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We apply the concepts of stochastic thermodynamics combined with the transition state theory to
develop a framework for evaluating local heat distributions across the assemblies of interacting mag-
netic nanoparticles (MP) subject to time-varying external magnetic fields. We show that additivity
of entropy production in the particle state-space allows separating the entropy contributions and
evaluating the heat produced by the individual MPs despite interactions. Using MP chains as a
model system for convenience, without losing generality, we show that the presence of dipolar in-
teractions leads to significant heat distributions across the chains. Our study also suggests that the
typically used hysteresis loops cannot be used as a measure of energy dissipation at the local particle
level within MP clusters, aggregates or assemblies, and explicit evaluation of entropy production
based on appropriate theory, such as developed here, becomes necessary.

I. INTRODUCTION

Magnetic nanoparticles (MP) are prototypical examples
of out-of-equilibrium thermodynamic systems. Their
behaviour is often manifested by memory effects and
hysteresis, which are exploited in a variety of applica-
tions ranging from information storage to environmen-
tally friendly refrigeration and medicine [1–5]. A fully
consistent non-equilibrium thermodynamics of MPs that
would allow advancing these applications still remains to
be developed, especially for systems with non-negligible
inter-particle interactions.
For example, the complementary approach to cancer

therapy based on MP hyperthermia, where MPs inter-
nalised inside cancerous cells and subject to alternating
magnetic fields heat the tumours to cytotoxic temper-
atures, requires relating the heat production to physi-
cal properties of MPs and time varying fields [6]. It
also requires understanding the effects of inter-particle
interactions, which become significant when MPs aggre-
gate during the internalisation inside cells and most fre-
quently lead to the reduction of the heating efficiency
[7–9]. Moreover, it is currently unclear if it is the net
heating effect of the entire MP aggregate or the local
heat distribution across it that leads to tumour death
[10–14]. Answering these questions, and analogous ques-
tions pertaining to other applications, requires develop-
ing a consistent non-equilibrium thermodynamic descrip-
tion of systems of interacting MPs.
The challenge is that due to the small size of MPs, ther-

mal fluctuations become dominant and applying the stan-
dard non-equilibrium thermodynamics founded on the
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assumption of ‘local equilibrium’ becomes problematic
[15]. Similarly, the frequently used linear response the-
ory is limited only to dynamical processes close to equi-
librium [16, 17]. Thermodynamics of hysteresis based on
superimposed collections of bistable elements [18, 19], or
the more general stochastic approach to non-equilibrium
thermodynamics [20–22] were also proposed, but so far
remain unused for systematic studies of systems of inter-
acting MPs.

In this work we fill the gap and apply the non-
equilibrium stochastic thermodynamics combined with
the standard transition state theory [21, 22] to systems
of interacting MPs. We show that it is possible to as-
sociate the expressions for entropy production with the
individual MPs within an interacting assembly, which in
turn allows computing the single particle heat distribu-
tion across the assembly. Although the formalism is gen-
eral, to simplify the computations we consider chains of
identical MPs with aligned uniaxial anisotropy and cou-
pled by dipolar interactions. This configuration allows
obtaining analytical expressions for the energy barriers
and thermal transitions rates, and applying the Marko-
vian probabilistic master-equation formalism frequently
employed for modelling the long-timescale thermal fluc-
tuations in MP systems.

Solving numerically the full master-equation we quan-
tify the temporal evolution of the particle states, and
through the developed thermodynamics formalism eval-
uate the individual particle heat inside the chains. Our
calculations suggests that dipolar interactions lead to sig-
nificant heat distribution across chains, often varying by
as much as 50% - 100% of the mean heat practically mea-
surable from the hysteresis loop area of an entire MP sys-
tem, which is a significant finding. We also show that due
to the presence of interactions, the area of the hysteresis
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FIG. 1. (a) Illustration of chains of N = 3 particles in ‘Z’

configuration such that r̂ij ‖ k̂ ‖ ~H, and in ‘X’ configuration

with r̂ij ⊥ k̂ ‖ ~H. Inter-particle distance is denoted by r, and
~H is the applied field vector. (b) A sketch of a network of
possible single-particle transitions between the 23 states α of
a 3-particle chain. Dashed, dash-dotted, and dotted lines cor-
respond to transitions of the right, middle, and left particle.

sub-loops corresponding to the individual MPs does not
represent the particle heat, and performing explicit cal-
culations based on evaluating the entropy production is
necessary.
The article is organised as follows. Section II intro-

duces the model of interacting MPs including the ther-
mally activated dynamics described by the standard tran-
sition state theory. Thermodynamics of particle chains
is discussed in Section III, based on the definitions of
the first law of thermodynamics and entropy balance.
Section IV offers similar discussion related to thermody-
namics of individual particles within a chain. Thermody-
namic implications of the practically relevant cyclic pro-
cesses produced by alternating external magnetic fields
are discussed in Section V. The discussion of the dipolar
effects and conclusions are given in Sections VI and VII.

II. MODEL OF THERMALLY ACTIVATED

PARTICLE CHAINS

To use a specific well established model of MPs, we con-
sider chains of N interacting identical particles, each
having diameter a, volume V , and uniaxial anisotropy
~K = Kk̂ oriented along the ẑ axis of the coordinate sys-
tem (Fig. 1). The standard form of the energy per par-
ticle volume of the chain reads [23]:

E

V
=
∑

i

(

−K(k̂ · ŝi)
2 − µ0Msŝi ·

(

~H + ~Hd
i

))

(1)

where the first term in the sum is the unaxial anisotropy
energy of particles i and the second term quantifies the in-
teraction between the particles and the applied and dipo-

lar magnetic fields, ~H and ~Hd
i , respectively. The dipolar

field ~Hd
i is produced by all neighbouring particles of a

particle i in the chain, and is given by the standard ex-

pression:

~Hd
i = −

MsV

4πa3

∑

j<i

1

r3ij
(−ŝj + 3(ŝj · r̂ij)r̂ij) (2)

where rij = Rij/a corresponds to particle-to-particle dis-
tances normalised by the particle diameter a. The dis-
tance between the neighbouring particles will be denoted
by the symbol r. The dimensionless particle moment vec-
tors ŝi follow from the definition of an intrinsic magnetic
moment of a MP:

~mi = VMsŝi (3)

where Ms is the saturation magnetisation.
The minima of energy Eq. (1) correspond to stable

spin configurations defining the states α of the system.
Thermally activated dynamics is described by the transi-
tion state theory as a hopping process between the states,
with transition rates from any state β to α determined
by the standard Arrhenius form [24]:

wαβ = f0 exp

(

−
∆Eαβ

kBT

)

(4)

where ∆Eαβ are the energy barriers separating the states
α and β, the constant f0 is the attempt frequency, kB is
the Boltzmann constant, and T is temperature. Find-
ing the energy barriers in many-particle systems is gen-
erally a difficult optimisation problem. Here we restrict
our considerations to co-linear particle chains and assume
single-particle transitions, as illustrated in Fig. 1, which
allows expressing the energy barriers analytically as [25]:

∆Eαβ = KV

(

1±
| ~H + ~Hd

i |

HK

)2

(5)

where the dipolar field index i implies that the states
α and β are related by the switched particle i (Fig.
1(b)), and HK = 2K/µ0Ms. The ‘±’ sign in Eq. (5)
refers to energy barriers for particle i switching down
(+) or up (−), respectively. Detailed discussion of the
algorithms used to track down the network of single
particle transitions and computing the energy barriers
in more general cases of non-colinear particles was pre-
sented earlier [26, 27]. The assumption of single particle
transitions is valid for weakly interacting systems with
the negligible likelihood of correlated switching events,
which according to Eq. (2) is be expected roughly when
NMSV/4πa

3 << HK .
The time evolution of state probabilities Pα(t) is pre-

scribed by a master equation [24, 28]:

dPα(t)

dt
=
∑

β

(wαβ(t)Pβ(t)− wβα(t)Pα(t)) (6)

solving which allows specifying the time-dependent prob-
ability distribution for all states α, which fully charac-
terises the time evolution of the system. From the math-
ematical point of view, Eq. (6) is a set of 1-st order
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FIG. 2. Hysteresis loops corresponding to a 3-particle chain
configuration X illustrated in Fig. 1. The thick dashed and
solid line loops were computed upon subjecting the chain to
field amplitudes H0 = 80 kA/m and 24 kA/m, respectively.
The thin lines mi with i = 1, 2, 3 show the cycles correspond-
ing to individual particles in the chain assuming H0 = 24
kA/m. The simulation parameters were as described in the
text, with a = 11 nm, r = 1.2a, and f = 300 kHz.

ordinary differential equations subject to the initial con-
dition Pα(0) for all α.

The transition network in simulations presented below
was set up by tracking the single-particle state differ-
ences using the algorithm discussed earlier [26, 27]. This
allowed to construct Eq. (6), which was then solved by
the standard ODE integrators based on explicit Runge-
Kutta methods [29]. The chosen initial condition Pα(0)
corresponded to a large positive field value, which guar-
anteed the initial state α∗ with all MPs pointing along the
field direction, i.e. Pα(0) = 1 for α = α∗ and Pα(0) = 0
for α 6= α∗. Since the number of states entering in these
simulations grows as 2N , the computational complexity
grows accordingly allowing one to treat only relatively
short chains of a few tens of MPs.

The simulation parameters were chosen to represent
Fe3O4 particles often considered for medical applications
due to their biocompatibility. The uniaxial anisotropy in
Eq. (1) was set to K = 4× 104 J/m3, and the saturation
magnetisation was Ms = 446 kA/m. A periodic applied

magnetic field was assumed as ~H = H0 cos(2πft)ẑ with
amplitude H0 and frequency f . The temperature and
attempt frequency entering in Eq. (4) were set to T =
300 K and f0 = 109 s−1. We studied particle chains of
length up to N = 10 particles.

Fig. 2 shows examples of hysteresis loops computed for
the 3-particle X chain illustrated in Fig. 1. The dashed
and thick solid lines show, respectively, the major and
minor hysteresis cycles corresponding to the field ampli-
tudes H0 = 80 kA/m and H0 = 24 kA/m. The plotted
total thermal magnetic moment ~m was calculated by av-

eraging Eq. (3) over all particles as:

~m(t) = VMs

∑

α

∑

i

ŝαi Pα(t) (7)

where ŝαi denote the spin configurations corresponding to
the stable states α obtained as minima of Eq. (1), and
Pα(t) are the solutions of Eq. (6).
Similarly, the magnetic moments of individual particles

~mi in the chain shown by the sub-loops in Fig. 2 were
computed as:

~mi(t) = VMs

∑

α

ŝαi Pα(t) (8)

Eq. (8) was obtained from Eq. (7) after exchanging the
order of the sums and expressing ~m(t) =

∑

i ~mi(t). Due
to the symmetry of the chain the sub-loops correspond-
ing to the side particles (i = 1 and 3) are identical, while
the sub-loop of the central particle is qualitatively dis-
tinguished as a result of a different dipolar field in the
centre of the chain. The three sub-loops add up to form
the chain’s minor hysteresis cycle shown by the thick solid
line. Note also that due to thermal activation, the hys-
teresis loops are frequency dependent. For slow frequen-
cies the system recovers the superparamagnetic regime
with any hysteresis effects absent, as expected.
It is worth pointing out that the thermally activated

dynamics of MPs considered here, sometimes termed as
the Néel-Brown theory or the discrete orientation model
[24], is in the limit of high energy barriers and high
damping fully consistent with the Langevin dynamics ap-
proach based on the stochastic Landau-Lifshitz-Gilbert
equation [24, 30, 31]. The present master-equation ap-
proach has been subject to successful experimental vali-
dations [32–34], and is the method of choice for studying
the long-time-scale thermally activated dynamics when
the Langevin framework becomes computationally ineffi-
cient.
Finally, note that the vector notation used in the for-

mulas above is not necessary, as the magnetic moments
of MPs in the assumed aligned chain configurations (Fig.
1) are always aligned either along or against the external
magnetic field direction. However, the presented frame-
work can be applied to arbitrary particle configuration
[26, 27], assuming the corresponding energy barriers can
be identified either analytically or numerically. For this
reason we use the vector form in the expressions when
relevant.

III. THERMODYNAMICS OF A PARTICLE

SYSTEM

The first law of thermodynamics for magnetic systems
can be expressed as:

dU

dt
=

δW

δt
+

δQe

δt
(9)
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stating that the rate of change of the internal system en-
ergy U depends on the incremental magnetic work per-
formed on the particle system by the external magnetic
fields and on the heat exchanged between the system and
the heat bath. The differential notation ‘δ’ is used to dis-
tinguish process-dependent variables such as work W or
heat Qe, and state variables such as the internal energy
U quantifiable by the total differentials and dependent
only on the starting and ending states visited during the
system evolution.
The magnetic work is typically presented in one of the

following forms:

δW

δt
= −µ0 ~m ·

d ~H

dt
(10)

or:

δW

δt
= µ0

~H ·
d~m

dt
(11)

The difference between U(H) and U(M) with work ex-
pressions given, respectively, by Eqs. (10) and (11) is
that whereas U(M) includes the energy stored in the ap-
plied field, it is excluded from U(H) [35]. However, since
both representations are related by Legendre transforma-

tion U(H) = U(M)−µ0 ~m· ~H, the thermodynamic conse-
quences of either formulation are identical. We will base
our definition of magnetic work on Eq. (10), which is typ-
ically the form used in statistical mechanics for describing
systems prescribed by effective hamiltonians [36].
The internal system energy U entering in Eq. (9) is

postulated as weighted average [21]:

U(t) =
∑

α

Eα(t)Pα(t) (12)

where Eα are the state energies corresponding to the
minima of Eq. (1). The probabilities Pα(t) are ob-
tained by solving Eq. (6) and prescribe the thermally
activated changes in the density of populations of states
α. It is straightforward to check that after setting the
time derivative in Eq. (6) to zero and using the re-
sulting detailed balance condition, Eq. (12) reduces to
U =

∑

α EαP
eq
α , where the thermal equilibrium state

probabilities P eq
α = limt→∞ Pα(t) ∝ exp (−Eα/kBT ) are

consistent with Boltzmann distribution, as expected.
The heat exchange term Qe entering in Eqs. (9) can

be related to the entropy flow between the particle sys-
tem and the environment by using the Carnot-Clausius
theorem [15]:

δQe

δt
= T

δeS

δt
(13)

which is valid for closed systems able to exchange only
the heat with the environment, such as considered in this
study. Inserting Eq. (10) and (13) in Eq. (9) we obtain:

dU

dt
= −µ0 ~m ·

d ~H

dt
+ T

δeS

δt
(14)

which is the form of the first thermodynamic law used
further.
It turns out there is a close relationship between the

entropy flow and the structure of the Master equation
Eq. (6), which can be revealed as follows. The Gibbs
non-equilibrium entropy takes the standard form [20, 21]:

S(t) = −kB
∑

α

Pα(t) lnPα(t) (15)

The rate of change of entropy is split into entropy flow
δeS/δt and entropy production δpS/δt [15]:

dS

dt
=

δeS

δt
+

δpS

δt
(16)

The explicit expressions for the entropy contributions in
Eq. (16) can be obtained by inserting Eq. (6) into the dif-
ferentiated total entropy Eq. (15) and arranging, which
leads to:

dS

dt
=

kB
2

∑

αβ

(wαβPβ − wβαPα) ln
Pβ

Pα

(17)

and:

δpS

δt
=

kB
2

∑

αβ

(wαβPβ − wβαPα) ln
wαβPβ

wβαPα

(18)

and:

δeS

δt
= −

kB
2

∑

αβ

(wαβPβ − wβαPα) ln
wαβ

wβα

(19)

Eq. (18) postulates the expression for entropy production
quantifying the extent of irreversible processes occurring
within a system [28], and hence Eq. (19) defines the
entropy flow. The entropy flow δeS/δt can be positive
or negative, depending on the interaction between the
system and its surroundings, and relates to the amount
of exchanged heat through Eq. (13). On the other hand,
the second law of thermodynamics demands the entropy
production to be non-negative [15]:

δpS

δt
≥ 0 (20)

This condition holds for Eq. (18) naturally since the term
in the natural logarithm is positive if wαβPβ > wβαPα,
and it is negative if wαβPβ < wβαPα, which always bal-
ances the positive and negative signs in the overall ex-
pression. The equality sign δpS/δt = 0 applies only for
reversible (equilibrium) transformations.
Finally, the heat produced by the system can be de-

fined analogously to Eq. (13) as:

δQp

δt
= T

δpS

δt
(21)

Eq. (17)-(19) and (21) can be evaluated in a straight-
forward way after solving the master equation Eq. (6).
Moreover, the definitions above are consistent with the
first thermodynamics law (14) as can be confirmed
through a straightforward algebraic exercise.
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FIG. 3. Time dependence of the entropy change, entropy pro-
duction, and entropy flow for individual particles i = 1, 2, 3 in
the 3-particle X chain (Fig. 1). Particles i = 1 and 3 respond
equally due to the symmetry of the chain. The simulation
parameters were as described in the text, with a = 11 nm,
r = 1.2a, H0 = 24 kA/m, f = 300 kHz, and τ = 1/f being
the field period.

IV. THERMODYNAMICS OF AN EMBEDDED

PARTICLE

The key question is whether the first thermodynamic law
equation defined by Eq. (14) can be reduced to apply
separately to individual MP embedded in a chain. It
turns out that in general this is not possible because the
non-linearity in the dipolar interaction term in Eqs. (1)
and (2) does not allow expressing the internal system
energy Eq. (12) as a superposition of contributions from
the individual MPs in a chain. However, as we show
below, it is possible to associate the magnetic work and
entropy with the individual MPs, and then quantify their
heat production.

The magnetic work term in Eq. (14) can be expressed

as a sum over the particles µ0 ~m · d ~H/dt =
∑

i µ0 ~mi ·

d ~H/dt, where ~mi is given by Eq. (8), from which the
incremental work associated with the particle i in the
system follows as:

δWi

δt
= −µ0 ~mi ·

d ~H

dt
(22)

Eq. (22) can be evaluated independently for all MPs in
a chain.

To express the entropy of a particle in the system, we
first observe that Eqs. (17)-(19) are represented as sums
of contributions from all available single particle transi-
tions. This additive form allows to rewrite these equa-
tions as sums over the transitions corresponding to the
switching events of individual particles (see Fig. 1(b)),

and express Eq. (16) as:

∑

i

dSi

dt
=
∑

i

δeSi

δt
+
∑

i

δpSi

δt
(23)

where the total entropy change of a particle reads:

dSi

dt
=

kB
2

∑

αβ

i

(wαβPβ − wβαPα) ln
Pβ

Pα

(24)

the entropy production of a particle is:

δpSi

δt
=

kB
2

∑

αβ

i

(wαβPβ − wβαPα) ln
Pβwαβ

Pαwβα

(25)

and the particle entropy flow follows as:

δeSi

δt
= −

kB
2

∑

αβ

i

(wαβPβ − wβαPα) ln
wαβ

wβα

(26)

The symbols
∑i

in Eqs. (24)-(26) imply that the sum-
mation is to be carried out only over the pairs of states
associated with transitions of a particle i (e.g. dashed,
dotted, dash-dotted lines in Fig. 1(b)).
Eqs. (23)-(26) suggest the entropy balance for individ-

ual MPs:

dSi

dt
=

δeSi

δt
+

δpSi

δt
(27)

analogous to Eq. (16). This hypothesis is plausible
because the contributions from the individual transi-
tion paths summed over in Eqs. (24)-(26) are non-
overlapping. It is also plausible to interpret δpSi/δt as
the single particle entropy production since applying the
argumentation used to justify Eq. (20) leads again to the
necessary condition:

δpSi

δt
≥ 0 (28)

We have performed extensive computations to validate
Eqs. (27) and (28), such as shown Fig. 3 for the case of
3-particle chain in X configuration.
Finally, we associate the heat contributions with a par-

ticle i analogously to Eqs. (13) and (21) as:

δQe
i

δt
=

δeSi

δt
and

δQp
i

δt
=

δpSi

δt
(29)

which will be used in the following sections to study the
heat distributions across chains of variable length.

V. CYCLIC PROCESSES

The formalism developed above allows evaluating mag-
netic and thermodynamic behaviour of particle systems
subject to arbitrary external field variation. Practically
relevant are, for instance, constant applied fields used in
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FIG. 4. Validation of thermodynamic relations for a 5-particle
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riods τ . (a) Time dependence of magnitudes of the magnetic

field ~H and total magnetic moment ~m per VMs. (b)-(e) val-
idation of Eqs. (31), (33), (38), and (36) for particle i = 3 in
the chain, respectively. Simulation parameters were: a = 13
nm, H0 = 24 kA/m, f = 300 kHz, and r = 1.2a.

magnetorelaxometry [4, 27], pulsed fields used in mag-
netic resonance imaging, or periodic (cyclic) field vari-
ations used in magnetic particle imaging [5] and hyper-
thermia [6].

As an example, Fig. 4(a) shows the time dependence
of the magnetic moment of a 5-particle X chain subject
to periodic magnetic field. The figure shows that after
the initial transient time, which can be short or long de-
pending on the MP properties, the system evolution set-
tles into a periodic steady state. To evaluate the amount
of heat produced by MPs during the field cycle, Eq. (14)
can be integrated and expressed as:

∆U = ∆W +∆Qe (30)

where the symbol ∆ →
∮

. . . dt implies the cumulative
change of variables obtained by path integration of the
individual terms in Eq. (14) over the field period. Since
the internal energy U is an extensive thermodynamic
variable, ∆U = 0 holds in the steady state when the
states α, state energies Eα and probabilities Pα in Eq.
(12) become periodic functions of time. Therefore, the
steady state behaviour implies:

∆W = −∆Qe (31)

Fig. 4(b) shows that Eq. (31) holds in the steady state
once the initial transient field periods died out.
Similarly, integrating Eq. (16) over the field cycle

gives:

T∆S = ∆Qe +∆Qp (32)

where we expressed the entropy changes accumulated
over the field period through Eqs. (13) and (21). The to-
tal entropy is an extensive thermodynamic variable and
thus ∆S = 0 in the steady state, which leads to

∆Qe = −∆Qp (33)

Thus the heat produced by the particles flows out of the
system into the heat bath. Eq. (33) is validated in Fig.
4(c), which shows that in the steady state the relative
difference between the entropies reduces to zero. Com-
bining Eqs. (31) and (33) gives:

∆W = ∆Qp (34)

which is the well known result stating that in the steady
state the work performed over the field cycle, measurable
by the hysteresis loop area, quantifies the heat produced
by the MP system.
Similar argumentation applies to individual MPs

within the chains. Integrating Eq. (27) over the field
period and using (29) gives:

T∆Si = ∆Qe
i +∆Qp

i (35)

which is analogous to Eq. (32) with the difference that
it holds for a single particle i within the chain. The ad-
ditive property of the total entropy change Eq. (17) over
the individual transition paths suggests that the single
particle total entropy can be seen as an extensive ther-
modynamic variable. Hence in the steady state we expect
∆Si = 0 and Eq. (35) turning to:

∆Qe
i = −∆Qp

i (36)

Fig. 4(d) validates Eq. (36) in the steady state.
Finally, integrating Eq. (14) over a periodic field pro-

cess, applying the fact that the internal energy is an ex-
tensive thermodynamic variable, and expressing the right
hand side formulas as sums over the individual particles
we obtain:

∑

i

∆Wi = −
∑

i

∆Qe
i (37)
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FIG. 5. Inter-particle distance dependence of the steady state
work and entropy contributions over a field period validating
Eqs. (31), (33), and (34), assuming 3-particle X and Z chains
shown in Figs. 1. The simulation parameters were: a = 11
nm, H0 = 24 kA/m, and f = 300 kHz.

which, unfortunately, cannot be reduced to equivalent
expressions for individual particles, i.e.:

∆Wi 6= −∆Qe
i = ∆Qp

i (38)

where the second equality follows from Eq. (36). Thus
the work performed on a MP in a chain by the applied
external field can no longer be used as a measure of heat.
This is demonstrated in Fig. 4(e), which shows a finite
difference between ∆Wi and −∆Qe

i even in the steady
state. As discussed below, the difference between the
single particle work and heat depends on the particle
properties and the inter-particle interaction strength.

VI. RESULTS AND DISCUSSION

We have performed extensive testing of the concepts de-
veloped above for various kinds of chains with variable
properties of MPs, field amplitudes and frequencies. As
an example, Fig. 5 shows the normalised ∆W , ∆Qe, and
∆Qp calculated for 3-particle Z and X chains as a func-
tion of the distance between the neighbouring particles r.
The normalisation was performed by the non-interacting
particle case ∆W (0int), ∆Qe(0int) and ∆Qp(0int), which
can be evaluated based on the single-particle calculations
and symmetry arguments [18]. All of the data for a given
chain type overlap, in agreement with Eq. (34). The fig-
ure also shows that as the relative distance between the
particles decreases, thereby enhancing the dipolar inter-
action strength, the produced heat increases for Z chains
and decreases for X chains. This result is consistent with
the previous findings [37], and can be attributed to the
interactions effectively increasing/decreasing the effective
energy barriers for Z/X chains.

1.2 1.4 1.6 1.8 2.0
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 particle 1, 3 (side)

particle 2 (middle)

Qe
1, 3 / Qe (0int)

Qp
1, 3 / Qp (0int)

W1, 3 / W (0int)

Qe
2 / Qe (0int)

Qp
2 / Qp (0int)

W2 / W (0int)

FIG. 6. Inter-particle distance dependence of the steady state
individual particle work and entropy contributions over a field
period validating Eq. (36) and demonstrating the inequality
in Eq. (38). Data correspond to the 3-particle X chain shown
in Figs. 1 and 2. By symmetry data for particle 1 and 3
is equivalent. The simulation parameters were: a = 11 nm,
H0 = 24 kA/m, and f = 300 kHz.

Fig. 6 shows similar calculations but this time consid-
ering the individual particle behaviour in the 3-particle
chain X. As confirmed by the data agreement, Eq. (36)
always holds for any MP in the chain. However, the
single-particle cyclic work ∆Wi no longer represents the
heat ∆Qp

i produced by MPs, as expected based on Eq.
(38). As shown in the figure, the discrepancy between
the work and heat increases with the decreasing inter-
particle distance r due to the enhanced dipolar inter-
action strength. Similar discrepancy is observed for Z
chains (not shown). Thus, unlike the area of the hys-
teresis loop of the entire chain, the area of the hystere-
sis sub-loops of individual particles (Fig. 2) cannot be
associated with the heat production, and using explicit
calculations based on Eqs. (24)-(26) and (29) becomes
necessary.
The results of such calculations for chains of length

varying from 1 to 6 particles are shown in Fig. 7. SAR
refers to the so-called specific absorption rate, which is
typically used to specify the heat power P (heat per unit
time) produced by MPs subject to alternating magnetic
fields, and when expressed for individual particles reads:

SARi =
Pi

V ρ
=

f∆Qp
i

V ρ
(39)

where f is the field frequency, and the product of volume
and mass density, V ρ, is the particle mass. Eq. (39) is
typically expressed through the hysteresis loop area, i.e.
Pi = f∆Wi, however, in view of Eq. (38) we base our
definition directly on ∆Qp

i .
Fig. 7(a) shows the computed normalised SARi corre-

sponding to MPs across the chains X of variable lengths.
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FIG. 7. Calculations of distributions of the individual par-
ticle SARi normalised by the non-interacting case SAR(0int)

(dashed line) across the X (a) and Z (b) chains of length
increasing from 1 to 6 particles from left to right. The dash-
dotted line is the average heat per particle. The simulation
parameters were: a = 11 nm, H0 = 24 kA/m, r = 1.2a, and
f = 300 kHz.

The normalisation is with respect to SAR(0int) of non-
interacting MPs (dashed line). The dash-dotted line rep-
resents the average SAR computed from hysteresis loops
of full chains divided by the number of MPs per chain.
The figure shows that there is a substantial decrease of
SAR across chains in comparison to the non-interacting
case, which becomes more significant as the number of
MPs per chain grows. The heating is most substantial
for corner MPs, exceeding the average heat, whereas it
becomes suppressed for inner MPs inside chains. Fig.
7(b) shows similar calculations for the Z chain configura-
tion. In this case, SAR is significantly enhanced for inner
MPs in chains, while the heating is smallest at the corner
MPs.

The heat distributions correlate with the cumulative
dipolar field effect across the chains, which is the weak-
est in the centre of X chains and strongest in the centre
of Z chains. It is expected that in the long-chain limit
N → ∞ the dipolar field acting on MPs sufficiently far
away from the edges of chains becomes asymptotically
uniform. It is then reasonable to approximate the single-

particle heat as ∆Qp
i ≈ ∆Qp/N = ∆W/N , where ∆Qp is

the cumulative heat produced by the entire chain, which
according to Eq. (34) equals the work ∆W measurable
by the area of the hysteresis loop corresponding to the
chain.

VII. CONCLUSIONS

In summary, the developed thermodynamic framework
allows to explicitly evaluate the entropy production and
consequently the heat distributions in systems of inter-
acting MPs. Although our study was based on MP
chains, the framework can be naturally applied to MP
clusters and aggregates if the underlying energy barri-
ers can be identified. Our calculations in Fig. 7 suggest
that the presence of dipolar interactions may contribute
to significant heat distributions within MP assemblies.
The heat distributions are expected to be even more pro-
nounced in planar and three dimensional MP clusters due
to the possibility of higher MP packing fractions enhanc-
ing the local dipolar effects. This could lead to consider-
able local heating produced inside cancer cells while the
net temperature effect remains small, corroborating the
earlier experimental findings [10, 11].
The developed formalism can be applied in other appli-

cation settings such as, for example, in magnetic record-
ing, which often relies on similar modelling techniques
[38, 39], or for evaluating the entropy changes in MP sys-
tems for magnetic refrigeration [2]. It can also be applied
naturally to study problems outside of particulate mag-
netism such as, for example, to model nanoscale friction
[40] or biological systems [20].
We also note that the formalism developed in this work

can be extended beyond the assumption of single-particle
transitions applicable mostly to weakly interacting MP
systems, once the network of transitions has been ex-
tended to include multi-particle switching events. How-
ever, this also requires generalising the notion of sin-
gle particle heating to coherent particle switching events
likely to occur across MP assemblies when dipolar inter-
actions become significant.

VIII. ACKNOWLEDGEMENTS

P. T. acknowledges financial support from H2020 MSCA
ITN project Solution No. 721642. D. S. acknowledges
Xunta de Galicia for financial support under the I2C
Plan. We also gratefully acknowledge support from an
International Exchanges grant (IE160535) of the Royal
Society, and from the Strategic Grouping in Materials
(AeMAT grant No. ED431E2018/08).
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