extend this
result to Lp using the theory of singular integrals discussed in [35, I.5].

Although, as stated above, B is not in general a PDO of order 0, the
scheme still works. We can apply Theorem 3 and Corollary on page 22 of
[35, I.5.2]. Indeed, it is straightforward that conditions (48), (49) of Theorem
3 [35, VII.3.2, page 294] imply that condition (10) of Theorem 3 [35, I.5.2,
page 19] holds for both B and B∗. Thus both B and B∗ are bounded in Lp,
1 < p < 2 , which also implies that they are bounded for p > 2. �

26



A Stochastic integration in Lq space

The first part of this appendix is based on Appendix from [11] which in turn
is based on [33]. The second part contains a formulation of the Itô Lemma,
which is based on [10], that is suitable for our purposes.

Let (Ω,A,P) be a probability space with a filtration (Ft)t≥0. Let w :
R+ × Ω → R be a standard (Ft)t≥0-Brownian motion.

Proposition A.1 Let (O,Σ, µ) be a σ-finite measure space. Let p, q ∈
(1,∞) and T > 0. For a progressively measurable process φ : [0, T ] × Ω →
Lq(O) the following assertions are equivalent:

(1) There exists a sequence (φn)n≥1 of adapted step processes such that

(i) lim
n→∞

‖φ− φn‖Lp(Ω;Lq(O;L2(0,T ))) = 0,

(ii) (
∫ T

0
φn(t) dw(t))n≥1 is Cauchy sequence in Lp(Ω;Lq(O)).

(2) There exists a random variable η ∈ Lp(Ω;Lq(O)) such that for all sets
A ∈ Σ with finite measure one has (t, ω) 7→

∫
A
φ(t, ω) dµ ∈ Lp(Ω;L2(0, T )),

and ∫

A

η dµ =

∫ T

0

∫

A

φ(t) dµ dw(t) in Lp(Ω).

(3) ‖φ‖Lp(Ω;Lq(O;L2(0,T ))) <∞.

Moreover, in this situation one has lim
n→∞

∫ T

0

φn(t) dw(t) = η, and

c−1
p,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))) ≤ ‖η‖Lp(Ω;Lq(O)) ≤ Cp,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))). (A.1)

Definition A.2 A progressively measurable process φ : [0, T ] × Ω → Lq(O)
is called Lp-stochastically integrable on [0, T ], if and only if it satisfies any
of the three equivalent conditions in Proposition A.1. In such a case we will
write ∫ T

0

φ(t) dw(t) = η.

Remark A.3 If a progressively measurable process φ : [0, T ] × Ω → Lq(O)
is Lp-stochastically integrable on [0, T ], then by (3) in Proposition A.1, φ is
Lp-stochastically integrable on [0, t] as well. Moreover, by the Doob maximal
inequality, see [30, Proposition 7.16], one additionally gets

c−1
p,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))) ≤

∥∥∥t 7→
∫ t

0

φ(s) dw(s)
∥∥∥
F
≤ Cp,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))),

where F = Lp(Ω;C([0, T ];Lq(O))).
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Corollary A.4 Let (O,Σ, µ) be a σ-finite measure space. Let p ∈ (1,∞) and
q ∈ [2,∞). Let T > 0. Let φ : [0, T ]×Ω → Lq(O) be an adapted and strongly
measurable process. If ‖φ‖Lp(Ω;L2(0,T ;Lq(O))) < ∞, then φ is Lp-stochastically
integrable on [0, T ] and

∥∥∥
∫ T

0

φ(t) dw(t)
∥∥∥
Lp(Ω;Lq(O))

≤ Cp,q‖φ‖Lp(Ω;L2(0,T ;Lq(O))).

Lemma A.5 Let (O,Σ, µ) be a σ-finite measure space. Let p ∈ (1,∞) and
q ∈ (1,∞). Let T > 0. Let φ : [0, T ] × Ω → Lq(O) be a progressively
measurable process satisfying the following three conditions.

(1) There exist a measurable function ψ : [0, T ] × Ω × O → R such that
φ(t, ω)(x) = ψ(t, ω, x) for almost all t ∈ [0, T ], ω ∈ Ω and x ∈ O, and for all
x ∈ O, ψ(·, x) is adapted.

(2) For almost all x ∈ O, ψ(·, x) ∈ Lp(Ω;L2(0, T )).

(3) There is a η ∈ Lp(Ω;Lq(O)) such that

η(ω)(x) =
(∫ T

0

ψ(t, x) dw(t)
)

(ω) for almost all ω ∈ Ω, and x ∈ O.

Then the process φ is Lp-stochastically integrable on [0, T ] and

∫ T

0

φ(t) dw(t) = η.

Definition A.6 Assume that τ : Ω → [0, T ] is a stopping time. If a pro-
gressively measurable process φ : [0, τ ] × Ω → Lq(O) is such that the process
1[0,τ ]φ : [0, T ] × Ω ∋ (s, ω) 7→ 1[0,τ ](s)φ(s, ω) → Lq(O) is stochastically inte-
grable, then we put

∫ t∧τ

0

φ(s) dw(s) :=

∫ t

0

1[0,τ ](s)φ(s) dw(s), t ∈ [0, T ]. (A.2)

If ξ : [0, τ ] × Ω → Lq(O) is a continuous and adapted process such that
ξ(t ∧ τ) =

∫ t∧τ

0
φ(s) dw(s), for all t ∈ [0, T ], then we will write

dξ(t) = φ(t)dw(t), t ∈ [0, τ ].

Remark A.7 The above result can also be applied to the space Hs,q(R) which
is isomorphic to a Lq(R). Let J : Hs,q(R) → Lq(R) be an isomorphism. Then
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for a process φ : [0, T ] × Ω → Hs,q(R) let φ̃ = Jφ. The above results can be

applied to φ̃. Conversely, if η̃ =
∫ T

0
φ̃(t) dw(t), then we define

η = J−1η̃.

Moreover, ‖φ‖Lp(Ω;Hs,q(R;L2(0,T ))) < ∞ is equivalent to stochastic integrability
of φ. It is well-known (see [35, 8.24]) that J extends to a isomorphism from
Hs,q(R;L2(0, T ))) into Lq(R;L2(0, T )).

In a similar way, the results extend to arbitrary X which are isomorphic
to a closed subspace of any Lq(O).

Theorem A.8 (Itô formula) Let E and F be spaces which are isomorphic
to appropriate Lq(O) spaces. Assume that

f : [0, T ] × E → F

is of class C1,2, i.e. f is differentiable in the first variable and twice Fréchet
differentiable in the second variable and the functions f , D1f , D2f and D2

2f
are continuous on [0, T ] × E. Here D1f and D2f are the derivatives with
respect to the first and second variable, respectively. Let

φ : [0, T ] × Ω → E

be a progressively measurable process which is stochastically integrable with
respect to w and assume that the paths of φ belong to L2(0, T ;E) almost
surely. Let ψ : [0, T ] × Ω → E be progressively measurable process with paths
in L1(0, T ;E) almost surely. Let ξ : Ω → E be F0-measurable. Define a
process x : [0, T ] × Ω → E by

x(t) = ξ +

∫ t

0

ψ(s) ds+

∫ t

0

φ(s) dw(s), t ∈ [0, T ].

Then the process s 7→ D2f(s, x(s))φ(s) is stochastically integrable and almost
surely we have, for all t ∈ [0, T ],

f(t, x(t)) − f(0, ξ) =

∫ t

0

D1f(s, x(s)) ds+

∫ t

0

D2f(s, x(s))ψ(s) ds

+

∫ t

0

D2f(s, x(s))φ(s) dw(s)

+ 1
2

∫ t

0

(
D2

2f(s, x(s))
)
(φ(s), φ(s)) ds. (A.3)

Remark A.9 For a related topic of a mild Itô formula in UMD Banach
spaces one can consult a recent paper [18] by Cox et al.

�
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