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Abstract

The drivers of compositionality in artificial languages that emerge when two (or
more) agents play a non-visual referential game has been previously investigated
using approaches based on the REINFORCE algorithm and the (Neural) Iterated
Learning Model. Following the more recent introduction of the Straight-Through
Gumbel-Softmax (ST-GS) approach, this paper investigates to what extent the
drivers of compositionality identified so far in the field apply in the ST-GS context
and to what extent do they translate into (emergent) systematic generalisation
abilities, when playing a visual referential game. Compositionality and the general-
isation abilities of the emergent languages are assessed using topographic similarity
and zero-shot compositional tests.
Firstly, we provide evidence that the test-train split strategy significantly impacts
the zero-shot compositional tests when dealing with visual stimuli, whilst it does
not when dealing with symbolic ones.
Secondly, empirical evidence shows that using the ST-GS approach with small batch
sizes and an overcomplete communication channel improves compositionality in
the emerging languages. Nevertheless, while shown robust with symbolic stimuli,
the effect of the batch size is not so clear-cut when dealing with visual stimuli. Our
results also show that not all overcomplete communication channels are created
equal. Indeed, while increasing the maximum sentence length is found to be
beneficial to further both compositionality and generalisation abilities, increasing
the vocabulary size is found detrimental.
Finally, a lack of correlation between the language compositionality at training-time
and the agents’ generalisation abilities is observed in the context of discriminative
referential games with visual stimuli. This is similar to previous observations in
the field using the generative variant with symbolic stimuli.

1 Introduction

In recent years, research into language emergence and grounding have received increased attention.
The former of which raises the question of how to make artificial languages emerge with similar
properties to natural languages, or at least ‘natural-like’ protolanguages, exhibiting compositionality
as the primarily-targeted property[4, 21, 45, 60]. Indeed, languages’ compositionality has been
shown to further the learnability of said languages [34, 64, 9, 45] and promises to increase the
generalisation ability of the artificial agent that would be able to wield them. For instance, it has
been found to be instrumental in producing learned representations that generalise, when measured
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in terms of the data-efficiency of subsequent transfer and/or curriculum learning [25, 54, 55, 32].
Nevertheless, the ability of neural networks to generalise in a systematic fashion has been called into
question [42, 47, 46, 3], and investigated towards finding necessary conditions and/or paradigms that
favour the emergence of systematicity [26, 63, 38, 41, 62]. In this paper, similarly to Hill et al. [26]
investigating natural language grounding in the context of embodied agents, we take a closer look at
the conditions that further the emergence of compositionality in artificial languages in the context of
referential games.

Straight-Through Gumbel-Softmax and Visual Stimuli. Although it has been shown that emerg-
ing languages are far from being ‘natural’-like [39, 12, 13], there are some successful cases
demonstrating the emergence of compositional languages and learned representations (e.g. Kottur
et al. [39], Lazaridou et al. [44], Choi et al. [15], Bogin et al. [7], Guo et al. [21], Korbak et al.
[37], Chaabouni et al. [14]), relative to a given standard of compositionality. This paper focuses
exclusively on the Straight-Through Gumbel-Softmax (ST-GS) approach proposed by Havrylov and
Titov [23], as it supposedly allows a richer signal towards solving the credit assignment problem
that language emergence poses since the gradient can be backpropagated from the listener agent to
the speaker agent, while, in comparison, it cannot be backpropagated when using more commonly
adopted approaches based on REINFORCE-like algorithms [69].

Symbolic vs Visual Stimuli. The main works in language emergence and grounding focus on
symbolic/one-hot-encoded stimuli (e.g. [39, 14]) whereas the ultimate goal of the field is related to
grounding in similar modalities enjoyed by human beings, and primarily sight. Therefore, in order to
take one more step in this direction, in this paper, we investigate primarily visual/pixel-based stimuli
as well as whether results found in the context of symbolic stimuli translates into the context of visual
stimuli.

Compositionality & Generalisation. As a concept, compositionality has been the focus of many
definition attempts. For instance, it can be defined as “the algebraic capacity to understand and
produce novel combinations from known components”(Loula et al. [47] referring to Montague [53])
or as the property that sees “the meaning of a complex expression [a]s a function of the meaning of its
immediate syntactic parts and the way in which they are combined” [40]. Although difficult to define,
the commmunity seem to agree on the fact that it would enable learning agents to exhibit systematic
generalisation abilities (also referred to as combinatorial generalisation [5]). Some of the ambiguities
that come with those loose definitions start to be better understood and explained, as in the work
of Hupkes et al. [29]. In this paper, we will refer to compositionality as “the ability to entertain a
given thought implies the ability to entertain thoughts with semantically related contents”[19], and
thus use it interchangeably with systematicity, following the classification made by Hupkes et al.
[29].

Compositionality, as a property of languages, can be difficult to measure. Like Keresztury and
Bruni [33], we acknowledge that it ought to be measured more quantitatively than doing qualitative
eye-balling of the artificial agents’ utterances. Therefore, this paper aims to provide a more complete
picture of the phenomena involving the ST-GS approach using two metrics: topographic similarity
[11], which is acknowledged by the research community as the main quantitative metric for composi-
tionality [44, 21, 63, 14, 60], and zero-shot compositional tests, in which a set of stimuli composed
of specific attributes are held-out from the training set, while making sure that the agents are still
familiarising themselves with the specific attributes in different contexts/combinations to the held-out
ones. The use of these two metrics has been shown to be critical by the concurrent work of Chaabouni
et al. [14], which shows that learning agents are able to generalise in a referential game in spite of
their utterances not being compositional, when measured with topographic similarity.

Contributions. Firstly, this paper questions whether the train-test split strategy matters when using
zero-shot compositional tests. Out of the two strategies tested (see Section 3.1), it was found that
the choice significantly impacts the metric when dealing with visual stimuli, whilst it does not
when dealing with stimuli that are symbolic/one-hot-encoded (see Section 4.1). Appendix E further
investigates this impact using the lens of the concept of generalisation difficulty proposed by Chollet
[16].

Secondly, following the definition of compositionality/systematicity and the use of both topographic
similarity and zero-shot compositional test metrics, this paper provides a quantitative report on the
extent with which the ST-GS relaxation is a viable approach to make compositional languages emerge
in a (discriminative) referential game. We start by identifying the batch size hyperparameter as
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Figure 1: Top left: Illustration of a partially-observable 2-players/L-signal/N -round/uniformly-
distributed-distractors referential game. Top right: Test-time accuracy with respect to the training-
time topographic similarity across the different settings, along with a linear regression model fit
for comparison. Bottom: 2D projection of the symbolic 2-attribute benchmarks (left) and T-
SNE representations of the symbolic 3-attribute benchmarks (right), for both interpolation and
extrapolation tasks (from left to right). Blue dots correspond to training examples (their vicinity is
emphasised by drawing them larger in the t-SNE), while red dots correspond to testing examples.

a potential driver of compositionality (see Section 4.2.1). Whilst our experiments depict it as a
robust driver of compositionality in the context of symbolic stimuli, its impact on compositionality
is less significant when dealing with visual stimuli. Subsequently, we investigate the impact on
compositionality of both the level of structure in the observed stimuli and the capacity of the
communication channel (see Section 4.2.2). Our experiments show that, using the ST-GS approach,
they both correlate positively with the agents generalisation abilities. More specifically, we found that
increasing the capacity of the communication channel by means of increasing the maximum sentence
length correlates positively with both the compositionality of the language and the generalisation
abilities of the learning agents, but increasing it by means of increasing the vocabulary size is
negatively correlated with our two metrics. Appendix B provides theoretical insights on these
phenomenon by comparing the ST-GS approach to the (Neural) Iterated Learning Model (ILM) [35,
60].

Finally, similarly to Hupkes et al. [29], this paper investigates under what circumstances a model can
be called compositional, and more precisely when does a learning agent is said to have systematicity.
We ask whether a learning agent has systematicity/compositional abilities when the “utterances in
the arena of use” [30] that it produces are compositional? While there seems to be such an implicit
assumption in the research community , the results presented in Section 4.2.3 disagree with this
assumption. This is similar to the results observed in the concurrent and related work of Chaabouni
et al. [14], in which symbolic/one-hot-encoded stimuli and a generative referential game are used,
instead of visual stimuli in a discriminative framing as in this paper (see Denamganaï and Walker
[18] for further details on the different variants of referential games).

2 Preliminaries

2.1 Visual Referential Games

Referential/Language games emphasise the functionality of languages, namely, the ability to ef-
ficiently communicate and coordinate between agents. Following the nomenclature proposed in
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Denamganaï and Walker [18], we will focus primarily on a partially-observable 2-players/L-signal/0-
round/uniformly-distributed-distractors variant illustrated in Figure 1. As it is a discriminative
referential game, we specify the number of distractor stimuli K. At training-time, K = 47, and
at testing-time, K = 63, which corresponds to the maximum number of distractors that can be
used across the different benchmarks, which are described in Section 3. For a fair comparison of
the measure of accuracy between benchmarks, the values of K are fixed. Details about the agent’s
architecture can be found in Appendix C and in our code1. Having described the setup, the following
section provides details of the kind of stimuli and the train/test set split that is used to evaluate the
generalisation abilities of the tested learning agents, whilst emphasising where this study lies in the
spectrum of generalisation evaluation.

2.2 Generalisation Abilities

While many studies have investigated the generalisation abilities of neural networks in the context
of linguistic tasks (e.g. Kottur et al. [39], Lake and Baroni [42], Resnick et al. [61]), their assumed
definition to the act of generalisation do not always coincide [29]. Following the work of Lake
and Baroni [42] showing that recurrent neural networks (RNNs) fail to generalize systematically
but are very successful at generalizing when enough supporting evidence is provided. It is worth
emphasizing again, like many previous authors [3, 29, 62, 16], that it is critical to clearly state what
kind of generalisation abilities this study aims to evaluate. The remainder of this section proposes an
in-depth examination of the range of possible generalisation abilities and suggests where this paper
lies within those identified.

While some studies test for what is referred to as systematic generalisation abilities [39, 42, 46, 38,
3, 62], others seem to test for (vanilla) generalisation abilities [2, 29, 14]. This work differentiates
between the two in terms of the size of the pool of supporting evidence/samples, which the learning
system is trained on. Note that pool size is assumed to vary the difficulty of the task. Thus, (hard)
systematic generalisation being on the side of the spectrum where the pool size is the smallest, and
(easy) (vanilla) generalisation being on the other side where it is the greatest. In this work, we focus
on systematic generalisation, rather than vanilla, and we adopt Bahdanau et al. [3]’s definition of
systematic generalisation abilities (i.e. a model that has systematic generalisation abilities “should be
able to reason about all possible object combinations despite being trained on a very small subset
of them”). This definition is a continuation of our assumed definition for compositional abilities,
particularly “the ability to entertain a given thought implies the ability to entertain thoughts with
semantically related contents”[19]. In other words, the kind of generalisation abilities we propose to
test for could be referred as systematic combinatorial/compositional generalisation abilities.

2.3 Emergent Systematicity & Prior Knowledge

The work of Hill et al. [26] is particularly relevant to our current context, as it evaluates a specific kind
of systematic generalisation referred to as “emergent systematicity” ( Hill et al. [26] citing McClelland
et al. [52]), “because the architecture of our agent does not include components that are explicitly
engineered to promote systematicity” (i.e. systematic generalisation abilities). The concurrent
work of Chaabouni et al. [14] also tackles “emergent” systematicity/systematic generalisation. The
learning agents will be equipped with CNNs and RNNs (see details in Appendix C), giving them
some form of spatial/translational invariance prior, hierarchical/distributed visual feature prior, and
sequence-computation-enabling prior.

Chollet [16] emphasizes that priors, experience, and generalisation difficulty must be controlled
in order to reliably evaluate broad generalisation abilities. Acknowledging the context of emergent
systematicity in which this study lies can therefore be understood as a step towards controlling the
prior knowledge baked into deep learning agents when evaluating their generalisation abilities. While
the matter of controlling the generalisation difficulty is difficult to address in the current context, it
is broached upon in Appendix E. The matter of how to control each for the amount of experience
available to the agent is discussed in Section 3.

1Our code is released at: https://github.com/Near32/ReferentialGym/tree/master/zoo/
referential-games%2Bst-gs
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3 Evaluation Methodology

In the following experiments, learning agents will observe both symbolic and visual stimuli from
particular train/test splits of the dSprites dataset [51, 24]. Symbolic representations are obtained
by one-hot-encoding the latent representations that the dataset provides. Originally employed
as a benchmark for disentangled representation learning, the dSprites dataset consists of visual
representations for combinations of values along some generative factors/attributes/latent axes. There
are 32 possible values on each position axis, X and Y, 40 possible values on the Orientation axis, 6
possible values on the Scale axis, and 3 possible values on the Shape axis. Note that in our experiments
the value on the Shape attribute is always fixed to be the heart shape in order to remove any orientation
ambiguities (e.g. the square shape has four symmetries that prevents visual differentiation from,
for instance, a rotation of 90 degrees and that of 180 degrees). The choice of the dSprites dataset
is motivated by the availability of the generative factors (that are used as symbolic stimuli in their
one-hot-encoded form), which permits the computation of topographic similarity [11] (following a
similar approach to Lazaridou et al. [44]) to assess the degree of compositionality in the emerging
languages, as well as doing so separately from assessing generalisation abilities. We emphasise again
how critical the separation of the two measures is given the related and concurrent work of Chaabouni
et al. [14] showing that learning agents are able to generalise in a referential game in spite of their
utterances not being compositional.

The amount of prior experience will be controlled in two ways. Firstly, by limiting the diversity in
the training set, thus constraining our study to very small data set sizes. Secondly, by limiting the
number of training epochs to fit to a sample budget of 480, 000 training samples, across the different
settings. The number of gradient steps is the sample budget divided by the batch size assumed, which
is detailed for each experiments in Section 4.

3.1 Train-Test Split Strategy

In the first experiment, we question whether the train-test split strategy matters when testing zero-shot
compositional abilities. We arbitrarily propose to look at two simple train-test split strategies leading
up to two different sets of tasks that we will refer to as: the interpolation tasks, Tinter, and the
extrapolation tasks, Textra. Considering that each stimulus can be described as a set of values taken
from each attribute/generative factor/latent axis of the dSprites dataset, details of how the train-test
splits are performed in each task can be described as follows. In the interpolation tasks, Tinter,
the test sets consist of defining testing-purpose (and not test-only) values alternating with other
values, on each attribute axis. In the extrapolation tasks, Textra, the test sets consist of defining the
testing-purpose (and not test-only) values as the first values (following the ordering of the original
dataset) on each attribute axis. We highlight already, and will detail further below, that testing-purpose
values are encountered by the agent both at training-time and testing-time, just not in combinations
with all other possible values on the other latent axises of which a stimuli is composed.

Independently of the task, half of the possible values for each attribute axis are defined as testing-
purpose values. The choice of using half of the possible values is motivated by the results of Bahdanau
et al. [3] when evaluating for emergent systematicity, i.e. a CNN+LSTM architecture similar to
that of ours here, and showing that such a benchmark is already challenging enough. Then, any
sampled stimulus that combines two or more testing-purpose values for its different attributes is
automatically retained for the test set. In other words, the testing-purpose values on each latent
axis are presented to the agent at training-time while in combinations with sole non-testing-purpose
values on the other latent axises, in order for the agent to familiarise itself with all the possible values
on each latent axis while remaining unaware of a subset of all the combinations possible. For an
intuitive understanding, Figure 1 renders 2D projection of the symbolic 2-attributes tasks, T 2

inter

and T 2
extra, and the results of performing t-SNE [48] on the symbolic 3-attributes tasks, T 3

inter and
T 3
extra, thus highlighting their systematic and topological differences, and revealing the motivation

for their naming as interpolation and extrapolation tasks. In a similar manner to Russin et al. [62], we
acknowledge the intuitive difference of difficulty between the two flavours in which generalisation
occurs [50]. These are: interpolation, where “the train and test sets are independent and identically
distributed (i.i.d)”, and extrapolation, where the tested system is required to make “an inferential leap
about the entire structure of part of the distribution that they have not seen”, and so the test set is
out-of-domain (o.o.d.) with regards to the train set. When testing for combinatorial generalisation
abilities, following Chollet [16]’s framework, it is hypothesised (and further detail in Appendix E)
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that tasks involving compositional generalisation by interpolation, Tinter, have zero generalisation
difficulty, while tasks involving compositional generalisation by extrapolation, Textra, bear some
generalisation difficulty. We emphasise again that the naming convention adopted here for the tasks is
solely motivated by the intuition provided by figure 1, but the actual nature of the tasks are unknown,
since we are dealing with stimuli represented as combinations of attributes. They cannot and should
not be confounded with regular interpolation and extrapolation tasks, as far as we know.

3.2 Control for the Level of Structure in the Meaning Space

In the subsequent experiments, we will vary the level of structure in the meaning space by experiment-
ing with subsets of the dSprites dataset, emphasizing either: 2 attributes (position on the X-axis and
Y-axis, yielding 48 training examples and 16 testing examples), 3 attributes (similar to 2 attributes
plus Orientation, yielding 256 examples in each train/test set), or 4 attributes (similar to 3 attributes
plus Scale, yielding 960 training examples and 2112 testing examples). We leave it to future works
to vary the level of structure by varying the number of possible values for each attribute.

The employed subsets subsample the original dSprites dataset, in order to reduce the number of
samples available to the learning agents. This subsampling aims to control for the amount of prior
experience, and thus design a test where the learning agents are not presented with oversized data
sets from which to slowly build evidence [42, 47, 46]. With the exception of the Scale attribute that
only originally contains 6 possible values (and thus remains unchanged), each other attribute contains
8 possible values that are sampled from the original data to be evenly spaced out (i.e. out of the 32
possibles values on the X and Y attributes, we sample every 4 values; out of the 40 possibles values
on the Orientation attribute, we sample every 5 values).

3.3 Control for the Capacity of the Communication Channel

Two different cases are considered in the following experiments. The complete case, where there
are exactly 8 ungrounded symbols in the vocabulary V , plus a ninth grounded symbol, in order to
account for the end of sentence semantic, thus |V | = 9. The maximum sentence length L is always
equal to the number of attributes in the subset on which the experiment takes place. On the other
hand, the overcomplete case consists of a vocabulary of size |V | = 100, and maximum sentence
length L = 20.

4 Experiments

4.1 Experiment 1: Impact of Train-Test Split Strategy

We firstly question whether the train-test split strategy matters when using zero-shot compositional
tests. We investigate in the contexts of 3 attributes with symbolic and visual stimuli. Figure 2(top-left)
shows that, independently of the capacity of the communication channel, the choice of the train-test
split significantly impacts the metric when dealing with visual stimuli, as a wide gap of performance
can be seen between the two tasks, whilst it does not when dealing with symbolic stimuli.

4.2 Experiment 2: Drivers of Compositionality

4.2.1 Effect of the Batch Size

In this section, we investigate the hypothesis that the batch size modulates a transmission bottleneck
effect in the context of the ST-GS algorithm, similarly to the effect highlighted in the ILM where
the severity of the bottleneck (or its inverse, the coverage) is positively (negatively) correlated with
the likelihood of highly-compositional language emergence. The soundness of this hypothesis is
detailed in Appendix B.3. We firstly report on the the 3-attributes setting, with 10 random seeds.
Results obtained with symbolic and visual stimuli are presented, respectively, in figure 2 (right) and
figure 2 (right). Once again, the dynamics are different, depending on the nature of the stimuli. While
the symbolic context shows great support to the identification of the batch size as a robust driver of
compositionality, its impact is less clear-cut when dealing with visual stimuli, as most of the p-values
in our Kolmogorov-Smirnov (KS) two-samples tests are high. In this visual setting, we suspect that
the batch normalization layers in the learning agents’ CNNs starts playing a greater regularisation
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Figure 2: Top left: Distributions of the test-train gaps in accuracy measured on the 3-attributes
benchmarks with, ordered from left to right, symbolic stimuli and visual stimuli. Top right: Distribu-
tions of training-time topographic similarity measured on the 3-attributes benchmarks with symbolic
stimuli.The heatmaps illustrates the p-values of the KS two-samples tests between batch sizes with the
alternative hypothesis being that the row-id distribution is ‘greater’ than the column-id one. Bottom:
Distributions of training-time topographic similarity measured, with respect to different batch sizes
and levels of structure, on the 2- (left) and 3-attributes (right) benchmarks. The heatmaps illustrate
the p-values of the KS two-samples tests between batch sizes with the alternative hypothesis being
that the row-id distribution is ‘greater’ than the column-id one.

Figure 3: Distributions of the topographic similarity (left) and accuracy (right), across the different
benchmarks, and the different communication channels.

role as, in this 3-attributes setting, even the smallest coverage value already entails to relatively high
batch sizes.

Knowing that the level of structure in the observed meaning space has also been highlighted as a
driver of compositionality in the context of the ILM, we further investigate the context of visual
stimuli by benchmarking against the 2-attributes setting, this time with 5 random seeds for each batch
size. Figure 2 (left) illustrates the results. Although not always statistically significant, in this level of
structure, the likelihood of seeing highly-compositional languages seems to negatively correlate with
the severity of the transmission bottleneck.

Comparing the results across the different levels of structure, it is surprising to see that, the topographic
similarity measured is significantly lower when the level of structure is higher (p ≈ 3 × 10−4

on a KS test between benchmarks, at the lowest ∼ 4% coverage). Thus, on the contrary to the
phenomenon observed in the ILM context, the ST-GS approach does not necessarily further higher
compositionality in higher levels of structure. Finally, independently of the level of structure, the
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Table 1: Results of Spearman rank-order correlation tests between the measured topographic similarity
of the emerging languages (top), or the accuracy on the zero-shot compositional tests (bottom), and,
respectively, the maximum sentence length L ∈ {3, 6, 9, 20} (for V ∈ {9, 20}), or the vocabulary
size V ∈ {9, 20, 50, 100} (for L ∈ {10, 20}). 5 seeds in each communication channel capacity.

Task Phase V = 9 V = 20 L = 10 L = 20

T 3
inter Train 0.65 (p ≈ 0.002) 0.46 (p ≈ 0.043) −0.18 (p ≈ 0.452) −0.35 (p ≈ 0.132)

Test 0.52 (p ≈ 0.019) 0.09 (p ≈ 0.721) −0.07 (p ≈ 0.770) −0.21 (p ≈ 0.376)
T 3
extra Train 0.63 (p ≈ 0.003) 0.50 (p ≈ 0.023) −0.64 (p ≈ 0.003) 0.0 (p ≈ 1.0)

Test 0.31 (p ≈ 0.183) 0.47 (p ≈ 0.039) −0.47 (p ≈ 0.039) 0.13 (p ≈ 0.580)

T 3
inter Train 0.87 (p ≈ 10−6) 0.73 (p ≈ 10−4) −0.02 (p ≈ 0.948) −0.56 (p ≈ 0.010)

Test 0.77 (p ≈ 10−4) 0.87 (p ≈ 10−6) 0.51 (p ≈ 0.021) −0.13 (p ≈ 0.579)
T 3
extra Train 0.76 (p ≈ 10−4) 0.49 (p ≈ 0.029) −0.43 (p ≈ 0.060) −0.05 (p ≈ 0.845)

Test −0.23 (p ≈ 0.323) 0.26 (p ≈ 0.261) 0.18 (p ≈ 0.442) 0.13 (p ≈ 0.590)

lowest coverage always yields relatively high topographic similarity languages, with relatively low
variance in the distributions. Therefore, we subsequently fix the batch size to accommodate those
lowest coverage values around 4% (i.e. 2 in the 2-attributes, 8 in the 3-attributes, and 40 in the
4-attributes benchmarks).

4.2.2 Effect of Input/Meaning Space Structure and Communication Channel Capacity

We investigate the impact of both the level of structure in the observed meaning space and the
capacity of the communication channel.Figure 3 (left) illustrates the impact in terms of topographic
similarity. The most striking result is that, independently of the task, the overcomplete communication
channel promotes significantly higher compositionality in the emerging languages (p ≈ 9× 10−4

and p ≈ 0.037 for one-sided KS tests with the alternative hypothesis being that the overcomplete
channel yields greater topographic similarity than the complete one, respectively, at testing-time and
training-time, for the interpolation task ; p ≈ 0.0137 and p ≈ 0.037, similarly, for the extrapolation
task). As the level of structure increases, the compositionality of the emerging languages using the
ST-GS approach decreases, which is contrary to what can be observed in the context of the ILM.

In terms of the generalisation abilities of the learning agents, we report the results in figure 3 (right).
The ST-GS approach seems to significantly favour overcomplete communication channels over
complete ones. Independently of the task, overcomplete communication channels significantly yield
greater data-efficiency at training time (p ≈ 1 × 10−7 and p ≈ 6 × 10−9 for one-sided KS tests
with the alternative hypothesis being that the overcomplete channel yields greater accuracy than
the complete one, on the interpolation and extrapolation tasks, respectively). The effect appears to
diminish as the level of structure in the observed meaning space increases. We observe a decrease
of the test-train generalisation gap as the amount of structure in the meaning space increases. As
this increase of structure implies an increase in size of the input/meaning space, our results provides
evidence, this time in the context of visual stimuli, of the effect observed by Chaabouni et al. [14]
with symbolic stimuli that “generalisation emerges ‘naturally’ if the input space is large”[14].

We further investigate the impact of varying the capacity of the communication channel when the
input space structure is kept fixed, using the 3-attribute benchmarks, T 3

extra and T 3
inter. In these

experiments, we vary the maximum sentence length L, while keeping the vocabulary size V fixed,
and vice versa (see Appendix A for the graphs). The results of conducting Spearman rank-order
correlation tests with topographic similarity or with accuracy of zero-shot compositional tests are
described in table 1. Independently of the task, increasing L translates mainly in an increase in
topographic similarity, at training-time, as well as in an increase in systematicity, overall. On the
other hand, increasing V is marginally detrimental.

These results are all the more surprising given that, in the context of symbolic stimuli, REINFORCE-
like algorithms have been shown to require constrained communication channels to yield highly
compositional languages [39], and that its capacity negatively correlates with compositionality [14].
Here, using the ST-GS approach with visual stimuli, the emergence of both compositionality and
systematicity is furthered by overcomplete channels with high maximum sentence length.
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4.2.3 Lack of Correlation between Generalisation and Compositionality at Training-time

We now investigate the validity of the common assumptions that observing compositionality at
training-time, as reported by topographic similarity, correlates with the systematicity of the learning
agents. Figure 1 (right) shows the test-time accuracy with respect to the training-time topographic
similarity across the different settings (see Appendix D for a break down by setting). The results of a
Spearman-rho test yields a correlation coefficient of 0.136 and p ≈ 0.302. Not only the coefficient
is arguing towards a lack of correlation, the large p-value also prevents us from rejecting the non-
correlation hypothesis, thus showing that it is incorrect to expect the training-time topographic
similarity to predict any systematicity of the learning agents in the context of visual stimuli.

5 Conclusion

In this paper, we have shown that the choice of train-test split in zero-shot compositional tests
significantly impacts the metric when dealing with visual stimuli, whilst it does not when dealing with
symbolic ones. Then, we provided a quantitative report on the extent with which the ST-GS relaxation
is a viable approach to make compositional languages emerge in a (discriminative) referential game.
Fistly, while the batch size hyperparameter is identified as a critical driver of compositionality, its
impact is significant in the context of symbolic stimuli but less so clearly understood when dealing
with visual stimuli. Secondly, overcomplete communication channels with large maximum sentence
lengths are found to be beneficial to further both compositionality and systematicity while those with
large vocabulary sizes is found detrimental. Our paper has highlighted many ways in which results
about language emergence and grounding in the case of symbolic stimuli do not translate equally in
the context of visual stimuli, thus raising the need for subsequent work in the visual context as vision
is one of the main modalities of concerns for the grounding of languages that would be spoken by
artificial agents living alongside and cooperating with human beings.

Broader Impact

This work consists solely of simulations, thus evacuating some of the ethical concerns, as well as the
concerns with regards to the consequences of failure of the system presented. With regards to the
ethical aspects related to its inclusion in the field of Artificial Intelligence, we argue that our work
aims to have positive outcomes on the development of human-machine interfaces, albeit being not
yet mature enough to aim for this goal. The current state of our work does not allow us to extrapolate
towards negative outcomes.

This work should benefit the research community of language emergence and grounding, in its current
state.
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A Supplementary Materials

Figure 4 (top two rows) illustrates the impact on both the topographic similarity and the accuracy of
the zero-shot compositional tests when varying the maximum sentence length L, while keeping the
vocabulary size V fixed, and vice versa (bottom two rows), as discussed in Section 4.2.2.

Figure 4: Distributions of the topographic similarity and accuracy, across different traversals of
the communication channels capacities, on the 3-attributes benchmarks. Top: traversal of the max
sentence length L ∈ {3, 6, 10, 20}, for fixed V ∈ {9, 20}. Bottom: traversal of the vocabulary size
V ∈ {10, 20, 50, 100}, for fixed L ∈ {10, 20}.
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B Language Emergence

Compositionality and recursive syntax are the two main properties shared between all natural
languages that account for their expressivity and flexibility. Among other things, they allow an ease
of learning/acquisition as it can be seen in the poverty of the stimulus phenomenon (“children master
complex features of language on the basis of surprisingly little evidence" [9]).

When talking about language, it is common to differentiate between two language domains: I(Internal)-
Language and E(External)-Language [17, 30, 34] . I-Language is the internal representation a user
has of the language it speaks and listens to, whilst E-Language is the set of external presenta-
tions/“utterances in the arena of use"[30] of language, when any of the users actually speak in an
attempt to express a given meaning.

How language users are able to acquire an I-Language and are then able to contribute to the E-
Language by producing utterances of language that exhibit compositionality is the question that the
works of [34, 10, 9, 64] strived to answer. To achieve this they appealed to a “process of information
transmission via observational learning" [9], which took place in-between populations and generations
of (previously-learner) speaker agents and (soon-to-become-speaker) learner agents. This is the
Iterated Learning Model (ILM) [36].

In this section, we will compare the ST-GS estimator to the ILM in order to highlight insights about
the drivers of compositional language emergence using the ST-GS estimator.

B.1 (Neural) Iterated Learning Model

The ILM consists of a “[multi-]agent-based model where each agent represents a language user"[9],
which forms utterances based on the hypothesis that has been formed previously (I-Language) to
account for previously-observed utterances (E-Language). It puts in relation an environment, made
up of N objects/stimuli that maps to a meaning space M = {(fi)i∈[1:F ] / ∀fi, 1 ≤ fi ≤ V },
(consisting of an F -dimensional space, i.e. features, with V possible discrete values along each
dimension) with a signal space, or language, S = {(ωi)i∈[1:l] / ∀ωi ∈ Σ , ∀l ∈ [1 : lmax]} (a set
of strings of symbols from a symbol space Σ with length l ≤ lmax). The relation or mapping is
induced by making agents observe (attend to) signal-meaning pairs from the E-Language, during the
acquisition phase, and then, during the production phase, making them utter new language utterances,
whilst being prompted to communicate/speak about a set of other randomly-sampled objects/stimuli
from the environment.

B.1.1 Language Stability

In such a context where language is evolved by each learner agent at each iteration, it becomes
important to consider the stability of the different languages that may arise, in order to understand
under which conditions does the ILM converge and what are the properties to expect of the emerging,
stable languages. Before being able to consider the stability of a given language, we need to define
its expressivity E, especially “the expected number of meanings an individual will be able to express
after observing some subset of the E-Language"[64], which we will denote O.

Holistic Language - In the context of a holistic language where there is no syntactic structure to the
language and it consists of idiosyncrasies, no generalisation can be operated, only memorisation upon
observation and then recall can help an agent express a given meaning in that language. Therefore, the
expressivity of a holistic language Eh “is simply the probability of observing any particular meaning
[m ∈ O, Pr(m ∈ O),] multiplied by the number of possible meanings" [64], as shown in Eqn. 1.

Eh = Pr(m ∈ O) ·

(

V

1

)F

= Pr(m ∈ O) · V F . (1)

It is worth noting that the meaning space M is structured as an F -dimensional space of features with
V possible values for each feature.

Compositional Language - In the context of a compositional language where the relationship
between meanings and signals is structured, “expressivity becomes a function of the number of
feature values observed, rather than a function of the number of meanings observed" [9]. Given a
meaning m = (v1, . . . , vF ), formally, we have:

Ec = Pr(“∀v ∈ m, ∃Ov ∈ R, v ∈ Ov”) ·Nused (2)
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where Pr(“∀v ∈ m, ∃Ov ∈ R, v ∈ Ov”) = Pr(“∃Ov ∈ R, v ∈ Ov”)
F is the probability of being

able to express m (to be contrasted with the probability of observing m ∈ O, Pr(m ∈ O)), and thus,
Nused is “the expected number of expressible meanings" [9] that are used to label the N objects in
the environment. The more eager readers can refer to [9] for more details.

B.1.2 Drivers of Compositionality

Since we are concerned with the likelihood of the emergence of compositionality over holisticity, the
authors define in Eqn. 3 the relative stability S of compositional languages with respect to holistic
ones:

S =
Sc

Sc + Sh

, (3)

where Sc ∝
Ec

N
and Sh ∝ Eh

N
are the (absolute) stabilities of compositional languages and holistic

ones, respectively. Thus, “the probability of observing some arbitrary meaning m, i.e. Pr(m ∈ O), is
determined by the number of objects in the environment (N ), the number of meanings in the meaning
space (M , where M = V F ), and the number of random object observations during an agent lifetime
(R)" [9]. Therefore, the relative stability of a compositional language compared to a holistic language
will be strongly affected by: (i) the structure of the meaning space, via its dependence to M , and (ii)
the object coverage expressed by the ratio b = R

N
(also the inverse of the measure of the severity of

the transmission bottleneck). The lower the coverage, i.e. b, the greater the stability advantage of
compositional languages over holistic ones is, such that “the poverty-of-the-stimulus ‘problem’ is
in fact required for linguistic structure to emerge” [64]. Another important result is visible in the
observation that “a large stability advantage for a compositional language (high S) only occurs when
the meaning space exhibits a certain degree of structure (i.e. when there are many features and/or
values), suggesting that structure in the conceptual space of language learners is a requirement for the
evolution of compositionality" [64].

In other words, both the severity of the (cultural) transmission bottleneck and the degree of structure
in the meaning space have been identified as drivers of compositionality in emerging languages, in
the context of the ILM.

Recently, the Neural Iterated Learning (NIL) algorithm was proposed by Ren et al. [60]. They
transposed the ILM framework to a deep learning setting and showed a similar impact of the severity
of the transmission bottleneck, in addition to a proposed probabilistic framework that formally
evidenced it.

B.2 Straight-Through Gumbel-Softmax Estimator

In the current computer science paradigm, we commonly assume a discrete nature of the messages that
are sent by the speaker to the listener. Therefore, the communication channel is non-differentiable
and must rely on Reinforcement Learning algorithms to solve the credit-assignment problem. The
most common candidates in the literature are REINFORCE-like algorithms [69]. Fortunately, tricks
exist that allow the environment (in this case, the communication channel) to be made differentiable.

As it takes place in the context of an L ≥ 2-signal/0-round referential game, the work of Havrylov
and Titov [23] brings evidence that deep learning agents can not only learn to coordinate via a
communication channel (as seen in Lazaridou et al. [43] with “atomic symbols” [23] already), but
first and foremost invent a seemingly compositional, hierarchical, and variable-length language, with
a “sequence of tokens” [23], in order to coordinate. The model’s greatest success is attributed to the
introduction of the Straight-Through Gumbel-Softmax (ST-GS) estimator/relaxation/backpropagation
approach, which makes the communication channel differentiable (and also exhibits similar behaviour
between training and testing, which is on the contrary to previous works, e.g. Foerster et al. [20]).

The ST-GS estimator is built on top of the Gumbel-Softmax estimator [31, 49], that replaced one-hot-
encoded symbols/tokens/words w ∈ V , originally sampled from a categorical distribution, with a
continuous relaxation w̃, sampled from a Gumbel-Softmax distribution, following the notation of
Havrylov and Titov [23]:

w̃k =
exp((log pk + gk)/τ)

∑K

i=1 exp((log pi + gi)/τ)
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where p1, . . . , pK are the K event probabilities of the original categorical distribution, τ is a tem-
perature hyperparameter (see [23] for more details), and g1, . . . , gK are sampled from the Gumbel
distribution, i.e. gk = − log(− log(uk)) with uk ∼ U(0, 1).

Instead of stopping there, the ST-GS estimator performs a greedy discretization (i.e. using the
argmax operator) of w̃k during the forward pass, whilst relying on the continuous relaxation during
the backward pass2, thus yielding a biased gradient estimator [31, 6].

Havrylov and Titov [23] simplified the whole process by considering learning the temperature τ(hs
i )

for each symbol/token/word wi in each sentence s with conditioning on the hidden state hs
i of the

sentence decoder RNN. In this work, instead of using a multi-layer perceptron, we only rely on a
one-layer network α:

τ(hs
i ) =

1

τ0 + log(1 + exp(α(hs
i )))

One very important and somewhat surprising result that they found is that using the ST-GS estimator,
the greater the sequence length, the faster the learning of the communication protocol. On the other
hand, there is no such correlation when training REINFORCE-like algorithms. It is unclear whether
this phenomena is due to the ST-GS estimator alone or the synergy between it and the pre-trained
convolutional neural network (CNN), which each agent relied on in the original work. In order to
efficiently assess the impact of the ST-GS estimator, in this paper we chose to have our agents learn
everything from scratch.

B.3 Instantiating a Transmission Bottleneck

In the following, we highlight the similarities between the ILM, in the form of the NIL algorithm,
and the ST-GS algorithm. Both the NIL and the ST-GS algorithms are iterative processes. Thus, we
focus on one learning step for each.

Firstly, in the ILM/NIL, the learning phase consists of the new learning agent Ai updating its model
using the data set Di−1 = (ui−1

j , sj)j∈[1;Nlearning ] of pairs of stimuli s and associated utterance u

produced by agent A′

i−1 at the previous iteration. Nlearning is the size of the learning data set, at
each learning step, and it is randomly sampled from the whole meaning space M of size N . In
the ILM/NIL, a cultural transmission bottleneck is instantiated by choosing Nlearning ≤ N , and
the severity of the bottleneck is measured by R =

Nlearning

N
. Next, following the naming of Ren

et al. [60], in the transmitting phase, the now updated agent A′

i, fluent in the E-language Li−1

(as described by Di−1), is prompted to a production step where it generates the data set Di =
(A′

i(ŝj), ŝj)j∈[1;Nlearning ] with stimuli being randomly sampled, ŝ ∼ M. Due to the transmission
bottleneck during the production step, the learning agent has to generalise its knowledge of the
E-language Li−1 to potentially novel stimuli, and it is thus bound to make this language evolve into
a new E-language Li, unless there is no transmission bottleneck and it has perfectly learned the
language during the learning step. In the NIL algorithm, an interacting phase is intertwined between
the learning phase and the transmitting phase, which consists of a referential game R that aims to
promote disambiguation of the language.

It is important to note that the ILM/NIL algorithm relies on the previous E-language Li−1 at each
step i, whilst the ST-GS algorithm relies on something more akin to the previous I-language, as we
will now detail.

In the context of the ST-GS algorithm, learning happens by batch. At each learning step, a batch DS
i

of stimuli, randomly sampled from the whole meaning space M (as defined in Eqn. 4), is forwarded
through the learning speaker agent Si to produce a batch DL

i of utterances (as defined in Eqn. 5). The
latter is then forwarded through the learning listener agent Li, along with a batch of sets of stimuli
∆i. Each element of the batch is a shuffled list/set containing K distractor stimuli that are randomly
sampled from M, and the corresponding target stimuli from DS

i (as defined in Eqn. 6). The resulting
output is a batch of sets of scores Σi (as defined in Eqn. 7). Using j as the index for the element of
the batch, each score s(ui

j , (̂s)
i
j(d)) ∈ σj

i intuitively represents the extent with which each utterance

ui
j describes the stimuli (̂s)ij(d) ∈ δji .

2for further implementation details see: https://pytorch.org/docs/master/nn.functional.html?
highlight=gumbel#torch.nn.functional.gumbel_softmax

17



DS
i = (sij)j∈[1;NS

learning
] ∼ M (4)

DL
i = (ui

j = Si(s
i
j))j∈[1;NS

learning
] (5)

∆i = (δji )j∈[1;NS
learning

], s.t. ∀j ∈ [1;NS
learning], δ

j
i = (ŝij(d))d∈[1;K+1] (6)

Σi = (σj
i )j∈[1;NS

learning
] (7)

Following the computation of the loss function, similarly to Havrylov and Titov [23], the gradients
are backpropagated and the agents are updated. It is important to notice that at the time of the
backward pass, the current agents are not yet updated, i.e. Li = Li−1 and Si = Si−1. Therefore,
each of them receives a gradient with respect to the other’s I-language (as represented by each agent’s
weights) at the previous time step, i.e. with respect to S(Li−1) and L(Li−1) respectively. Following
the backward pass, the algorithm yields the updated agents S′

i and L′

i.

In comparison to the NIL algorithm, we argue that both updated agents have received feedback
in a richer fashion due to: (i) learning in a supervised fashion (that not only promotes but also
penalises the E-language with respect to the goal of disambiguation) and (ii) the fact that the ST-GS
relaxation enables feedback with respect to both the referential game R and the learning listener
agent’s I-language L(Li−1) (which we assume to be more pertinent than the E-language Li−1).
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C Agent Architecture

Each agent consist of a language module and a visual or symbolic module, depending whether they
deal with visual or symbolic stimuli. The listener agent also incorporates a third decision module
that combines the outputs of the other two (visual and language) modules. While the speaker agent is
prompted to produce the output string of symbols with a Start-of-Sentence symbol and the visual
module output as an initial hidden state, the listener agent consumes the string of symbols with the
null vector as the initial hidden state. In the following subsections, we detail each module architecture
in depth.

C.1 Visual & Modules

The visual module f(·) consists of four 3× 3 convolutional layers with stride 2. The two first layers
have 32 filters, whilst the last two layers have 64. Each convolutional layer is followed by a 2D batch
normalisation layer, and the outputs are passed through a leaky ReLU activation function. Inputs are
resized to 32× 32, thus yielding feature maps of dimension 64× 2× 2. The visual module outputs a
flattened representation of dimension 256. In a similar fashion, the symbolic module consists of a
linear layer containing 256 units followed by a leaky ReLU activation function.

C.2 Language Module

The language module g(·) consists of a one-layer LSTM network [27] with 256 hidden units, matching
the dimension of the visual module output. In the context of the listener agent, the input message
m = (mi)i∈[1,L] (produced by the speaker agent) is represented as a string of one-hot encoded
vectors of dimension |V | and embedded in an embedding space of dimension 256 via a linear layer
and dropout layer of probability p = 0.8. The output of the listener agent’s language module, gl(·),
is the last hidden state of the LSTM layer, hl

L = gl(mL, h
l
L−1). In the context of the speaker

agent’s language module gs(·), the output is the message m = (mi)i∈[1,L] consisting of one-hot
encoded vectors of dimension |V |, which are sampled using the ST-GS approach from a categorical
distribution Cat(pi) where pi = Softmax(ν(hs

i )), provided ν is an affine transformation and
hs
i = gs(mi−1, h

s
i−1). h

s
0 = f(st) is the output of the visual module, given the target stimulus st.

C.3 Decision Module

Similar to Havrylov and Titov [23], the decision module builds a probability distribution over a set of
K + 1 stimuli/images (s0, ..., sK), consisting of the target stimulus and K distractor stimuli, given a
message m:

p((si)i∈[0,K]|m) = Softmax((hl
L · f(si)

T )i∈[0,K]).
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D Lack of Correlation between Generalisation Abilities and Training-time

Topographic Similarity

Section 4.2.3 provided evidence that compositionality in the E-language at training-time, as reported
by topographic similarity, cannot be expected to correlate with the generalisation abilities of the
learning agents, without differentiating between the different settings. In this section, we provide a
closer look at the results for each benchmark. Figure 5 shows the test-time accuracy with respect to
the training-time topographic similarity for each different setting. The results of conducting Spearman
rank-order correlation tests on the data yields correlation coefficients as described in Table 2.

Strikingly, the results emphasise the difference between the interpolation task and the extrapolation
task. While the results in the case of the interpolation task hint at a positive correlation hypothesis
(the lower the level of structure in the observed meaning space is), those in the extrapolation task
tend towards a negative correlation, for its most significant result (the higher the level of structure
is). Our results are diverse and dependant on the level of structure in the observed meaning space,
in addition to the type of task. This breakdown analysis further confirms our previous results that
prevents us from rejecting the non-correlation hypothesis, and piles up further evidence to show that
it would be incorrect to expect the training-time topographic similarity to predict any generalisation
abilities of the learning agents.

E Generalisation Difficulty in Interpolation & Extrapolation

Generalisation difficulty, as defined by Chollet [16], can be intuitively understood as a measure of
how much the optimal behaviour of a skill program (here represented by the learning agent’s weights)
at evaluation-time differs from the optimal behaviour at training-time. The skill program is the
product of an intelligent system (here represented by the whole optimisation process and surrounding
algorithms that update the deep learning agents’ weights), that we seek to evaluate the intelligence
of. It is formally defined in an Algorithmic Information Theory fashion (considering program in
terms of their description string), for a given task, T (consisting of training and testing phases),
a given curriculum, C (here represented by the training scheme employed, i.e. a discriminative
referential game), and a given skill threshold, θ, as the “length of the shortest program that, taking
as input the shortest possible program that performs optimally over the situations in curriculum
C, produces a program that performs at a skill level of at least θ during evaluation, normalized
by the length of that skill program” [16]. In other words, the (Relative) Algorithmic/Kolmogorov
Complexity: GDθ

T,C = H(SolθT |TrainSol
opt
T,C)/H(SolθT ) where Solθ is “the shortest of all possible

solutions to T of threshold θ (shortest skill program that achieves at least skill θ during evaluation)”,
and TrainSoloptT,C is “the shortest optimal training-time solution given a curriculum (shortest skill
program that achieves optimal training-time performance over the [stimuli] in the curriculum)”.
Therefore, GDθ

T,C is the normalised description length (in a fixed universal language) of the shortest

intelligent program that outputs SolθT when taking as input TrainSoloptT,C .

Table 2: Results of Spearman rank-order correlation tests for each benchmark, independent of
the communication channel capacity (i.e. 5 seeds in the complete case, and 5 other seeds in the
overcomplete case, for each benchmark).

Benchmark Correlation Coefficient P-value

T 2
inter 0.811 0.004

T 3
inter 0.601 0.066

T 4
inter 0.115 0.750

T 2
extra 0.356 0.313

T 3
extra 0.370 0.294

T 4
extra −0.503 0.138
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E.1 Experiments

Following our primer on the definition of generalisation difficulty, in Section E, we propose to
investigate the generalisation difficulty of the interpolation task Tinter and extrapolation task Textra,
for a skill threshold θ = 38% and our curriculum C being a discriminative referential game with
K = 47 distractors and overcomplete communication channel. Defining optimality on the training
phase of each task as achieving performance of at least 80% accuracy, we find that all our different
seeds in T 3

inter and T 3
extra can be considered optimal training-time solutions. We assume that any

description of the learning agents are the shortest possible among the viable deep learning agents
that can undertake our tasks. Our learning agents have minimal architecture design for language
emergence and grounding (see Appendix C for details). It ensues that the identity function or program
is a viable program to transform our distribution of shortest optimal training-time skill programs
TrainSolopt

T 3

inter
,C

into skill programs that perform at a skill level of θ = 38% on the 3-attributes

interpolation task T 3
inter. We acknowledge that the identity program is the shortest description-length

program possible on any fixed universal language, therefore it is the description-length of the shortest
intelligent program that outputs Solθ=38%

T 3

inter

when taking as input TrainSolopt
T 3

inter
,C

.

On the other hand, for the extrapolation task T 3
extra, Figure 6 shows that the identity program is

not enough to transform the input TrainSolopt
T 3

extra,C
into Solθ=38%

T 3

extra

, as the distributions of skill

programs that are the shortest optimal training-time solutions on T 3
extra perform below the skill level

θ = 38%. We interpret this result as the fact that the shortest description-length program transforming
TrainSolopt

T 3

extra,C
into Solθ=38%

T 3

extra

must be more complex than the identity program (i.e. of a longer

description-length). It ensues that GDθ=38%
T 3

extra,C
> GDθ=38%

T 3

inter
,C

(i.e. given the curriculum C and skill

threshold θ = 38%, the generalisation difficulty of task T 3
extra is higher than that of task T 3

inter).

From a different and less formal viewpoint, Figure 6 shows the test-train gap in terms of topographic
similarity of the E-language, across different settings. Independent of the level of structure in the
meaning space, or the capacity of the communication channel, the topographic similarity test-train gap
is consistently and significantly worse in the Textra (p ≈ 4e−10 for a one-sided Kolmogorov-Smirnov
test with the alternative hypothesis being that the distribution of topographic similarity test-train
gap in Textrais lower than the one of Tinter), showing that the speaker agent fails to generalise
systematically as the produced utterances at testing time are fairly different than at training time.
We argue that this difference of behaviour that exists in Textra and not in Tinter (the median of the
distribution is at 0), shows the extent with which the latter requires the behaviour of the agents to
differ from the training time to the evaluation time. As this is another intuition about generalisation
difficulty [16], our results lend themselves to the conclusion that indeed there is some generalisation
difficulty in Textra (in the order of at least 18%, as the median of the test-train gap in topographic
similarity in Textra), whilst there is none in Tinter.

We expect this result to hold across curriculum for the family of visual referential games, indepen-
dently of the technique that supports the communication channel, and for tasks where the stimuli
are produced by a generative process, which take attribute vectors as input. For instance, referential
games with symbolic stimuli are not expected to abide by these results.
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Figure 5: Training-time topographic similarity Vs. test-time accuracy for each benchmark. A linear
regression model is fit to the data for comparison.

Figure 6: Distributions of the test-train gap in terms of accuracy and topographic similarity of
emerging languages in different settings.
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