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Magnetic fields can be generated in plasmas by the

Biermann battery when the electric field produced

by the electron pressure gradient has a curl. The

commonly employed magnetohydrodynamic (MHD)

model of the Biermann battery breaks down when the

electron distribution function is distorted away from

Maxwellian. Using both MHD and kinetic simulations

of a laser-plasma interaction relevant to inertial

confinement fusion we have shown that this distortion

can reduce the Biermann-producing electric field by

around 50%. More importantly, the use of a flux limiter

in an MHD treatment to deal with the effect of the non-

Maxwellian electron distribution on electron thermal

transport leads to a completely unphysical prediction

of the Biermann-producing electric field and so results

in erroneous predictions for the generated magnetic

field.

This article is part of a discussion meeting issue

‘Prospects for high gain inertial fusion energy (part 2)’.

1. Introduction
Magnetic fields are ubiquitous in plasmas. The Biermann

battery is one important mechanism by which these

2020 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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magnetic fields are generated [1]. A simplistic explanation for this mechanism is that it arises

from the electric field caused by an electron pressure gradient. If this electric field has a curl,

then Faraday’s law predicts the generation of a B-field. The Biermann battery has been proposed

as a mechanism for magnetic field generation in a wide range of plasma environments from

astrophysical shocks [2] to laser-driven inertial confinement fusion (ICF) experiments [3,4]. The

simple interpretation of the Biermann battery being caused by the curl of the electric field

due to the electron pressure gradient only holds for plasmas where the electrons are in local

thermodynamic equilibrium (LTE). One requirement for this is that the mean free path of the

electrons should be much smaller than the scale-length of variation of the electron pressure

gradient. This assumption often breaks down and the electron transport becomes nonlocal

depending on conditions in distant regions of the plasma [5]. In this case the electrons are not

in LTE, their distribution function is non-Maxwellian and a kinetic description of the Biermann

battery is required. If the distortion of the distribution away from Maxwellian due to nonlocality

is taken into account it has been shown that the B-field generated by the Biermann battery is

reduced [6,7].

Here we will use kinetic simulations to show that the commonly employed LTE formulation of

the Biermann battery (as the curl of the electron-pressure gradient electric field) can be erroneous

due to an inaccurate treatment of nonlocality. In particular we will focus on conditions realizable

experimentally with high intensity lasers and of importance to ICF. We will show that while the

direct nonlocal correction to the Biermann-producing electric field1 from the distortion of the

electron distribution is significant, more important are errors introduced by an LTE treatment of

the electron thermal transport predicting temperature gradients which are far too steep. Non-LTE

electron thermal transport is a well-known problem in the context of laser-produced plasmas [5]

and ICF [8] and has been more recently considered in the context of magnetic confinement fusion

[9–12]. Its effect on the Biermann battery, however, has not been considered and will be elucidated

here.

This paper will be organized as follows. In §2 we will discuss the specific nonlocal effects on

the Biermann battery. Section 3 will show a comparison of kinetic and magnetohydrodynamic

(MHD) simulations, the latter assuming LTE, demonstrating the importance of nonlocal effects

on the Biermann battery in laser-plasma interactions relevant to ICF. We will suggest how these

effects may be observed experimentally.

2. Nonlocal effects on the Biermann battery

(a) The direct effect of distortion of the electron distribution function

A kinetic description of the Biermann battery has been given previously [6] but will be reiterated

here for completeness. We start from the equation describing the time evolution of the electron

distribution function f (x, v, t) in phase space (x, v), initially in the absence of a magnetic field B.

∂f

∂t
+ v · ∇xf − eE

me
· ∇vf = Ĉ(f ) + Ĥ(f ).

∇x and ∇v are gradients in x & v space respectively. E is the electric field resulting from collective

plasma processes (including the Biermann-producing electric field but not limited to it). Ĉ is the

collision operator, we use the Fokker–Planck operator and this combination is referred to as the

Vlasov–Fokker–Planck (VFP) equation. In addition, we include the operator Ĥ describing heating

of the plasma by an external source, for example a laser. We assume that while the electron

distribution function is far from Maxwellian, it is not very anisotropic, i.e. we are in a weakly

collisional regime where the mean free path of the electrons is not much longer than the pressure

scale-length. In this case we may expand f in Cartesian tensors, keeping only the isotropic part

1As a matter of terminology we resist referring to this as the field due to the electron pressure gradient from now on as this
identification is only true when the electron distribution function is Maxwellian.
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f0 and first order anisotropy f1, f (x, v, t) = f0(x, v, t) + f1(x, v, t) · v/v [13]. Substituting this into the

Vlasov–Fokker–Planck equation yields

∂f0
∂t

+ v

3
∇x · f1 − e

3mev2

∂

∂v
(v2E · f1) = Ĉee( f0) + Ĥ( f0) (2.1)

and
∂f1

∂t
+ v∇xf0 − eE

me

∂f0
∂v

= −νeif1. (2.2)

We have only included the effect of electron–electron collisions on f0 as these dominate

electron energy exchange and only electron–ion collisions on f1 as for high Z these dominate

electron angular scattering; νei = YZnelnΛei/v
3 is the electron–ion collision frequency (ne is

the electron number density, Z the ionic charge, lnΛei the Coulomb logarithm for electron–ion

collisions and Y = 4π [e2/4πǫ0me]
2). While equations (2.1) and (2.2) include terms beyond the

Biermann-producing electric field, they are stated here as they are the equations solved by the

kinetic code IMPACT [14] used to perform the simulations in §3 below.2

To derive a kinetic expression for the Biermann-producing electric field we consider equation

(2.2), neglecting electron inertia (i.e. ∂f1/∂t). We then multiply this equation by v6 and integrate. In

this case the term on the right-hand side (i.e. containing the collision frequency νei) is proportional

to the current, if we assume this is zero we arrive at

E = −me

6e

∇x(ne〈v5〉)
ne〈v3〉

. (2.3)

Here the velocity averages of the distribution function are defined as 〈vn〉 = (4π/ne)
∫∞

0 vn+2f0dv.

Equation (2.3) holds for non-Maxwellian f0. We can recover the standard result for a plasma in

LTE by substituting f0 = fM, where fM is Maxwellian. fM = [ne/(π3/2v3
T)] exp(−v2/v2

T) and vT is the

electron thermal speed, related to the electron temperature by vT = (2Te/me)
1/2. It can be shown

that 〈vn〉M = (4π/ne)
∫∞

0 vn+2fM dv = (2
√

π)Γ [(n + 3)/2]v
n/2
T and so

EM = −1

e

(∇xPe

ne
+ 3

2
∇xTe

)

, (2.4)

where EM is the electric field assuming the electron distribution function is Maxwellian. The

first, electron pressure gradient term gives rise to the Biermann battery while the second,

thermoelectric term is curl-free and so usually neglected (though it will be retained in our MHD

simulations).

(b) The indirect effect of electron thermal transport

Equations (2.3) and (2.4) demonstrate that a non-Maxwellian electron distribution function

has a direct effect on the Biermann-producing electric field. Another, indirect effect is that

magnetohydrodynamic and kinetic approaches will predict different macroscopic plasma

conditions such as electron temperature, which will then have a significant impact on their

prediction for the Biermann-producing electric field. We use the general definition of temperature

as the second moment of the electron distribution Te = 〈mev
2/2〉 and thus it is defined even when

the distribution is non-Maxwellian.

The reason for the large discrepancy between the electron temperature in MHD and kinetic

simulations is due to kinetic non-local effects on the electron heat flow qe, the same as for the

Biermann-producing electric field (in fact more important as the heat flow depends on faster, less

collisional electrons). The most commonly applied fix to this problem in MHD is to artificially

limit the electron heat flow when the model predictions become unphysically large (this does not

occur in the kinetic model which accurately captures non-local effects), typically limiting the heat

flow to some fraction of the free-streaming limit qfs [15]. The free-streaming limit expresses the

2This code also includes the affect of magnetic fields but as none are present in our simulations they are omitted here for
simplicity.
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maximum heat flow which could be obtained if all electrons were flowing collisionlessly down

the temperature gradient at the thermal speed, usually3 expressed as qfs = nemev
3
T/2. Such a flux

limiter f may be implemented in a variety of ways but a harmonic average is usual such that

1/|qe| = 1/|qe,MHD| + 1/(fqfs) where qe,MHD is the electron heat flow predicted by MHD.

In practice it is not possible to fully capture nonlocal effects on thermal transport with a flux

limiter. The degree of nonlocality varies in space and time and, more importantly for the Biermann

battery, the flux limiter has the effect of artificially steepening the electron temperature profile and

so pressure profile dramatically. In reality hot, long mean free path electrons would stream ahead

of the heat front and smooth these gradients but this pre-heat phenomenon is not captured at all

by a flux limiter. In §3b we will see that this artificial steepening causes MHD to over-predict the

Biermann battery.

3. Comparison of Kinetic to MHD simulations

(a) Simulation set-up

We will compare VFP to MHD simulations of a situation realizable experimentally with high

intensity lasers. We will consider a laser heating an underdense gas, a situation of direct

applicability to the gas fill in a hohlraum in the indirect drive ICF scheme [2]. For relevance to

the gas-fill the gas density was chosen to be 1.5 × 1019 cm−3. The gas was composed of fully

ionized nitrogen and the Coulomb logarithm ln Λei was set to eight. It was assumed to be at a

temperature of 20 eV before being heated by the laser. The laser was chosen to have peak intensity

2 × 1014 W cm−2, a Gaussian spatial profile with FWHM 33.3 microns and a flat-top 1 ns temporal

profile. The simulations were performed in one spatial dimension in planar geometry.

We use the VFP code IMPACT [14]. IMPACT solves equations (2.1) and (2.2)4 for the

time evolution of both the isotropic part f0 and first-order anisotropy f1 of the electron

distribution function. IMPACT also directly solves for the electric field and, as it allows the

electron distribution to be non-Maxwellian, naturally includes non-local effects on the Biermann-

producing electric field. Our IMPACT simulations include the heating operator Ĥ modelling

inverse bremsstrahling heating [18].

Two comparisons to IMPACT simulations will be made to determine kinetic effects on the

Biermann-producing electric field identified in §2. Firstly, the direct effect of the distortion of

the distribution away from Maxwellian can be determined by taking the electron temperature

(defined as 〈mev
2/2〉) and number density (〈v0〉) profiles from the IMPACT simulation and

applying equation (2.4) to determine the electric field we would predict if the distribution function

were locally Maxwellian for these plasma conditions. To determine the indirect effect that the

plasma conditions evolve differently in a kinetic and MHD model due to kinetic effects on the

thermal transport we can compare IMPACT simulations to those using the MHD code CTC

[19]. CTC solves the equations for conservation of mass, momentum and energy in the plasma

along with the local Ohm’s law. An inverse bremsstrahlung heating operator is included in the

energy equation to model laser heating. CTC applies a flux limiter to the heat flow as described

previously.

In the CTC simulations the spatial grid was 800 microns in size represented by 240 grid cells

with the laser spot at the centre (as CTC only has periodic boundary conditions). 1 ns of laser

heating was simulated using 150 000 time steps (giving a time step of 66.7 fs). The IMPACT

simulations used a spatial grid 878 microns in size, represented by 200 grid cells. The laser

spot was centred at one boundary and reflective boundary conditions were applied. The v-grid

extended to 20vT0, where vT0 is the thermal speed for the initially unheated plasma (at 20 eV).

3Alternative pre-factors to 1/2 are also used, qfs = nemev
3
T/3 and nemev

3
T are also common.

4With the addition of small correction terms due to bulk ion motion not given here for simplicity, see references [16,17].
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Figure 1. Left: electron temperature profile fromCTC after 750 ps laser heating using different flux limiters, f = 0.05 (blue line)

and f = 0.15 (red line). Right: corresponding electric field (in the x-direction) for f = 0.05 (blue line) and f = 0.15 (red line).

(Online version in colour.)

The timestep size was set to 27.6 fs (the electron–ion collision time for thermal electrons in the

unheated plasma).5

(b) Simulation results

Figure 1 shows the electron temperature and electric field, produced by CTC, after 1 ns of laser

heating, using commonly employed values for the thermal flux limiter f = 0.15 and f = 0.05 [8,20].

From this figure it is clear that the thermal flux limiter makes a large difference to the electric field.

Particularly in the f = 0.05 case the flux limiter causes substantial steepening of Te. Limiting the

heat flux creates an artificial transport barrier and thus the steep fall in Te clearly shown in figure 1.

In the case of CTC simulations, the Biermann-producing electric field is determined by ne and Te

using equation (2.4). This is dominated by the artificially steep part of the Te profile resulting in

an erroneously large, spatially localized electric field. We can see this directly from equation (2.4)

which, on using the equation of state Pe = neTe, becomes E ≈ −(5/2e)∇xTe as the electron density

does not vary substantially. This is reasonable as while the density cavitates by 30% from the laser

heated region after 1 ns in the f = 0.05 case (which shows most density cavitation) the variation

over the region containing the flux limiter induced transport barrier is only 13%. The CTC results

plotted in figure 1 show that the temperature drops by 150 eV over 6.8 microns (two spatial grid

cells) due to the transport barrier introduced by the flux limiter. We therefore predict |E| ∼ 6 ×
107 V m−1, in agreement with the CTC simulation results for the electric field and verifying that

the flux limiter causes this therefore spurious E-field. The steepening is less pronounced in the

f = 0.15 case, however the electric field is still dominated by the artificially steepened part of the

electron temperature profile. For f = 0.15, after 1 ns of heating CTC predicts a drop in Te of 50

eV over 17 microns at the artificial transport barrier, giving an estimate from equation (2.4) of

|E| ∼ 7 × 106 V m−1 again in agreement with simulations.

Comparison to kinetic IMPACT simulation results, shown in figure 2, demonstrates clearly

that the electric field in the MHD calculation is dominated by this numerical artefact due

to the artificially steepened temperature profile for both f = 0.05 and f = 0.15. Due to the

computationally intensive nature of the IMPACT simulations compared to CTC, it was only

possible to run these simulations for 138 ps of laser heating. Nevertheless they demonstrate that

the steepening of the profile, seen particularly for the f = 0.05 CTC simulation, is an artefact of

the flux limiter. This has a very large effect on the electric field, which is much reduced and has

5Note that we compared inverse bremsstrahlung heating of a plasma in 0D in IMPACT and CTC simulations to ensure they
were being heated at the same rate when the different transport models did not affect the result.
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Figure 2. Left: electron temperature profile from IMPACT (black line) and CTC using both f = 0.05 and f = 0.15 (blue and red

lines respectively) after 138 ps laser heating. Right: corresponding electric fields (in the x-direction) from IMPACT (black line)

and CTC using f = 0.05 (blue line) and f = 0.15 (red line). (Online version in colour.)
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Figure 3. Electric field in the x-direction from IMPACT after 138 ps laser heating (solid line) and expected electric field from the

IMPACT temperature profile assuming the electron distribution function is Maxwellian (dashed line).

a completely different profile, i.e. it is not strongly peaked where the flux limiter (artificially)

steepens the electron temperature profile. The electric field from CTC displays what appear to be

oscillations in the f = 0.05 case immediately behind the transport barrier (giving an inversion in

the direction of the electric field there). We believe this is due to the steepness of the temperature

profile there and as such is unphysical.

Shown in figure 3 is the electric field produced by assuming the electron distribution function

is Maxwellian, i.e. using equation (2.4), but taking the electron temperature profile from IMPACT.

The difference between this and the electric field from IMPACT shows the direct effect of the

distortion of the distribution function away from Maxwellian on the Biermann battery. While this

effect does make a difference to the electric field it is substantially smaller than the effect of the

thermal flux limiter.

(c) Synthetic proton radiography

To determine whether kinetic effects on the electric field could be measured in an experiment

we have performed synthetic proton radiography [21] on the electric fields similar to those
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Figure 4. Proton deflection (left) and intensity at the screen (right) for CTC simulations after 1 ns of laser heating with f =
0.05 (blue line) and f = 0.15 (red line). (Online version in colour.)

produced by CTC and IMPACT shown in figures 1 and 3. Assuming that such an experiment

would have cylindrical symmetry about the z-axis we assume the electric field would be radial

in the x, y plane. We have set the magnitude of this radial electric field equal to the electric field

from the 1D simulations shown in figures 1 and 3. Approximate cylindrical symmetry could be

achieved experimentally by using a long focal length optic. Cylindrical symmetry ensures that

the Biermann-producing electric field is curl-free (assuming the gas density is initially uniform)

and therefore no magnetic field is generated to complicate the proton radiography.

In the limit where the electric potential is much smaller than the proton energy, the deflection

of the protons is small, and the predicted proton radiograph can be calculated as described by

Kugland et al. [22,23]. This is the case here as the electric potential energy is ∼kBTe—as can be

seen from equation (2.4)—which figure 1 shows is hundreds of eV, whereas protons used in proton

radiography have energies >MeV. In this case the fields are integrated over the direction of the

proton trajectories to give a two-dimensional map of proton deflections. These are projected onto

a ‘screen’ to find a map of final proton positions against initial position. This mapping defines

a change in area described by the determinant of the two-dimensional Jacobian, and hence the

change in intensity can be calculated as the reciprocal of this determinant:

I

I0
= |J|−1 ≡

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

−1

,

where positions in the electric field are described by x and on the screen by x′ and:

x′ ≈ x + L2

(

x

L1
+ θ

)

,

for a distance L1 from the proton source to the electric field object, and a distance L2 from the

electric fields to the screen. In the case considered here the protons propagate in the x-direction

with a symmetrical spread of velocities in the y-direction and thus are deflected solely in the

y-direction. The deflection θ = (0, θy, 0) is described by:

θy ≈
δvy

v0
≈ e

mpv
2
0

∫
Ey dl.

Here δvy is the change in the velocity of the proton (mass mp) in the y-direction (initially

moving at speed v0) due to the y-component of the electric field (Ey). We integrate over the

electrons trajectory, which is approximately a straight line as the deflections are small. We have

assumed the protons are non-relativistic.

The resulting synthetic radiographs for the fields predicted by MHD (based on the 1D CTC

simulations shown in figure 1) can be seen in figure 4. The synthetic radiographs for fields
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predicted by kinetic theory (based on the 1D IMPACT simulations shown in figure 3) are shown in

figure 5. We have assumed monoenergetic protons with kinetic energy 5 MeV. The proton source

was assumed to be 100 mm from the plasma; the screen was 500 mm from the plasma. The proton

source was assumed to have a finite size. We chose to represent this by a Gaussian profile with

FWHM S = 11.8 microns (although this was somewhat arbitrary). To include the effect of this

finite source size on the synthetic radiograph we convolve the radiograph with a Gaussian of

FWHM (1 + L2/L1)S = 70.6 microns.

A simple estimate demonstrates that the deflection is dominated by the spurious spike in the

electic field caused by the flux limiter.6 Assuming that this radial electic field is structured as a

cylindrically-symmetric shell of radius r and thickness 
L then the maximum deflection of the

protons is given by θy ∼ (5/2)(
Te/K.E.)
√

r/
L where 
Te is the drop in electron temperature

over the artificial (flux limiter induced) transport barrier (thickness 
L), K.E. is the kinetic energy

of the protons. To obtain this we have used equation (2.4) and assumed the deflection is small.

Using this formula we obtain θy ∼ 0.6 mrad for the f = 0.05 case (where we saw above that

CTC gives 
Te ≈ 150 eV, r ≈ 400 microns and 
L ≈ 6.8 microns). For the f = 0.15 case we obtain

θy ≈ 0.1 mrad (CTC gives 
Te ≈ 50 eV, r ≈ 600 microns and 
L ≈ 17 microns). That these agree

with the observed deflections in figure 4 supports the conclusion that the electric field resulting

from the flux limiter is responsible for the features in the synthetic radiographs. This suggests a

relatively simple experiment for observing kinetic effects on the Biermann battery.

This conclusion is further supported by the synthetic radiographs based on the IMPACT

simulations, shown in figure 5. These display a completely different structure to the synthetic

radiographs based on the CTC simulations, notably the spikes caused by the spikes in the

electric field are absent. The measurement threshold for the intensity changes on the radiographs

is estimated at approximately 10%, thus the deflection of the protons due to the Biermann-

producing electic field in the more physical kinetic simulations should be observable.

(d) Magnetic field generation in 2D simulations

To demonstrate the importance of the thermal flux limiter on the magnetic field generated by

the Biermann battery we have conducted 2D CTC simulations, with identical physical conditions

to the 1D simulations except that a cosine density perturbation was added in the y-direction,

i.e. the electron density was ne = 1.5 × 1019 cm−3[1 − 10−3 cos(2πy/200 µm)]. The laser heating

profile remained unchanged from the 1D simulations, I = I0e−x2/w2
where w = 20 microns (so the

FWHM is 33.3 microns). In this case the electric field generated by the electron pressure gradient

will have a curl and a magnetic field will be generated according to Faraday’s law ∂B/∂t = −∇ ×
6Rather than caustics.
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temperature (bottom right) and lineout of the magnetic field at y = 50 microns (bottom left). (Online version in colour.)

E = −(1/ene)∇xne × ∇xTe. A numerical grid 30 × 30 cells was used to represent 200 microns in

each direction. 30 000 time steps were used to discretize a total simulation time of 60 ps. In order to

prevent numerical instabilities the thermoelectric term had to be artificially switched off. Equation

(2.4) shows that this will not affect the B-field generation rate as this term is curl-free, although it

will curtail B-field transport by the Nernst effect, which would be important in this set-up [17].

Figure 6 shows the Biermann-generated magnetic field after 60 ps using f = 0.05 and f = 0.15.

Although the resolution of these simulations was relatively poor as the flux limiter caused the

f = 0.05 simulations to go unstable, a clear reduction is seen in B-field generation when the flux

limiter is increased from f = 0.05 and the B-field is more localized. Also shown in figure 6 are the

electron temperature profiles from the f = 0.05 and f = 0.15 CTC simulations after 60 ps as well as

lineouts of the B-field through the point of maximum field (at y = 50 microns). The temperature

profiles show that the magnetic field is generated at the steep fall in the temperature due to the

artificial transport barrier for both f = 0.05 and f = 0.15 and is therefore unphysical. The line out

of the B-field shows that the line integral of the magnetic field is reduced by the flux limiter (often

this is the important variable), in fact the line integral of the magnetic field from x = 0 to 100

microns is reduced by 20% for f = 0.15 compared to f = 0.05.

Finally we note that a situation similar to this 2D simulation set-up may be realizable

experimentally by inducing a density jump in a gas jet. This could be achieved by overlapping

two gas jets of differing pressure or by the presence of an obstacle in the gas jet (although the

latter would result in a shock).

4. Discussion
Here we have shown that two kinetic effects on the Biermann battery become important when the

electron mean free path can no longer be considered small compared to the electron temperature

gradient. This is due to the fact that LTE breaks down in this case and the electron distribution

function is no longer Maxwellian as the transport becomes nonlocal. Firstly there is the direct

effect of the distortion of the distribution function on the electric field, which has been previously
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considered [6,7]. The electric field causing the Biermann battery is given by equation (2.3) in

the general case where the distribution function is not Maxwellian. Only in the special case of

LTE where the distribution is Maxwellian is the electric field given by the more familiar form in

equation (2.4) usually employed in MHD codes. In the simulations presented in §3, relevant to the

conditions in inertial confinement fusion plasmas, this direct effect of the distortion of the electron

distribution reduced the peak electric field by almost 50%, in line with previous results [6].

The second, less explored kinetic effect on the Biermann battery is the indirect effect of the

flux limiter on electron heat transport, also commonly employed in MHD codes. We showed that

varying the electron flux limiter between reasonable values (in the context of inertial confinement

fusion) led to more than a factor of six change in the instantaneous peak electric field in 1D

simulations after 1 ns of heating of a nitrogen gas jet. We expect this difference would grow on

longer timescales. Moreover the electric field profile was dominated by a very narrow peak in

this case (figure 1) which is a numerical artefact of the flux limiter. This is due to the fact that the

flux limiter causes an artificial transport barrier, steepening the temperature profile unphysically,

leading to the strong peak in the electric field. Figure 2 shows that this feature is absent from

the more physically correct VFP simulations. 2D CTC simulations showed that this unphysical

transport barrier did indeed modify the rate of B-field generation by the Biermann battery, leading

to an increase in the magnitude of the magnetic field by a factor of two after 60 ps of laser

heating for f = 0.05 compared to f = 0.15. This suggests that our MHD predictions of the magnetic

field from the Biermann battery are dominated by a numerical artefact (the flux limiter induced

transport barrier). In addition, in the f = 0.05 case the electron temperature profile steepened so

much that the temperature dropped by a large fraction of the peak over a few grid cells. This

would be expected to introduce not only inaccuracies in calculating the electric field, but the

thermal transport as well.

While the direct effect of nonlocality on the Biermann battery is interesting the indirect effect

of the flux limiter is more important. There is no single value for the thermal flux limiter f which

accurately captures kinetic effects. The fact then that MHD simulations of the Biermann battery

should depend so strongly on f therefore suggests that care should be exercised interpreting the

results of such simulations. For example, MHD simulations of indirect drive ICF suggest that

large magnetic fields may be generated by the Biermann battery but the effect of the flux limiter

(f = 0.15 was used) on these predictions was not explored [4]. Recently particle in cell kinetic

simulations have been used to demonstrate further departures from simple MHD modelling, for

example the formation of filaments due to the Weibel instability [24,25]. This effect is not included

in our modelling as it is reliant on higher order anisotropy in the electron distribution function.

Indeed the IMPACT simulation results present here are at the limits of the validity of truncation

of the electron distribution at first order anisotropy. Higher order terms are negligible if the ratio

of the scale length to the mean free path is small [13], yet as an example they are of approximately

the same magnitude at the heat front (defined as being at the half maximum of the temperature

profile) for the IMPACT-produced temperature profile marked ‘VFP’ in figure 2. While this may

affect the details of the thermal transport (interesting as a subject for further work) we do not

expect it to change the key qualitative result that flux limited MHD predicts an artificially steep

temperature profile.

We have also not discussed the distortion of the electron distribution function due to inverse

bremsstrahlung heating (which pushes the distribution towards a super-Gaussian). This can

modify transport [26], suppressing the Biermann battery by up to 30% [27]. This is not expected

to be important here as the Langdon parameter Zv2
osc/v2

T ≈ 0.4 where vosc is the quiver velocity

of the electrons in the laser field and we have assumed a temperature of 300 eV (from figure 2).

Our simulations have other limitations. We have limited our kinetic simulations to one spatial

dimension. Two-dimensional kinetic simulations would not only be computationally intensive

but in order to meaningfully compare to the MHD simulations the Nernst effect would need

to be artificially removed, which is not straightforward in a kinetic framework. While the 1D

assumption artificially imposes symmetry not present in the experiment proposed in §3c we

would expect qualitatively similar results in these situations as the proposed experiment has
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cylindrical symmetry meaning the Biermann-producing electric field will remain curl-free and

no magnetic field will be generated. This is in contrast to the experiment proposed in §3d, where

this symmetry is broken and B-fields are generated, although in the simulations Cartesian rather

than cylindrical coordinates were again used. We have also neglected discussing the subsequent

transport of the magnetic fields. This occurs primarily by the Nernst effect, whereby the magnetic

field is advected by the electron heat flow [28]. As the electron heat flow must be described

kinetically, then so must the Nernst effect and therefore the magnetic field advection [17,29]. In

addition, effects such as the Nernst effect can give rise to novel plasma instabilities [30] making

this experimental platform potentially very fruitful for studying kinetic effects on transport (but

making modelling challenging—we had to artificially switch the Nernst term off to get the 2D

CTC simulations to remain numerically stable).

The significant kinetic effects on the Biermann battery provide motivation to validate our

modelling with experiment. We have proposed a simple experiment where a ns pulse length

laser of intensity ∼1014 W cm−2 heats an underdense gas (electron density ∼1019 cm−3) similar

to previous experiments [2,31] (and suggested experiments [32]). Synthetic proton radiography

shows that such an experiment can demonstrate the inaccuracy of MHD modelling of the

Biermann battery when a thermal flux limiter is used, although the direct effect of the distortion

of the electron distribution function is smaller and so harder to observe, requiring a proton

radiography set-up at the limit of size that could be fielded experimentally for sufficient

magnification (though measurement of the indirect effect would not require such a high

magnification). By inducing a density variation in the gas jet the Biermann-producing electric

field will have a curl and a magnetic field will be generated. This could provide a route to

experimentally observing the direct and indirect kinetic effects discussed here on the Biermann-

generated magnetic field itself rather than just the electric field which produces it as the former is

usually of more interest.

Determining whether kinetic effects can be incorporated into the MHD framework to sufficient

accuracy is very important as full kinetic codes are currently too computationally intensive for

full scale simulations of, for example, an ICF experiment. Recent work suggests that reduced

kinetic models of electron thermal transport provide a compromise which is sufficiently accurate

and efficient [33–35]. While these models have been shown to be suitable for describing the

Nernst effect [36] further work is required to determine whether they can describe the Biermann

battery.

5. Conclusion
We have shown that kinetic effects modify the Biermann battery under conditions relevant to

current laser plasma experiments (and inertial confinement fusion). While the direct effect on

this electric field from the distortion of the electron distribution function away from Maxwellian

was found to lead to a decrease in the peak electric field by approximately 50%, the dominant

effect is the artificial steepening of the temperature profile by the flux limiter. This latter effect

meant that magnetothydrodynamics, often used to model the Biermann battery, produced fields

dominated by a numerical artefact from this steepening. We have shown that this inadequacy of

MHD to correctly model the Biermann battery is observable experimentally, suggesting a strategy

for much needed benchmarking which can be performed using current high power (ns pulse)

laser systems.
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