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Abstract. Robot control is one of the key aspects of robotics research. Models 
are essential tools in robotics, such as robot’s own body dynamics and kinematics 
models, actuator/motor models, and the models of external controllable objects. 
In this paper, we review the latest advances in model-based and model-free ap-
proaches with a strong focus on robot control. Based on the designed search strat-
egy, several prevailing control approaches are classified and discussed according 
to their control strategies. An insight into the gripper control is also explored. 
Then the research problems and applicability of the control methods are dis-
cussed by investigating their merits and demerits. Based on the discussion, we 
summarize the challenges and future research trends of robot control. 
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1 Introduction 

Robot control methods have always been a topic of great concern. Current high-preci-
sion control requirements bring new challenges that the traditional control methods may 
not be applicable. For example, the requirement that robots work in a complex unstruc-
tured environment or be able to work collaboratively with humans or other robots.  
Many new controllers have been developed that are flexible and suitable for complex 
non-institutional environments [1], and some controllers can also be effectively applied 
in complex human-computer interaction scenarios [2]. 

Robot controllers can be classified into two categories: model-based and model-free. 
The former is a controller that developed based on a model (Robot model, environment 
model, motor/actuator model, etc.). Considering the uncertainties and disturbances in 
the real-world scenarios, such as parametric uncertainties, wear of the machine, manip-
ulation influenced by gravity, errors of the motor, the influence of the noisy environ-
ment, which make the established model inaccurate to be used to control  the real ro-
bots. In this regard, researchers have developed many model-based controllers to adapt 
or suppress these model uncertainties [3][4]. Furthermore, to solve these problems, 
many studies adopt machine learning techniques to develop new control systems [5]. 
And examples of machine learning can also be found in model-free control [6].  

Another type of controller is based on  model-free approaches. This type of control-
ler usually does not consider whether the model is accurate and the uncertainty of the 
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model, but achieves the purpose of control through learning or training [7]. One way of 
learning and training is to help robots learn through human-computer interaction. It is 
also possible to use some learning frameworks to through training the input and output 
data, such as the neural learning enhanced control studied in [8]. 

Among the controllers, there are two classic controllers often mentioned, which are 
impedance control and admittance control. Impedance control is a control system that 
inputs displacement and then outputs force [9]. In contrast, admittance control is a con-
trol system that inputs force and outputs displacement [9]. In addition, admittance con-
trol has some advantages that make it suitable for position control systems. Many re-
searchers have been proposing new designs based on these two controllers in order to 
obtain better control performance. More information will be introduced in other parts 
of this paper. 

In this paper, some latest studies on control methods of soft robots will also be dis-
cussed. The soft robots and the rigid robots are very different, for example, the state 
space of the soft robot is infinite [10], it is difficult to model and other characteristics, 
as such, the control methods are also different from the rigid robots. In addition, some 
recent advances in control different grippers (electric gripper and pneumatic gripper) 
will be investigated. 

The paper is structured as follows:  Section 2 introduces the methods and criterions 
adopted for searching and ranking the latest references discussed in this paper Section 
3 classifies the references according to the type of controllers and clarifies the basic 
implementation ideas of the controllers. Section 4 expands the discussions based on 
Section 3. Finally, conclusions of this paper are given in Section 4. 

2 Search strategy 

In this section, the methods of literature search and screening criteria will be described. 
The method of selecting keywords is mainly based on different control types, such as 
model-based control, model-free control, etc. We also choose keywords for different 
types of robots, such as rigid robots, soft robots, etc. Keywords such as electric gripper 
control, pneumatic gripper control are adopted for gripper control selection. To cover 
more types of control methods, the following keywords are also used: impedance con-
trol, admittance control, inference control, adaptive control, data-based control, force 
control, using feedback control for a robot, etc. Since controllers are generally compli-
cated, controllers will have different design methods, which means that even if “model-
based control” is used as a keyword, many other types of controllers may be found, 
which will improve the search coverage for articles. The discussion will be provided 
with good support. 

The choice of a search database is another concern. In this search, the main sources 
of literature in this paper are: IEEE, ScienceDirect and SAGE. Due to a large number 
of robot-related publications on these sites (The ranking is shown in figure 1, the data 
source comes from Google Scholar). As such, these sites are selected as the main source 
of references. Furthermore, considering the nature of this paper, the search time should 
be limited to the literature of the past two years, which means that the publication time 
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is between 2019-2020. In this way, the article can show the latest and most advanced 
research direction and research trends. However, several excellent articles were still 
selected although the publication time was in 2017. 

Table 1. Ranking of top 5 publications in Robotics from Google Scholar Metrics 

Rank Name 

1 IEEE International Conference on Robotics and Automation 

2 IEEE/ASME Transactions on Mechatronics 

3 The International Journal of Robotics Research 

4 IEEE Transactions on Robotics 

5 
IEEE/RSJ International Conference on Intelligent Robots 
and Systems 

3 Results 

3.1 Overview of the Results 

The classification of the selected papers is shown in Table 2. All screened papers are 
classified. The representative articles are discussed in subsections 3.2-3.4. 

Table 2. Literature classification 

Category Method keywords Related literature 

Model-based control Model-based learning [4][3][5][11] 

 Control based on neural network [12][8]  

 Data-based control [13] 

 Based on admittance control [2][14][9][15] 

 Impedance based control [16][17][18] 

 
Based on different feedback sig-
nals: tactile, visual, etc. 

[10][19][6][2
0][21] 

 Novel methods 
[22][23][24][
25][26] 

Model-free control 
Data-driven, neural network, 
adaptive learning, iterative learn-
ing, reinforcement learning 

[27][28][29][
30][31][32][3
3][34][35][36
][37] 

Gripper control electric [38][39] 

 pneumatic [40] 

 
3.2 Model-based Control and Model-Free Control 

Model-based control. In the control  problems, it is difficult to establish the model due 
to the uncertainty of the model such as wear, friction, materials and so on that hinder 
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the accuracy of the dynamic model [32]. Therefore, the model-based controller is usu-
ally used to adapt or suppress the uncertainty of the model. In [4] the researchers de-
scribed a general method based on factor graphs. The method can effectively meet the 
needs of customized robot kinematics models. In this method, the researchers devel-
oped a kinematics model based on general factor graphs. Since the kinematics model 
involves fine-tuning of parameters, they chose to complete the task of fine-tuning pa-
rameters through data-driven learning methods. Finally, the control task of the robot 
arm is realized.  

Data-based learning methods are increasingly used in robot control. In [5] the re-
searchers extended the model predictive path integral (MPPI) algorithm. MPPI is a 
sampling-based algorithm that can be optimized for general cost standards. In the arti-
cle, the author demonstrates how to derive the updated law used in MPPI through the 
information theory framework without the assumption of controlled affine, which 
means that model learning in the MPPI framework can be completely driven by data. 
In the simulation, the researchers tested the MPPI controller using purely learned neural 
network dynamics, and the results showed that its performance was in line with the 
requirements. Another study proposed a position/force tracking impedance control 
scheme based on adaptive Jacobian and neural network [12]. The control scheme is 
divided into two parts: outer loop control and inner loop control. In the outer loop, the 
traditional impedance relationship is combined with a PID-like scheme to quickly elim-
inate force tracking errors [12]. In the inner loop, an adaptive Jacobian method is pro-
posed to estimate the uncertainty due to system kinematics, the adaptive radial basis 
function neural network (RBFNN) compensates for uncertainties in system dynamics 
and adaptive Jacobian determinants [12]. Then, a robust term is designed to compensate 
for the external interference and approximation error of RBFNN. In this way, the com-
manded position trajectory generated by the outer ring force impedance controller can 
be finally tracked, so that the contact force tracking performance can be achieved indi-
rectly in the force direction. 

In addition, admittance control and impedance control are two common model-based 
control methods. In [2], researchers propose a novel control method that combines 
adaptive filtering with admittance control to overcome the disadvantages of constant 
admittance controllers. The basic idea of this control method is that once the filter de-
tects oscillation, the admittance control parameters can be modified passively. Finally, 
this method can be used to solve the problem of vibration during cooperative manipu-
lation. In order to solve the problem that the identification of the inertia and damping 
matrix in the dynamic admittance model is very time-consuming, a fuzzy-based admit-
tance control is proposed in [14]. The controller directly calculates the speed of the end 
effector through an external wrench (force/torque) and the power transmitted by the 
robot. In addition, the fuzzy reasoning mechanism is mainly used to eliminate the iden-
tification of inertia and damping matrix. The composition of the fuzzy relationship can 
adaptively adjust the relationship between the speed of the end effector and the power 
transmitted by the external wrench and the robot. Two variable admittance control 
schemes were introduced for position control robots in [9] the first scheme is variable 
admittance control for direct intention, which changes the damping by estimating the 
direct intention to achieve fast and accurate motion. The second scheme is variable 
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admittance control for indirect intention, similar to the virtual fixture guidance method, 
changing the admittance to guide people. There are also controllers that are based on 
impedance control. In order to achieve the active compliance of collaborative robots, 
[16] proposed an impedance controller based on torque feedback. The controller is di-
vided into two parts, the torque controller and the impedance controller. The torque 
controller is used to compensate the robot dynamics, and the impedance controller is 
used to adjust the joint stiffness and damping. This controller can be applied to flexible 
joint robots and robots that cannot be accurately modelled. In [17], the researchers pro-
posed an impedance sliding mode control method with adaptive fuzzy compensation. 
The control scheme is divided into inner loop control and outer loop control. The outer 
loop control uses impedance control, and the inner loop control uses sliding mode con-
trol. Due to the chatter caused by sliding mode gain switching, an adaptive fuzzy logic 
system is introduced to solve this problem. Finally, solve the position/force control 
problem caused by model uncertainty.  

In addition to the above studies, some novel model-based control methods have also 
been proposed. In [22], they mainly studied the friction characteristics of the capsule 
system under dynamic conditions, especially the non-reversible drooping and hystere-
sis. The original intention of this research is because the friction model is still difficult 
for online implementation and control. The researchers in [23] mainly focused on the 
energy preserving in control. They based on passive dynamics to indirectly control the 
stick-slip motion caused by friction to achieve an improvement in overall driving dis-
tance and energy efficiency. [24] proposed A motion generation strategy for self-pro-
pelled robotic systems with viscoelastic joints is proposed, and an analytical two-stage 
motion profile is proposed based on the system response and dynamic constraint anal-
ysis. In [25], they studied the miniature hybrid capsule robot and proposed a new oper-
ation mode of the hybrid robot, namely the hybrid model and the anchoring model. In 
[26] they studied the problem of adaptive trajectory tracking control for under-driven 
vibration-driven capsule systems. The researchers designed two tracking control 
schemes using a closed-loop feedback linearization method and an adaptive variable 
structure control method with auxiliary control variables. 
Model-free control. Model-based controllers are usually developed to suppress or 
compensate for model uncertainties. Another method is to use model-free control which 
is mainly based on data-driven approach. 

For the rigid robot in [27], the researchers proposed an observer-based model-free 
adaptive terminal sliding mode controller based on data driving. The controller uses the 
concept of fully dynamic linearization to convert the nonlinear dynamics of the robot 
into an equivalent linear data model that only depends on the I/O data of the robot 
manipulator. Then use multiple observers to estimate the system output. Finally, based 
on the data-driven discrete-time nonlinear terminal sliding surface, a robust controller 
is designed. The researchers proposed a cascade-loop pHRI controller in [28], which 
consists of two parts. The outer loop is composed of two neural networks (NN) and is 
mainly used to predict human movement intentions. The inner loop applies the speci-
fied error dynamics with the help of a model-free neural adaptive controller that uses 
NN feedback to linearize the robot dynamics. This controller is used to improve the 
security and reliability of physical human-robot interaction(pHRI). 
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Besides, reinforcement learning is also applied to model-free control. In [30], re-
searchers proposed a model-less robot interactive control method using reinforcement 
learning. Learning only the best-expected force, without the need for impedance pa-
rameters corresponding to the environment but using force sensors to measure the con-
tact force. They use force control to generate new position references and PID control 
to ensure position tracking. Then use feedback control principles to reduce the impact 
of unknown environmental dynamics. [31] proposed a model-free adaptive iterative 
learning controller based on iterative feedback tuning algorithm. The researcher used 
the principle of non-parametric dynamic linearization to establish a dynamic model, 
designed the controller based on this model, and then used the iterative feedback tuning 
(IFT) algorithm to adjust the parameters of the controller to optimize the performance 
of the system.  

More model-free control methods, for example, an adaptive neural network tracking 
control scheme was proposed in [34] for the underactuated robot with matched and 
mismatched disturbances. A trajectory generation method based on Probabilistic Move-
ment Primitives was discussed in [35] to improve the local trajectory optimization. A 
single trial classification method was studied in [36] based on ERD/ERS and Cortico-
muscular Coherence. A novel weakly-supervised approach was proposed in [37] for 
RGB-D-based nuclear waste object detection. 
3.3 Gripper Control 

The gripper plays an important role in the field of robot control research. Especially 
when collecting tactile signals, the gripper provides an irreplaceable role. For example, 
in [20], the researchers add tactile sensors to the gripper, and then analyzed the pressure 
data to grab the object and predict the hardness and softness of the object. Tactile feed-
back allows robots to perform dexterous manipulation tasks in unstructured environ-
ments [6]. 

The control methods of grippers are mainly divided into two categories according to 
the types of actuation of the gripper: electric and pneumatic. The electric gripper is a 
gripper driven by electric motors. For example, in [39], they describe an electric gripper 
called “blue gripper”. This gripper uses force control so that it can hold small objects 
of various weights safely. In another study, the researchers designed a five-finger ro-
botic hand [38]. The grasping force of the robot is controlled by a force controller and 
combined with a tactile sensor to achieve the task of a multi-finger robot gripping an 
unknown object. Another control method is pneumatic. In [40] they proposed a two-
finger robot based on PCP (pre-charged pneumatics). Due to the particularity of the 
pneumatic gripper, it is difficult to control the gripping speed and gripping force. So, 
in this study, they designed a closed-loop control strategy with feedback (distance and 
force) to alleviate this problem. 
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4 Discussions 

4.1 Discussion on Model-based Control and Model-Free Control 

The field of robot control can be divided into two directions, one is a controller based 
on model development, and the other is a model-free controller. It is not difficult to see 
from the results part of this article that there are advantages and disadvantages in both 
methods. Controllers developed based on models are usually highly dependent on the 
model, so the accuracy of the model directly affects the performance of the controller, 
and controllers developed based on the model are usually affected by many factors in 
the actual environment, such as machine wear and inertia torque etc. These problems 
will increase the uncertainty of the model and hinder the practical application of the 
controller. In order to solve these problems, many people tend to use machine learning, 
neural networks, adaptive fuzzy neural networks and other learning models combined 
with classical controllers to develop more powerful controllers. Because compared with 
classical controllers, controllers incorporating machine learning have the potential to 
improve control performance. Despite this, model-based methods still face many chal-
lenges when manipulation in unstructured dynamic environments. For example, how to 
avoid the accumulation of errors when training models is one of the challenges. Some 
people solve this problem by combining model prediction and machine learning, which 
may be a new direction for solving similar problems in the future. 

The impedance control method and the admittance control method are two common 
control methods in model-based control. Classical impedance control methods fall into 
two categories: position-based impedance control and torque-based impedance control 
[12]. Therefore, if someone wants to design a simpler controller, the impedance control 
method may be extended to reduce the complexity of the controller. The opposite of 
the impedance controller is the admittance controller, which is widely used in the field 
of human-computer interaction. This may be because the admittance control scheme 
can mask the dynamic characteristics of the nonlinear robot and is easy to implement 
in practice.  

Model-free control is just the opposite of model-based control. Model-free control 
is not highly dependent on the model and does not even need to know the model to 
complete the control of the robot. Because in practical applications, it is usually difficult 
to obtain an accurate model of the system, so some model-based control methods are 
only suitable for the simulation environment, so in order to make the controller inde-
pendent of the system model, someone proposed the model-free control. Because the 
model-free control does not depend on the model, the step of building the model is 
omitted, thereby avoiding the uncertainty of the model. The alternative method, for 
example, converts the nonlinear dynamics of the robot into an equivalent linear data 
model that relies only on I/O data manipulated by the robot. Iterative feedback adjust-
ment (IFT) is a data-driven method, which is used to adjust the parameters of the control 
system, and model-free adaptive control (MFAC), this method also requires I/O data. 
The effective research direction to convert nonlinear dynamics to equivalent linearity 
model. In addition, iterative control methods and model-free adaptive control are also 
two important research directions in the field of model-free control. Although the 
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model-based control system reduces the dependence on the model, it also brings other 
problems. For example, in the model-free control method based on reinforcement learn-
ing (RL), the controller usually needs a lot of data to help learning, which reduces the 
applicability of the model-free controller. 
4.2 Discussion on the Gripper 

The gripper plays an equally important role in the field of robot control. Usually, in 
order to obtain control signals, such as tactile signals, researchers will install various 
types of tactile sensors on the gripper. In the gripper, people usually pay attention to 
how to control the gripper to achieve stable grasping of unknown or known objects. 
The gripper can also be combined with a tactile sensor to measure the hardness of the 
object. The control of the gripper usually uses the force controller, which has low cost 
and high practicality, so most research tends to use it. Relative to the hard gripper, to 
prevent the gripper from damaging the objects in contact, someone has designed pneu-
matic gripper. This type of gripper is usually used for highly adaptive robots due to its 
soft material compliance and adaptability. However, since pneumatic gripper is driven 
by inflation, it is difficult to achieve precise control. For precise control, someone de-
signed the pre-charged pneumatics (PCP) gripper. Although it has not yet achieved per-
fect control, it may be used as a future research direction. 

5 Conclusion 

Accuracy is one of the key metrics of robot control. This paper investigates the latest 
advances in model-based and model-free control approaches and provides some in-
sights into the gripper control. The paper selects some latest prevailing control methods 
for summarization and discussed the expected research direction in combination with 
some control methods. Although some methods increase the accuracy, they also in-
crease the complexity of the calculation, especially some control methods that require 
large amounts of data for training. Therefore, future control methods need to control 
the computational complexity as much as possible while improving accuracy, which 
will bring great benefits to both control modes. Also, there is no unified measurement 
standard found in many works of literature, which may be related to different applica-
tions of different controllers, but if a general measurement standard can be formulated, 
it may play a key role in the performance measurement of the controller. 
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