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and behaviour
Antoine M. G. Barreaux1* , N’Guessan Brou2, Alphonsine A. Koffi2, Raphaël N’Guessan2,3, 

Welbeck A. Oumbouke2,3, Innocent Z. Tia2,4 and Matthew B. Thomas1

Abstract 

Background: Eave tubes are a type of housing modification that provide a novel way of delivering insecticides to 
mosquitoes as they attempt to enter the house. The current study reports on a series of semi-field studies aimed at 
improving the understanding of how eave tubes might impact mosquito mortality and behaviour.

Methods: Experiments were conducted using West African style experimental huts at a field site in M’be, Côte 
d’Ivoire. Huts were modified in various ways to determine: (i) whether mosquitoes in this field setting naturally recruit 
to eave tubes; (ii) whether eave tubes can reduce house entry even in the absence of screening; (iii) whether mosqui-
toes suffer mortality if they attempt to exit a house via treated eave tubes; and, (iv) whether screening and eave tubes 
might deflect mosquitoes into neighbouring houses without the intervention.

Results: Ninety percent more mosquitoes (Anopheles gambiae sensu lato, and other species) entered huts through 
open eaves tubes compared to window slits. The addition of insecticide-treated eave tubes reduced mosquito entry 
by 60%, even when windows remained open. Those mosquitoes that managed to enter the huts exhibited a 64% 
reduction in blood feeding and a tendency for increased mortality, suggesting contact with insecticide-treated inserts 
prior to hut entry. When An. gambiae mosquitoes were deliberately introduced into huts with treated eave tubes, 
there was evidence of six times increase in overnight mortality, suggesting mosquitoes can contact treated eave tube 
inserts when trying to exit the hut. There was no evidence for deflection of mosquitoes from huts with screening, or 
screening plus eave tubes, to adjacent unmodified huts.

Conclusions: Eave tubes are a potentially effective way to target Anopheles mosquitoes with insecticides. That 
treated eave tubes can reduce mosquito entry even when windows are open is a potentially important result as it 
suggests that eave tubes might not need to be combined with household screening to have an impact on malaria 
transmission. The absence of deflection is also a potentially important result as coverage of eave tubes and/or screen-
ing is unlikely to be 100% and it is important that households that do not have the technology are not disadvantaged 
by those that do.

Keywords: Vector control, Housing improvement, Mosquito entry, Anopheles gambiae, Blood-feeding inhibition, 
Deflection, Malaria
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Background

It is generally accepted that new vector control tools 

are needed to assist in driving down malaria transmis-

sion and achieve the control targets set out in the World 

Health Organization (WHO) Global Technical Strategy 

[1–3]. Eave tubes have been proposed as a new tool for 

delivering insecticides to Anopheles mosquitoes as they 

search for hosts and attempt to enter houses to blood 

feed [4]. When combined with screening of doors and 

windows, preliminary evidence suggests that eave tubes 

reduce entry of mosquitoes and increase overnight mor-

tality rate, leading to reduced transmission risk at both 

household and community levels [4–7].

The epidemiological impact of screening plus eave 

tubes is currently being evaluated in a large-scale clus-

ter randomized trial (CRT) in 40 villages in central Côte 

d’Ivoire [8]. In parallel with this CRT, a number of small-

scale studies are being conducted in Côte d’Ivoire to 

help better understand the functioning of screening and 

eave tubes and potentially assist in interpreting the ulti-

mate impacts of the intervention on transmission. This 

paper reports on a series of experiments exploring the 

effects of screening and eave tubes on mosquito behav-

iour and mortality. The approach used West African style 

experimental huts to investigate: (i) whether mosquitoes 

in this field setting naturally recruit to eave tubes; (ii) 

whether eave tubes can reduce house entry even in the 

absence of screening; (iii) whether mosquitoes suffer 

mortality if they attempt to exit a house via treated eave 

tubes; and, (iv) whether screening and eave tubes might 

deflect mosquitoes into neighbouring houses without the 

intervention.

Methods

Mosquito populations

All studies were conducted in the experimental site of 

M’be (5.209963  W and 7. 970241  N), in central Côte 

d’Ivoire [9, 10]. The malaria vectors in this area are 

dominated by Anopheles gambiae sensu lato (s.l.) and 

are known to be highly resistant to pyrethroids [11–13]. 

Mosquitoes were reared before release and/or brought 

back for observation and analysis in laboratory at the 

Institut Pierre Richet (IPR) research centre in Bouaké, 

Côte d’Ivoire.

Mosquitoes were hand-captured one-by-one inside 

the experimental huts and enclosure using individual 

glass haemolysis tubes and a flash light. Tubes were 

plugged with a small piece of cotton and labelled, prior 

to transportation to the lab. Mosquitoes were then 

identified to species level using a binocular micro-

scope (40×). The fact that they were alive or not, and 

blood fed or not was also assessed. Mosquitoes alive 

at capture (or recapture) were kept for observation 

for 24  h in the insectary on 10% honey solution, at 

27 ± 2  °C, 60 ± 20% RH and ambient light. Their mor-

tality was assessed after 24 h.

In experiments where mosquitoes were released (as 

opposed to recruiting naturally into experimental huts 

from the wild), experimental mosquitoes were derived 

from larval collections in the local area. These mosqui-

toes are known to be insecticide resistant [11–13]. The 

field-collected An. gambiae larvae were maintained at 

standard density (about 300 larvae) in metallic bowls 

with about 1 l of deionized water and fed daily with fish 

food (Tetramin™ baby) until pupation. Upon emergence, 

adult mosquitoes were housed in standard mosquito 

cages and maintained on 10% honey solution at 27 ± 2 °C, 

60 ± 20% RH and ambient light.

Experimental huts with eave tubes

Eave tubes were installed in standard West African 

experimental huts [14, 15] by drilling 15-cm holes at 

eave level, at a 10° angle from the horizontal. Huts were 

modified to accommodate a total of 12 tubes per hut, but 

for the current study, half of the openings were blocked, 

and the remaining 6 tubes (two on each side and two at 

the front) were used as functional eave tubes (Fig. 1). A 

20-cm long piece of polyvinyl chloride (PVC) pipe was 

fixed inside each hole to house the eave tube inserts 

(Fig.  2). As is typical for this type of experimental hut, 

each hut had four metallic windows with a horizontal 

window slit in each (two sheets of metal form a funnel 

inside the window frame with a narrow opening ena-

bling mosquito entry but preventing mosquito exit) and a 

metallic shutter that can be closed. 

Eave tube inserts

The current approach for delivering insecticides in the 

eave tubes uses plastic inserts containing netting treated 

with an electrostatic coating. This coating provides a 

long-lasting static charge that enables insecticide pow-

ders to bind to the netting. The inserts block the entry of 

mosquitoes while contact with the netting leads to trans-

fer of insecticidal particles onto the mosquito body [4, 5]. 

The dose transferred is sufficiently high that lethal doses 

of insecticide can be delivered during transient contact, 

even when the mosquitoes are classified as ‘resistant’ to 

the active ingredient [4, 5].

Untreated eave tube plastic inserts containing elec-

trostatic netting were produced by  In2Care® in The 

Netherlands and then machine-treated with insecticide 

powder in Bouake, Côte d’Ivoire [16]. The inserts were 

treated with a wettable powder formulation of 10% beta-

cyfluthrin (Tempo 10©, Bayer), which is the same prod-

uct currently being used in the CRT in Cote d’Ivoire. The 
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application procedure applies in the range of 300–500 mg 

of insecticide powder per insert (the surface of the insert 

is about 150 cm2).

Sample size calculations

The number of replicates in the various experiments 

described below was determined in the first instance 

Fig. 1 West African experimental hut in M’be, Côte d’Ivoire, and modifications with addition of eave tubes. a Is the schematic from the 
experimental hut (modified from Djènontin et al. [14]). b Represents the front of the hut, c the left side of the hut. The huts were modified to 
include multiple tubes (12) for use in other experiments but for the current study, half the tubes were blocked so that each experimental hut had 6 
functioning eave tubes (2 on each side and 2 at the front)

Fig. 2 Eave tube and eave tube insert. a An insert inside an eave tube (view from outside); b a treated insert with visible insecticide powder
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based on availability of mosquitoes, personnel and 

time. However, the replication was checked retrospec-

tively based on the empirical data using the “pwr pack-

age” in R. For the primary read-outs of the experiments 

the number of sample nights was above the number 

required to demonstrate 5% significance with 70–80% 

power. For the deflection study, the number of nights 

was sufficient to detect a potential deflection effect of 

50% and above.

Experimental Designs

(i) Mosquito recruitment to eave tubes

An experiment was conducted to determine whether 

mosquitoes in the field naturally recruit to eave tubes. 

The approach used 2 experimental huts that were 

assigned one of two treatments: (i) open eave tubes and 

closed windows, or (ii) open windows and closed eave 

tubes. Each hut had a sleeper protected under a long-

lasting insecticide-treated net (LLIN; Permanet 2.0©) 

to act as a host cue. The eaves tubes or the windows 

were left open to enable mosquitoes to recruit natu-

rally through the eaves or the window slits. The sleep-

ers entered the huts at 20.00 and the windows or the 

eaves were opened by the supervisor. At 05.00 the fol-

lowing morning, the windows or the eaves were closed 

by the supervisor (the experimental period from 20.00 

to 05.00 is representative of the period when house-

hold members are likely to be indoors and is typical 

for experimental hut studies [9, 10]). The sleepers then 

collected all mosquitoes that had entered the huts over-

night. Treatments were rotated between huts over a 

total of 20 nights so that each treatment was replicated 

at least ten times.

(ii) Mosquito entry through windows in the presence of eave 

tubes

The aim of this experiment was to determine whether 

eave tubes alone could impact mosquito entry, blood 

feeding rate and overnight mortality, even in the absence 

of ‘window screening’. The approach used 2 experimen-

tal huts that had either insecticide-treated or untreated 

inserts placed within the eave tubes and open windows 

at night. Each hut had a sleeper protected under an 

LLIN (Permanet 2.0©) to act as a host cue. The windows 

were left open to enable mosquitoes to recruit naturally 

through the window slits. The sleepers entered the huts 

at 20.00 and the supervisor opened the windows. The 

supervisor closed the windows of the huts at 05.00 the 

following morning and the sleepers collected all mosqui-

toes that had entered the huts overnight. Sleepers and 

treatments (i.e. treated or untreated inserts) were rotated 

between huts over a total of 24 nights, giving 6 replicates 

of each combination of hut, treatment and sleeper.

(iii) Exit mortality of mosquitoes

To evaluate whether insecticide-treated eave tubes might 

cause increased mortality of mosquitoes attempting to 

exit a house after a blood meal attempt, 4-5 days old non-

blood-fed female An. gambiae mosquitoes were released 

inside two experimental huts, each with a sleeper pro-

tected under an LLIN. One hut was fitted with treated 

inserts and the other with untreated inserts (control). The 

windows and the curtain to the veranda were closed in 

the huts to prevent exit from the sleeping area. Sleepers 

entered the huts at 20.00 and a technician released the 

mosquitoes at 20.15. Mosquitoes were then collected 

back from the hut at 05.00. Fifty to 100 mosquitoes were 

released per night and the treatment was rotated between 

huts and sleepers for a total of 8 replicate nights.

The number of dead mosquitoes at recapture inside 

these huts with blocked exits was measured. Live mos-

quitoes were brought back to the laboratory and their 

mortality assessed 24 h post recapture.

The only difference between the hut fitted with treated 

eave tubes and the hut fitted with untreated eave tubes 

was the presence of insecticide on the eave tube inserts. 

Accordingly, any additional mortality of mosquitoes was 

attributed to mosquitoes contacting the treated inserts, 

presumably as they attempt to exit the huts, which is 

defined here as “exit mortality”.

(iv) Deflection of mosquitoes

The goal of this experiment was to determine if screen-

ing houses and adding eave tubes causes deflection 

of mosquitoes, potentially increasing the number of 

mosquitoes that enter neighbouring houses with no 

intervention.

To explore risk of deflection it was necessary to erect a 

large screen house (5 m wide, 13 m long and about 4 m 

high) to enclose 2 experimental huts (Fig. 3). Huts were 

assigned 1 of 3 treatments: (i) control, in which win-

dows and eave tubes were open; (ii) screened, in which 

windows were closed and eave tubes were closed with 

untreated inserts; and, (iii) treated eave tubes, in which 

windows were closed and the eave tubes contained 

insecticide-treated inserts. In all cases, the doors of the 

huts were closed, and a sleeper was present in each hut, 

protected by an untreated bed net to avoid any potential 

repellence effects.

The treatments were paired in the following way: con-

trol + control, control + screened, and control + treated 

eave tubes. The treatments and sleepers were rotated 

over the 2 huts with a total of 24 releases and 8 repli-

cates of each combination of hut treatments. For each 

release night, 90–100 female An. gambiae were released 

in the central area of the enclosure at 20.15 (Fig. 3). The 
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mosquitoes were 4–5 days old non-blood fed females that 

were starved for 6 h before release. Mosquitoes were then 

collected back in at 05.00 the next morning, with their 

position recorded (i.e., whether they were inside one or 

other hut, or outside the huts in the enclosure).

Analysis

Mosquito entry through open eaves or windows

The number of An. gambiae mosquitoes captured was 

analysed using a linear mixed model that included the 

hut treatment (open windows or eaves) as independent 

variable. The night of capture and the hut were consid-

ered as random effects.

The same analysis was conducted for the total number 

of mosquitoes captured

The data were log transformed to fit a normal distribu-

tion for both analyses.

Mosquito entry comparing treated and untreated inserts

The number of mosquitoes captured was analysed using 

a linear mixed model that included insert treatment as 

independent variable. The night of capture, the hut and 

the sleeper were considered as random effects. The same 

analysis was done for the blood feeding rate, mortality at 

recapture, and mortality 24 h post recapture.

The blood-feeding rate was calculated as the propor-

tion of blood fed mosquitoes out of the total number of 

mosquitoes recaptured per hut each night. The data were 

log transformed for the blood-feeding rate.

Exit mortality

The proportion of dead mosquitoes at recapture was 

analysed with a linear mixed model that included insert 

treatment as independent variable. The night of capture 

and the hut were considered as random effects. The same 

analysis was conducted for the proportion of mosquitoes 

dead 24 h post recapture.

Fig. 3 Semi-field enclosure for release-recapture studies. a Metallic framework of the enclosure built around 2 experimental huts; b white tarpaulin 
floor to facilitate collection of dead mosquitoes; c netting walls and door, and tarpaulin roof; d water gutter to reduce entry of ants
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Deflection

To assess deflection the proportion of mosquitoes recap-

tured in the control hut was compared depending on 

the treatment in the adjacent hut (i.e., control, screening 

or treated eave tubes). Data were analysed with a linear 

mixed model that included the adjacent hut treatment as 

independent variable. The night of capture, the hut and 

the sleeper were considered as random effects.

An ANOVA was used to compare mortality at recap-

ture and mortality 24 h post recapture between the dif-

ferent treatments inside the enclosure (control–control, 

control-screened, control-treated eave tubes).

Linear mixed models

For each experiment, the differences between treatments 

(whether the read outs were the mean number of mos-

quito entering a hut per night, or blood feeding, or dying) 

were analysed using analysis of variance incorporating 

random effects (these are designed to analyse the differ-

ence among group means in a sample). The analyses were 

done using the lme4 package, version 1.1.15, and the 

“lmer” function to obtain the linear mixed models in the 

software R version 3.5.0.

First the models were fitted and simplified for the ran-

dom effects (like the night of capture or the hut). The 

likelihood ratio test (LRT) was used to compare mod-

els with or without the different random effects to see if 

these models are significantly different one from another. 

To do so, the “anova” function in the package lme4 was 

used, using the maximum likelihood method (ML) [17–

20]. If a model with a given random effect was not sig-

nificantly different from the same model without this 

random effect (p-value > 0.05) then the random effect was 

removed from the analysis.

The fixed effects (insert treatment or the type of open-

ing in the hut) in the same linear mixed models were ana-

lysed using the restricted maximum likelihood (REML) 

approach. It was done using the package lme4, the pack-

age lmerTest, version 2.0-36, and the Kenward-Roger 

approximation [20–22]. The “anova” function of lmerT-

est package was used to perform the Kenward-Roger 

approximation. Fixed effects with p-values > 0.05 were 

considered not significant.

Results

Recruitment of mosquitoes to eave tubes

About 93% more An. gambiae mosquitoes entered 

huts with open eaves (mean ± standard error 

(SE) = 105.4 ± 10.09) compared to hut with open win-

dows (mean ± SE = 7.4 ± 1.77), (Fig.  4),  (F1,17 = 133.46, 

p < 0.001). There was no effect of the hut or the night of 

capture (p > 0.05).

The preference for open eaves was about the same 

when all mosquito species were included, 90% more 

mosquitoes relative to open windows,  F1,17 = 153.45 

p < 0.001 (Fig. 4). There were mean ± SE = 138.0 ± 13.46 

mosquitoes captured per hut and per night with open 

eaves and mean ± SE = 13.1 ± 2.29 with open windows.

Again, there was no effect of the hut or the night of 

capture (p > 0.05).

Impact of eave tubes on mosquito entry

Insecticide-treated eave tubes reduced entry of 

An. gambiae mosquitoes by 46% relative to control 

huts fitted with untreated eave tubes  (F1,23 = 18.302, 

p < 0.001) (Fig.  5). There were mean ± SE = 11.0 ± 2.17 

An. gambiae mosquitoes captured per hut and 

per night with insecticide-treated eave tubes and 

mean ± SE = 20.4 ± 3.29 An. gambiae mosquitoes cap-

tured with control huts fitted with untreated eave 

tubes. There was no effect of the hut nor the sleeper 

(both p > 0.05) but there was variation between the 

nights of capture (χ2 = 15.78, Chi.df = 1, p < 0.001).

The reduced entry rate was greater still when all 

mosquito species were included (60% reduction rela-

tive to controls,  F1,23 = 47.53, p < 0.001) (Fig.  5). There 

were mean ± SE = 13.4 ± 2.33 mosquitoes captured per 

hut and per night with insecticide-treated eave tubes 

and mean ± SE = 32.2 ± 3.55 mosquitoes captured with 

control huts fitted with untreated eave tubes. Again, 

Fig. 4 Mean (± SE) number of mosquitoes (all species) and of 
Anopheles gambiae s.l. captured per hut per night with open eaves 
tubes or open windows. The approach used 2 experimental huts that 
were assigned 1 of 2 treatments: (i) open eaves, in which eave tubes 
were open and windows closed; or (ii) open windows, in which eaves 
were closed and windows open. Means are based on a total of 20 
nights of capture per treatment
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there were no significant effects of hut or sleeper (both 

p > 0.05), but some variation between nights (χ2 = 10.23, 

Chi.df = 1, p = 0.001).

In addition, treated eave tubes reduced blood feed-

ing rate of mosquitoes that did manage to enter the 

huts by 64%  (F1,23 = 4.49, p = 0.045) (Fig.  6). There were 

mean ± SE = 5.4 ± 2.66% of An. gambiae mosquitoes 

blood fed per hut and per night with insecticide-treated 

eave tubes and mean ± SE = 14.8 ± 4.59% of An. gam-

biae mosquitoes blood fed with control huts fitted with 

untreated eave tubes. There was no effect of the hut, the 

sleeper, or the night of capture (all p > 0.05).

Mosquitoes collected within the treated eave tube 

huts also showed higher mortality than those collected 

in the control huts at capture, mean ± SE = 23.2 ± 6.07% 

compared with mean ± SE = 12.6 ± 2.50% respectively, 

and 24  h post capture, mean ± SE = 31.4 ± 6.30% com-

pared with mean ± SE = 19.1 ± 3.28% respectively. How-

ever, these mortality differences were not significant 

 (F1,22 = 3.28, p = 0.083 for post-capture mortality and 

 F1,22 = 3.64, p = 0.069 for 24 h post-capture mortality).

Exit mortality

Overnight mortality of mosquitoes released in a hut with 

treated eave tube inserts was significantly greater than 

mosquitoes released into a hut with untreated inserts 

 (F1,13 = 14.16, p = 0.002), mean ± SE = 26.1 ± 6.08% and 

mean ± SE = 4.0 ± 0.60% respectively (Fig.  7). There was 

no effect of the hut or host on mortality (all p > 0.05).

Mortality of mosquitoes recovered from the huts and 

maintained for 24 h in the laboratory was also greater for 

the treated eave tube hut compared to the control hut 

 (F1,7 = 34.79, p < 0.001), mean ± SE = 36.1 ± 7.60% and 

mean ± SE = 18.8 ± 5.80% respectively.

Deflection between huts

On average, mean ± SE = 84.0 ± 1.80% of An. gambiae 

mosquitoes were recovered (alive or dead) following each 

release. The proportion of mosquitoes recruiting into 

huts within the enclosures was low. About 54% of mos-

quitoes were recaptured within the huts on nights when 

both huts were controls. This percentage reduced when 

one or other hut was screened or contained treated eave 

tubes.

The proportion of mosquitoes recaptured in the control 

huts was not influenced by the treatment of the adjacent 

hut  (F2,22 = 0.13, P = 0.87); approximately 27% of mos-

quitoes released into the enclosure were recovered from 

inside an individual control hut regardless of which other 

hut it was paired with (i.e., another control, untreated 

eave tubes, or treated eave tubes) (Fig. 8).

The mean proportion of mosquitoes recaptured in the 

control hut when it was paired with another control hut 

was mean ± SE = 27.5 ± 3.26%. When the control hut 

was paired with a hut with screening and untreated eave 

tubes it was mean ± SE = 27.3 ± 5.70%. When the control 

hut was paired with a hut with screening and treated eave 

tubes it was mean ± SE = 28.8 ± 6.39%. There was a sig-

nificant random effect of the night of release (χ2 = 6.07, 

Chi.df = 1, p = 0.013) but no effect of the hut or the 

sleeper (both p > 0.05).

Overnight mortality was around mean ± SE = 3 ± 0.59% 

to mean ± SE = 5 ± 2.19% for combinations of control and 

Fig. 5 Mean (± SE) number of mosquitoes (all species) and of 
Anopheles gambiae s.l. captured per hut per night, comparing huts 
fitted with treated eave tubes or with untreated eave tubes. Both huts 
have open windows. Means are based on 24 nights of capture per 
treatment

Fig. 6 Mean (± SE) proportion of blood-fed Anopheles gambiae s.l. 
per hut and night comparing huts fitted with treated eave tubes or 
with untreated eave tubes. Both huts have open windows. Means are 
based on 24 nights of capture per treatment
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screened huts (Fig. 9). There was a significant increase in 

mean mortality to mean ± SE = 11.0 ± 2.29% when treated 

eave tubes were added to one or other of the huts (F = 4.43, 

df = 2, p = 0.02). Given the expectation that around 27% 

of mosquitoes might have recruited to a hut with treated 

eave-tubes (this is the percentage that recruited to control 

huts, with no observed deflection), this mortality rate sug-

gests that up to 40% of mosquitoes recruiting to an eave 

tube treated hut died in the enclosure overnight.

Discussion

Previous studies suggest that eave tubes in combination 

with screening of doors and windows have the potential 

to reduce household entry of mosquitoes, increase mos-

quito mortality rate and reduce malaria transmission [4, 

6, 7]. The results of the current experimental hut stud-

ies indicate that malaria vectors in Côte d’Ivoire actively 

recruit to eave tubes. The results also suggest that insecti-

cide treated eave tubes alone can provide household level 

protection as they reduce mosquito entry even when no 

screening is present (i.e., window slits in the huts are 

open). The potential for eave tubes to reduce household 

entry of mosquitoes in the absence of screening is an 

important finding as it will likely be easier and cheaper 

to roll out eave tubes alone, compared with the combined 

package of eave tubes + screening. Those mosquitoes 

that did enter the huts exhibited reduced blood-feeding 

rate, suggesting an impact of sub-lethal contact with the 

insecticide-treated inserts as the mosquitoes initially 

sought to enter the hut via the eave tubes. Furthermore, 

it appears that mosquitoes can attempt to exit the huts 

through eave tubes providing an additional source of 

mortality (note however that the experimental huts were 

configured in such a way that mosquitoes were unable to 

exit the huts and so this might have increased encounter 

frequency with the eave tubes).

One of the potential concerns over eave tubes, and 

also household screening in general, is that mosquitoes 

that encounter a house that is difficult to enter might be 

deflected onto other houses that do not have any physical 

protection. This potential for deflection could undermine 

the utility of the intervention since it is extremely unlikely 

that coverage of houses will be 100% within a given loca-

tion. Modelling studies exploring the effects of differ-

ent levels of coverage of screening + eave tubes suggest 

that the impact of deflection is likely to be offset if there 

is increased mortality rate when mosquitoes encounter 

houses with eave tubes (i.e., a mass action effect should 

provide community wide protection reducing transmis-

sion risk even for those houses without the intervention) 

[7]. However, this prediction depends on the extent of 

deflection relative to mortality. The current study suggests 

that neither screening nor screening + eave tubes increases 

risk of deflection to non-treated huts. On the other hand, 

the addition of eave tubes to a hut more than doubles the 

overnight mortality rate of mosquitoes that attempt to 

enter that hut, reducing mosquito populations overall.

Fig. 7 Effect of treated eave tubes on exit mortality. Adult An. 

gambiae s.l. were released into experimental huts with closed 
windows and door in the evening and recovered the following 
morning. The Figure shows the mean (± SE) proportion of dead 
mosquitoes at recapture or 24 h post recapture, comparing huts 
fitted with treated eave tubes, with huts fitted with untreated eave 
tubes. Treatments were replicated over 8 nights

Fig. 8 Mean (± SE) proportion of adult Anopheles gambiae captured 
inside a ‘control’ hut (i.e., a hut with open windows and open eaves) 
when paired with adjacent huts in a semi-field enclosure. Adult An. 

gambiae s.l. mosquitoes were released in the semi-field enclosure 
in the evening and recovered the following morning. Treatment 
pairings were control + control, control + screened hut (i.e., hut with 
untreated eave tube inserts and closed windows), and control + eave 
tubes (hut with treated eave tubes and closed windows). Means are 
based on 8 nights of release-recapture per treatment combination
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While the data are encouraging, it is important to 

acknowledge some limitations of the current study. First, 

the experiments were conducted using experimental 

huts, which are not the same as real houses. Whether the 

results hold up in real houses where open windows and 

doors potentially provide an easier route of entry and exit 

than the narrow window slits in the experimental huts is 

the subject of ongoing research.

Second, the deflection experiments were conducted in 

a large field cage and it is unclear whether this might have 

affected natural mosquito searching behaviour. The per-

centage of mosquitoes entering the huts was lower than 

expected (i.e., a maximum of 54% captured indoors when 

both huts were controls, meaning that about half the 

mosquitoes did not appear to recruit successfully). None-

theless, an experimental hut study in The Gambia explor-

ing deterrent effects of long-lasting insecticidal nets 

(LLINs) similarly found no evidence of deflection from 

houses with nets to adjacent houses without [23]. On the 

other hand, studies on topical repellents have suggested 

that under conditions of incomplete coverage, mosqui-

toes can be diverted from households that use repellent 

to those that do not [24].

Third, the mosquito release studies used young 

(4–5 days old), non blood-fed female mosquitoes reared 

from field-collected larvae. It is possible that wild mos-

quito populations of mixed condition, age, and infection 

status could exhibit different behaviour [25, 26], but there 

is no particular reason to think the current results are 

biased one way or the other.

Finally, experimental treatments using insecticides 

used freshly treated inserts with a maximum available 

dose of powdered insecticide (beta cyfluthrin). How pat-

terns of mortality and effects of transient contact change 

over time as powder deposits decay in the field and/or 

inserts collect dust is currently being tested. Similarly, 

there are other possible active ingredients (including 

non-pyrethroids) and other potential delivery systems 

(for example, it might be possible to utilize LLIN coating 

technology or even a spot application with an insecticide 

spray to treat inserts inside the tubes) that could create 

opportunities for insecticide resistance management [27, 

28], but these too require further testing.

Conclusions

The data presented in the current study add weight to the 

potential for eave tubes to reduce malaria transmission. 

Important to note is that all semi-field experiments were 

conducted in the presence of LLINs and the malaria vec-

tors at the study site are highly pyrethroid resistance [11–

13]. The potential to bolster control above and beyond 

core control tools and deal with the challenge of insecti-

cide resistance are important criteria for prospective vec-

tor control tools [2].

Additional files

Additional file 1. Mosquitoes recruiting through eaves or windows. 
This data file gives the number of mosquitoes captured in each hut each 
morning depending on the hut treatment (open eaves or open windows) 
and the date. The sleeper is also noted.

Additional file 2. Impact of eave tubes on mosquito entry with open 
windows. This data file shows the number of mosquitoes captured in each 
hut each morning depending on the hut treatment (treated eave tubes 
or untreated eave tubes) and the date. The windows are open during the 
night. The hut location and the sleeper are also indicated.

Additional file 3. Exit mortality. Number of mosquitoes recaptured post 
release inside experimental huts. Mosquitoes alive, dead and/or blood fed 
at recapture and 24 h post recapture.

Additional file 4. Absence of deflection. Number of mosquitoes recap-
tured per control hut regarding the treatment of the adjacent hut.

Additional file 5. Mortality at recapture inside the enclosure. Number 
of dead mosquitoes at recapture in the enclosure depending on the 
treatments installed in the huts. The mortality 24 h post recapture is also 
available.
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