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Abstract

Global mean temperature change simulated by climate models deviates from the observed temperature increase during 

decadal-scale periods in the past. In particular, warming during the ‘global warming hiatus’ in the early twenty-first century 

appears overestimated in CMIP5 and CMIP6 multi-model means. We examine the role of equatorial Pacific variability in 

these divergences since 1950 by comparing 18 studies that quantify the Pacific contribution to the ‘hiatus’ and earlier peri-

ods and by investigating the reasons for differing results. During the ‘global warming hiatus’ from 1992 to 2012, the estimated 

contributions differ by a factor of five, with multiple linear regression approaches generally indicating a smaller contribution 

of Pacific variability to global temperature than climate model experiments where the simulated tropical Pacific sea surface 

temperature (SST) or wind stress anomalies are nudged towards observations. These so-called pacemaker experiments suggest 

that the ‘hiatus’ is fully explained and possibly over-explained by Pacific variability. Most of the spread across the studies can 

be attributed to two factors: neglecting the forced signal in tropical Pacific SST, which is often the case in multiple regression 

studies but not in pacemaker experiments, underestimates the Pacific contribution to global temperature change by a factor of 

two during the ‘hiatus’; the sensitivity with which the global temperature responds to Pacific variability varies by a factor of 

two between models on a decadal time scale, questioning the robustness of single model pacemaker experiments. Once we 

have accounted for these factors, the CMIP5 mean warming adjusted for Pacific variability reproduces the observed annual 

global mean temperature closely, with a correlation coefficient of 0.985 from 1950 to 2018. The CMIP6 ensemble performs 

less favourably but improves if the models with the highest transient climate response are omitted from the ensemble mean.

Keywords CMIP5 · CMIP6 · Internal variability · Decadal variability · Global mean temperature · ENSO

1 Introduction

The overall modelled global temperature increase of the 

past seven decades agrees well with what has been observed 

(Fig. 1a), but differences occurred on decadal to multidec-

adal time scales (Dai et al. 2015; Meehl et al. 2016). While 

the climate models participating in the Coupled Model Inter-

comparison Project phase 5 (CMIP5; Taylor et al. 2012) and 

phase 6 (CMIP6; Eyring et al. 2016) capture the observed 

global mean surface temperature (GMST) trend from the 

1940s/early 1950s to the mid-1970s reasonably well (Fol-

land et al. 2018; Papalexiou et al. 2020), they tend to over-

estimate the warming from the mid-1970s to present-day 

(Tokarska et al. 2020). On shorter time scales, further dif-

ferences become apparent (Fig. 1b). Whereas Earth appeared 

to warm faster than simulated by models from the 1970s to 

the 1990s, models overestimate the GMST increase during 

the so-called ‘global warming hiatus’ from the 1990s to the 

early twenty-first century (Medhaug et al. 2017). On decadal 

to multidecadal time scales, episodes of differences in the 

rate of modelled and observed global temperature change 

are related mostly to internal climate variability (Dai et al. 

2015; Kosaka and Xie 2016), uncertainty in radiative forc-

ing (Haustein et al. 2019; Marotzke and Forster 2015), and 

observational uncertainty (Karl et al. 2015).
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The ‘global warming hiatus’, the most recent period of 

divergence between observed and modelled global warm-

ing, has been examined extensively and is explained by a 

combination of factors: under-representation of the fastest 

warming regions in the observational record (Cowtan and 

Way 2014); a biased comparison between observations and 

models, where sea surface temperature (SST) was assumed 

to warm at the same rate as marine air temperature (Cowtan 

et al. 2015); uncorrected biases in SST datasets related to 

changes in measurement instruments over time (Hausfather 

et al. 2017; Karl et al. 2015); mismatches in the radiative 

forcing, caused mainly by solar variability and omitted 

small volcanic eruptions (e.g., Folland et al. 2018; Huber 

and Knutti 2014; Ridley et al. 2014; Schmidt et al. 2018; 

Schmidt et al. 2014); and internal variability in the climate 

system (e.g., England et al. 2014; Kosaka and Xie 2013) 

causing the excess heat to be transported more efficiently 

away from the atmosphere to the deeper ocean (e.g., Meehl 

et al. 2011; Watanabe et al. 2013). Modelled warming dur-

ing recent decades might also be too large if models over-

estimate the transient climate response (TCR) (Jiménez-

de-la-Cuesta and Mauritsen 2019), but Huber and Knutti 

(2014) and Santer et al. (2017) found little evidence for a 

biased response of the CMIP5 ensemble to external forc-

ing. Climate sensitivity has, however, increased from CMIP5 

to CMIP6 (Meehl et al. 2020; Zelinka et al. 2020) and the 

CMIP6 ensemble shows greater warming than CMIP5 since 

the 1970s, which increases the discrepancy with observed 

warming during the ‘global warming hiatus’ (Fig. 1).

Internal variability in the Pacific is believed to have 

played a key role in decadal-scale differences between 

observed and modelled warming, and numerous studies 

quantified its contribution to the ‘global warming hiatus’ 

and earlier episodes. During the ‘hiatus’ period, Pacific 

trade winds strengthened, thereby intensified the Pacific 

shallow ocean overturning cells and increased upwelling 

of cooler waters in the central and eastern Pacific (England 

et al. 2014; Maher et al. 2018). This lowered the SSTs in 

the eastern Pacific and led to increased heat uptake into the 

subsurface western Pacific Ocean (England et al. 2014). 

Part of the heat has been transported by an enhanced Indo-

nesian throughflow from the Pacific into the subsurface 

Indian Ocean, leading to a warming of the Indian Ocean 

(Lee et al. 2015). These processes reduced the pace of 

global warming during the ‘hiatus’ period relative to the 

ensemble mean of climate model simulations where inter-

nal variability is averaged out (Kosaka and Xie 2013).

Here, we aim to reconcile differing conclusions on the 

importance of Pacific variability during periods of accel-

erated and reduced rates of warming. While a consensus 

emerged that Pacific variability has contributed to the 

‘global warming hiatus’ (Medhaug et al. 2017), estimates 

of how much differ greatly, and range from fully explain-

ing it (e.g., Kosaka and Xie 2016; Peyser et al. 2016), to 

most of it (Swingedouw et al. 2017), around half (Huber 

and Knutti 2014), around a fourth (Meehl et al. 2016), to 

even less than that (Chylek et al. 2016; Tung and Chen 

2018).
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Fig. 1  a Observed and modelled annual global mean surface tempera-

ture (GMST) anomalies since 1950 (reference period is 1961–1990). 

For the 90% ensemble range (i.e., from 5 to 95%) we use one member 

per model, otherwise we first average the realizations of each model. 

To estimate the uncertainty of the ensemble mean we resample the 

CMIP6 models with replacement. The uncertainty for the other multi-

model ensembles is similar, but not shown for clarity. CMIP6_con 

is a constrained multi-model ensemble that only includes CMIP6 

models with a transient climate response of < 2.4  °C. b  Running 

15-year long trends in observed and modelled GMST and the differ-

ence between the two. The dark grey range indicates the minimum 

to maximum difference between the different GMST observational 

datasets and multi-model means, and in light grey the 95% range (i.e., 

from 2.5 to 97.5%) across the different combinations with resampled 

ensemble means is shown. The difference is shifted by – 0.5 °C per 

decade as indicated by the horizontal dashed line
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After having introduced the data and methods in Sect. 2, 

we review different approaches of quantifying the influence 

of Pacific variability on the global mean temperature in 

Sect. 3. In Sect. 4 we quantitatively compare the estimated 

Pacific contribution to global mean temperature during the 

past seven decades, but with a focus on the ‘global warming 

hiatus’, from 18 studies and examine which factors led to 

differing conclusions on the importance of Pacific variabil-

ity. We demonstrate that the difference between observed 

and modelled warming is dominated by Pacific variability. 

Adjusting the multi-model ensemble means for the effect 

of Pacific variability therefore allows us to uncover biases 

in the simulated global mean forced response unrelated to 

Pacific variability. Whereas the variability-adjusted CMIP5 

multi-model mean closely resembles observed warming, the 

CMIP6 ensemble mean appears to overestimate warming 

during recent decades.

2  Data and methods

We focus on global mean surface temperature (GMST here-

after) as one of the key metrics of global climate change, 

but note that it is an incomplete measure of the warming of 

the globe since most of the heat is stored in the oceans. The 

underlying assumptions throughout the paper are that the 

forced signal and internal variability are independent and 

approximately add up linearly. Under strong forcing, these 

assumptions may break down (Brown et al. 2017; Olons-

check and Notz 2017).

We restrict our analysis to the period from 1950 to 2018 

as the tropical Pacific SSTs were only poorly sampled prior 

to that (Deser et al. 2010) and to avoid large SST biases 

during the World War II period and prior (Chan et al. 2019; 

Cowtan et al. 2018; Thompson et al. 2008). Nonetheless, the 

examined period covers most of the human-made climate 

change, as around three-quarters of the overall anthropo-

genic global warming took place after 1950 (Haustein et al. 

2017).

Further, we limit the analysis to annual mean (Janu-

ary–December) and global mean values. Explaining differ-

ences between observed and simulated annual mean GMST 

does not guarantee that the individual seasons are explained 

as well (Deser et al. 2017; Douville et al. 2015) nor that the 

simulated temperature pattern agrees fully with the observed 

pattern (Deser et al. 2017; Xu et al. 2020).

2.1  Observational data

To quantify GMST changes, we use two spatially inter-

polated datasets, CW19 and GISTEMPv14. CW19 is an 

updated version of the Cowtan and Way (2014) dataset, 

which combines CRUTEM4.6 (Jones et  al. 2012) over 

land with HadSST4 (Kennedy et al. 2019) over the ocean 

and infills regions of missing observations by kriging. The 

initially published Cowtan and Way (2014) dataset used 

HadSST3, and to differentiate the two versions we refer to it 

as CW19 in the following. GISTEMPv4 (Hansen et al. 2010; 

Lenssen et al. 2019) represents SSTs by ERSSTv5 (Huang 

et al. 2017a) and land air temperatures are based on NOAA 

GHCNv4 (Menne et al. 2018). GISTEMPv4 extrapolates 

temperature anomalies between stations which are up to 

1200 km apart and thereby achieves nearly complete spatial 

coverage after 1950. Because measurement coverage since 

1950 is relatively high, statistical infilling is able to alleviate 

biases in global warming arising from poor coverage (Ben-

estad et al. 2019), such as underestimated warming during 

the ‘global warming hiatus’ (Cowtan and Way 2014; Huang 

et al. 2017b). We compare GISTEMPv4 and CW19 with 

other spatially interpolated GMST datasets in the support-

ing information (Fig. S1). While there are some differences 

between the datasets, our results do not depend strongly on 

the choice of GMST dataset.

To characterize Pacific variability, we use indices based 

on tropical SST and wind stress. We calculate indices of 

oceanic variability from two SST datasets, COBE-SST2 

(Hirahara et al. 2014) and ERSSTv5. Both datasets are spa-

tially interpolated. Among other SST datasets, ERSSTv5 

and COBE-SST2 are most consistent with independent 

ocean profile data used for evaluating the datasets after 

1950 (Huang et al. 2018), and are not affected by a cooling 

bias in recent years seen in other SST datasets (Hausfather 

et al. 2017). We represent the El Niño-Southern Oscillation 

(ENSO) by the observed monthly-mean equatorial Pacific 

SSTs in the Nino3.4 region (5° S–5 °N, 170°–120° W; Tren-

berth 1997). The simulated ENSO variability might be spa-

tially displaced compared to the observed variability, and 

therefore we also use a larger region in the tropical, central 

to eastern Pacific, typical of what has been used in tropical 

Pacific pacemaker experiments (15° N–15° S, 180°–90° W; 

hereafter the pacemaker region).

We quantify tropical Pacific zonal mean eastward wind 

stress variability using four modern reanalyses, ERA5 

(Hersbach and Dee 2016; covering the period 1979–2018), 

JRA-55 (Kobayashi et al. 2015; 1958–2018), MERRA2 

(Gelaro et al. 2017; 1980–2018), and the NOAA-CIRES 

20th Century Reanalysis (20CR) v2c (Compo et al. 2011; 

1851–2014). ERA5, JRA-55 and MERRA2 assimilate dif-

ferent observation types and variables whereas 20CR only 

assimilates surface pressure observations and may, there-

fore, be less susceptible to changes in the observational 

system, but is also less tightly constrained by observa-

tions. For calculating the zonal mean wind stress variabil-

ity, we use 180°–150° W and 6° S–6° N, a region where 

England et al. (2014) found maximum regression between 

the observed Interdecadal Pacific Oscillation (IPO) and 
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wind stress variability. Again, we also use a larger region, 

150° E–150° W and 10° S–10° N, as in Saenko et al. (2016), 

to assess the robustness of our results. In the following, we 

refer to these as the England and Saenko regions. All regions 

are displayed in Fig. 2.

For the GMST and SST observations we use 1961–1990 

as the reference period, whereas we compute anomalies with 

respect to 1982–2010 for the wind stress reanalyses fields.

2.2  Model data

To estimate unforced climate variability, we use pre-indus-

trial control (piControl) simulations from 33 CMIP5 mod-

els and 35 CMIP6 models consisting of 18,797 and 21,740 

simulated years, respectively. The models used are listed in 

Table S1 in the supporting information. We linearly detrend 

the control simulations to remove residual model drift.

We compare the observed warming against the means 

of CMIP5 and CMIP6 models. For the CMIP5 ensem-

ble, 86 historical members from 38 models are available, 

and we extend these with the RCP8.5 scenario from 2006 

onward (the choice of the scenario, however, does not make 

a large difference for 2006–2018; England et al. 2015). The 

CMIP6 ensemble consists of 47 models with 347 realiza-

tions. Besides their improved model physics, and a gener-

ally higher resolution, the CMIP6 models are forced with 

updated external forcings. From 2015 onward we use sim-

ulations under SSP5-8.5 forcing for which a subset of 34 

models provides simulations. We compute the historical 

multi-model means by first averaging the members of each 

model to then average across the models (including only the 

first member of each model results in a very similar multi-

model average). The uncertainty around the multi-model 

ensemble means is quantified by resampling the ensembles 

with replacement.

When comparing simulated to observed warming, we 

blend absolute SST over oceans with absolute near-surface 

air temperature over land and sea ice as in observations (pro-

cedure as introduced by Cowtan et al. 2015) for the CMIP5 

models. Clarke and Richardson (2020) show that the blend-

ing bias expressed as the ratio of ΔGSAT, the global mean 

air temperature change, to ΔGMST, the blended temperature 

change, is similar for the CMIP5 and CMIP6 ensembles. 

Therefore, we approximate the CMIP6 ΔGMST as:

The last term on the right-hand side accounts for the dif-

ference in warming between the two ensembles. β is the 

ratio of (ΔGMST – ΔGSAT)/ΔGSAT, and we estimate it to 

be – 0.048 during 1900–2018 for the CMIP5 mean, consist-

ent with other assessments (Richardson et al. 2018). For 

ERSSTv5, night-time marine air temperature observations 

are used to correct biases in SST measurements, but it is 

not obvious how this influences the differential warming 

ΔGMST
CMIP6

= ΔGSAT
CMIP6

+ (ΔGMST
CMIP5

− ΔGSAT
CMIP5

)

+ � ∗ (ΔGSAT
CMIP6

− ΔGSAT
CMIP5

).

Fig. 2  The four regions in 

the tropical Pacific used in 

this study to obtain indices of 

internal variability: The Nino3.4 

and pacemaker regions for SST 

variability, and the England and 

Saenko regions for wind stress 

variability
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between SSTs and marine air temperatures (Cowtan et al. 

2015), and we therefore also compare GISTEMPv4 against 

blended model output.

For the historical simulations, we use the same reference 

periods as for the observations and assume that biases in the 

simulated climatological GMST project only weakly onto 

the simulated climate change (Hawkins and Sutton 2016; 

Stolpe et al. 2019).

2.3  Method

We compare published studies that estimate the influence of 

tropical Pacific variability on global temperature using various 

methods (see Sect. 3). We restrict this comparison to studies 

that use a measure of Pacific variability, such as SST or sur-

face wind variability, and relate this to GMST, and exclude 

studies that decompose GMST statistically into different com-

ponents and then relate these to spatial patterns and modes of 

variability (e.g., Chen and Tung 2018; Dai and Wang 2018; 

Wei et al. 2019). Further we only consider studies that use a 

measure of tropical Pacific variability and omit studies that 

solely use other measures of Pacific internal variability [e.g., 

the IPO as in Meehl et al. (2016) or Power et al. (2017) or 

the Pacific Decadal Oscillation, PDO, as in Steinman et al. 

(2015)] to remove one source of potential spread between 

estimates. This leaves us with 18 studies that we use for the 

comparison—which we argue is a representative sample of 

the literature. All studies are summarized in Table S2.

Most of the data is provided by the corresponding authors 

(see acknowledgments) and for a few studies we extracted 

the data from figures in the individual papers. The data of 

Peyser et al. (2016) was not available to us, and we therefore 

computed it following their methodology (see supporting 

information). Within CMIP6, two projects include experi-

ments dedicated to quantifying the role of time-evolving 

equatorial Pacific variability to regional and global temper-

ature variability: The Decadal Climate Prediction Project 

(Boer et al. 2016; DCPP; “dcppC-pac-pacemaker” experi-

ment) and the Global Monsoons Model Intercomparison 

Project (Zhou et al. 2016; GMMIP, “hist-resIPO” experi-

ment). Data from one model, IPSL-CM6A-LR, following 

the dcppC-pac-pacemaker experiment was available and is 

also included in our analysis. At the time of writing, three 

models performed the hist-resIPO experiment, but each 

model only provided very small ensemble sizes (Table S2) 

and therefore the data is not included in our analysis.

To understand differences between the studies, and to 

test assumptions made when relating Pacific variability and 

GMST, we use variability analogues (Huber and Knutti 

2014; Stolpe et al. 2017). Variability analogues are peri-

ods from piControl simulations for which the simulated, 

unforced variability matches the observed Pacific variability. 

The mean over the selected analogues in another variable, 

e.g., in GMST, then provides an estimate of the influence of 

Pacific variability on the examined quantity.

We measure tropical Pacific variability based both on 

SST and wind stress from the regions shown in Fig. 2 and 

standardize the observed and modelled time series of Pacific 

variability. This allows a better comparison between time 

series with different amounts of variability but has only a 

small impact on our results. Starting from January 1950 

we select the 20 variability analogues from the more than 

40,000 piControl years that have the smallest root-mean-

square error (RMSE) with the observed time series of Pacific 

variability over a period of 40 months. We shift by 1 month 

and again select the best matching analogues starting from 

February 1950 and repeat this until we sampled the whole 

observational period. Then we average all the overlapping 

global near-surface air temperature fields of these variability 

analogues for every month and compute global mean time 

series. We assume that the relationship between Pacific vari-

ability and GMST is the same under present-day and pre-

industrial conditions.

3  Comparison of methods to quantify 
the Pacific imprint on GMST 

Methods to quantify the tropical Pacific influence on GMST 

can be broadly categorized into three groups. Regression-

based approaches, pacemaker experiments, and freely evolv-

ing climate model simulations. In Table S2 we list key fea-

tures of studies based on these methods.

In pacemaker experiments (Boer et al. 2016; Deser et al. 

2017; Douville et al. 2015; Kosaka and Xie 2013, 2016; 

Swingedouw et  al. 2017; Zhou et  al. 2016), modelled 

SSTs in the central to eastern equatorial Pacific are nudged 

towards observed SST anomalies. The influence of Pacific 

variability is then estimated as the difference in GMST evo-

lution between two ensembles: A freely evolving initial con-

dition ensemble with historical changes in external radiative 

forcing, and an ensemble with nudged tropical SSTs, but 

the same historical forcing. Kosaka and Xie (2016) argue 

that the obtained estimate of GMST variability induced by 

the Pacific is independent of the climate model’s radiative 

forcing and climate sensitivity, and Douville et al. (2015) 

propose that it depends instead on the model-specific rela-

tionship between equatorial Pacific variability and GMST 

and in particular how strongly the equatorial variability 

projects onto high latitudes. Wang et al. (2017) similarly 

find that the tropical impact on high-latitude air temperature 

varies strongly between models on a decadal time scale and 

Deser et al. (2017) argue that atmospheric teleconnections 

forced by the tropical Pacific, which are not captured by all 

models, are of relevance for Eurasian and North American 
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boreal winter temperature and thereby also GMST. The link 

between equatorial Pacific SST and global temperature has 

been shown to be overestimated in some models (e.g., in 

CanESM2, see Saenko et al. 2016). The SST-pacemaker 

approach creates an artificial heat sink in the Pacific which 

could bias, if large, the estimated Pacific contribution to 

global temperature variability (Tung and Chen 2018), but 

Kosaka and Xie (2016) argue this is not a major concern.

The key differences between the pacemaker studies are 

the climate models used, the number of ensemble members, 

which determines how much variability originating from 

outside the Pacific is still present, the SST dataset, and the 

restoring time scale. A larger restoring time scale allows the 

model to evolve more freely, and results in a more physical 

higher-frequency ocean-atmosphere interaction (Swinge-

douw et al. 2017). The larger restoring time scale has also 

been recommended for the CMIP6 DCPP pacemaker experi-

ments (Boer et al. 2016).

To remedy the issue of artificial heat uptake, England 

et al. (2014), Delworth et al. (2015), Douville et al. (2015), 

Gastineau et al. (2019), Oka and Watanabe (2017), Svend-

sen et al. (2018), and Watanabe et al. (2014) prescribe wind 

stress trends instead of SST. This is done either over tropi-

cal oceans (Watanabe et al. 2014) or only over the tropical 

Pacific. The wind nudging experimental design comes with 

the disadvantage of larger uncertainties in wind stress from 

reanalyses compared to SST reconstructions. The agree-

ment between reanalyses in decadal tropical Pacific wind 

stress trends is relatively poor in the early 20th century, but 

improves over time (Kajtar et al. 2018). Further, the SST 

evolution in the tropical Pacific is not constrained. While 

year-to-year variability in tropical Pacific SST is usually 

well-matched when wind fields are prescribed (Douville 

et al. 2015; Gastineau et al. 2019), decadal trends have been 

shown to be biased in some models (e.g., Gastineau et al. 

2019), which then might lead to a biased GMST influence. 

Most wind-stress studies use ERA-interim, for which the 

robustness of tropical Pacific wind trends has been evaluated 

against several observational datasets (de Boisséson et al. 

2014), but it is limited to the period after 1979. Watanabe 

et al. (2014), Oka and Watanabe (2017), and Svendsen et al. 

(2018) use JRA-55 and 20CR which cover a longer period.

In regression-based approaches (Folland et  al. 2018; 

Foster and Rahmstorf 2011; Hu and Fedorov 2017; Johans-

son et al. 2015; Lean 2018; Rypdal 2018; Saenko et al. 

2016; Schmidt et al. 2014) the observed GMST, or its rate 

of change, is modelled by a number of predictors that are 

linearly combined. These studies differ in which predictors 

they include, whether the predictors are filtered, for example 

with a long-memory response (Rypdal 2018), an e-folding 

response profile (Folland et al. 2018), or by using a mixed-

layer model (e.g., Thompson et al. 2008), and the tempo-

ral resolution of the predictors, i.e., monthly or annual. The 

regression models typically consist of anthropogenic forcing, 

solar variability, stratospheric aerosol optical thickness as a 

measure of volcanic activity, and a term to describe tropical 

Pacific variability. Some studies include further modes of 

internal variability, such as the Atlantic Multidecadal Vari-

ability (AMV; e.g., Chylek et al. 2016; Folland et al. 2018; 

Rypdal 2018), or the Arctic Oscillation (AO; e.g., Folland 

et al. 2018), which can make a difference if predictors are 

correlated. Contrary to other regression analyses, Chylek 

et al. (2014) propose a minimal regression model with only 

greenhouse gas forcing and the AMV as predictors of annual 

GMST, but Rypdal (2018) argues that including the AMV at 

annual resolution misattributes GMST variability caused by 

ENSO variability and volcanic forcing to the AMV. This is 

because ENSO variability and volcanic forcing also influ-

ence North Atlantic SST, and accordingly the predictors are 

correlated. Regarding the Pacific variability term, regression-

based studies often use the Nino3.4 index or the Multivariate 

ENSO index (MEI; Wolter and Timlin 2011). The latter is a 

more comprehensive way of characterizing ENSO variabil-

ity than a purely oceanic, SST based index as it combines 

environmental variables from both the atmosphere and the 

ocean. Exceptions are Saenko et al. (2016) who instead use 

western tropical Pacific zonal wind stress as a predictor and 

Peyser et al. (2016) who relate the east-minus-west difference 

in tropical Pacific sea surface height to GMST variability.

A general concern of regression models is that the effect of 

predictors on GMST is not physically constrained and hence 

much of the variance is explained by construction, although a 

connection might not exist in reality. The more predictors are 

included, the larger the risks of overfitting. Kosaka and Xie 

(2016), Peyser et al. (2016), and Wang et al. (2017) argue that 

models simulate a GMST response to tropical Pacific variability 

that is around 20–45% larger on a decadal time scale than on an 

interannual time scale. Regression models are constructed on 

observations that are dominated by the latter and therefore might 

underestimate the amplitude of Pacific variability on GMST on 

a decadal time scale (Wang et al. 2017). Whereas Kajtar et al. 

(2019) demonstrate that the sensitivity of decadal GMST vari-

ability on the IPO is similar in the CMIP5 multi-model mean 

and observations, Haustein et al. (2019) reconcile observed and 

modelled warming during the twentieth century without a time 

scale dependent GMST response on tropical Pacific variability.

The third class of methods uses readily available climate 

model simulations to establish the effect of Pacific variability 

on GMST. This can be done either by searching for variabil-

ity analogues from piControl simulations (Huber and Knutti 

2014), regressing GMST on indices of Pacific variability in 

control (Peyser et al. 2016; Wang et al. 2017) or historical 

simulations (Kajtar et al. 2019), or by only including histor-

ical model simulations that are in the right ENSO phase to 

the ensemble mean (Risbey et al. 2014). The latter approach 

gives an ensemble mean that is closer to the observed warming 



Pacific variability reconciles observed and modelled global mean temperature increase since…

1 3

(Risbey et al. 2014). The adjusted ensemble mean is, however, 

based on fewer models and may be less robust. A strength of 

the variability analogues method is that it retains the physical 

connection across variables, and does not induce an artificial 

heat sink. A limitation, however, is the sparsity of piControl 

simulations. With increasing length of the analogues, i.e., ana-

logues that track the observed variability over a longer period, 

it becomes harder to find suitable analogues, and accordingly 

the Pacific SST trend is underestimated (Fig. S2 in the support-

ing information). Therefore, we here search for relatively short 

analogues of 40 months length to ensure that the selected ana-

logues follow the observed variability closely. Also, the number 

of analogues selected at each time step is somewhat arbitrary, 

but the results are only weakly dependent on this threshold 

(Fig. S3). Further, the simulated relationship between Pacific 

and GMST variability could be biased and is not constrained 

by observations. This bias is, however, as we show later, likely 

substantially lower in multi-model analyses than in pacemaker 

experiments, which usually rely on a single climate model.

4  Results

4.1  Simulated and observed global mean 
temperature change

We start by examining the long-term GMST increase 

simulated by the CMIP5 and CMIP6 ensemble means 

and whether there is evidence for a mismatch with the 

observed warming. Such a discrepancy might indicate 

that internal variability alone is insufficient in reconciling 

observed and modelled warming, but that there is a bias in 

radiative forcing or in how sensitive the climate responds 

to the imposed forcing.

The 1950–2018 long-term warming of both the CMIP5 

and CMIP6 ensemble agrees well with what has been 

observed, but the CMIP6 ensemble mean shows greater 

warming than CMIP5 from around 1970 onward for trends 

ending in 2018. CMIP6 ensemble mean trends starting 

from 1975 and later even fall outside the observational 

2σ envelope, although some bootstrapped samples of the 

ensemble mean remain within the observational uncer-

tainty (Fig. 3a). This enhanced warming of the CMIP6 

ensemble during the last decades is likely caused by its 

11% higher ensemble mean TCR (2.03 °C compared to 

1.83 °C for CMIP5; Table S1. Note that TCR estimates are 

not available for all models) (Flynn and Mauritsen 2020; 

Nijsse et al. 2020; Tokarska et al. 2020).

Several recent studies observationally constrained TCR to 

central values from 1.3 to 2.05 °C, with upper 95th percen-

tiles of the constrained distributions in the range 1.9–2.4 °C 

(Fig. 3b). 20% of the CMIP6 models (9 out of 45 models 

with available TCR estimate; Table S1), but only one CMIP5 

model, simulate a TCR that exceeds 2.4 °C, which is more 

than we would expect if the models were random sam-

ples of the observationally constrained TCR distributions, 
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Fig. 3  a Trends in observed and modelled GMST with different start 

years that all end in year 2018. For the observational uncertainty we 

treat the monthly residual from 1950 to 2018 as an ARMA(1,1) pro-

cess following the approach of Foster and Rahmstorf (2011). CMIP6 

uncertainty is estimated from resampling the ensemble mean. b Tran-

sient climate response (TCR) simulated by the CMIP5 and CMIP6 

models (Table  S1) compared to observationally constrained esti-

mates from B2020 (Bruns et al. 2020), H2019 (Haustein et al. 2019), 

JM2019 (Jiménez-de-la-Cuesta and Mauritsen 2019), LC2018 (Lewis 

and Curry 2018), MS2020 (Montamat and Stock 2020), N2020 

(Nijsse et  al. 2020), Ph2020 (Phillips et  al. 2020), Pr2020 (Pretis 

2020), Sch2018 (Schurer et  al. 2018), Sk2018 (Skeie et  al. 2018), 

and T2020 (Tokarska et  al. 2020). The estimate of T2020 is based 

on the observed 1981–2017 temperature increase. Simulated effective 

climate sensitivity (ECS) is compared to the baseline assessment of 

S2020 (Sherwood et al. 2020)
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suggesting that some CMIP6 models overestimate the 

response to external forcing. We therefore also consider a 

constrained CMIP6 ensemble, CMIP6_con, for which we 

conservatively only include models with a TCR of less than 

2.4 °C. CMIP6_con consists of 27 models (Table S1) with 

a mean TCR of 1.83 °C, virtually identical to that of the 

CMIP5 ensemble, and expectedly it simulates tempera-

ture trends from 1965 and onward which are closer to the 

observed trends (Fig. 3a).

Despite the overall agreement in long-term warming, and 

the potentially overestimated warming from CMIP6 to which 

we come back in Sect. 6, differences remain on decadal time 

scales (Fig. 1b) and we therefore examine the contribution 

of the tropical Pacific to these. We start with a general over-

view of the Pacific contribution to GMST since 1950 and 

then examine the ‘global warming hiatus’ in detail. We first 

present results of the published literature to then examine 

why studies come to differing conclusions on the GMST 

imprint of Pacific variability.

4.2  Study intercomparison: Pacific influence 
on global mean temperature

4.2.1  Overview: Pacific contribution 1950 to present‑day

Across the assessed studies, there is broad agreement that 

tropical Pacific variability has contributed to the difference 

between observed and modelled warming since 1950. For 

the period from 1960 to 2012, the estimated tropical Pacific 

influence on GMST (in °C) from the examined studies is 

positively correlated with the difference between observed 

and modelled annual mean GMST (mean r = 0.69, with a 

range of 0.52–0.85; see Fig. S4 for details). After smooth-

ing the time series with a running 5-year mean to emphasize 

lower frequency variability, the average correlation with the 

residual remains similar, r = 0.72, but the spread among the 

studies increases (r = 0.35–0.93) (Fig. S4).

Pacific variability may therefore explain a significant part 

of the difference between observed and modelled GMST 

Fig. 4  Difference between 

running 15-year long trends in 

observed and modelled GMST. 

The dark grey range indicates 

the minimum to maximum 

difference between the different 

observational GMST datasets 

and multi-model means, and in 

light grey the 95% range across 

the different combinations with 

resampled ensemble means is 

shown. Running GMST trends 

for a studies using a multiple 

linear regression approach and 

b for SST and wind stress pace-

maker experiments. The esti-

mates of England et al. (2014), 

Huber and Knutti (2014), Peyser 

et al. (2016), Schmidt et al. 

(2014), and Swingedouw et al. 

(2017) only cover a short period 

and are therefore not included 

here. Figure S6 in the support-

ing information shows running 

10- and 20-year long trends

Multiple Regression
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increase on different time scales, but there is a large spread 

between the studies. Whereas the multiple linear regres-

sion studies indicate a consistent Pacific imprint on running 

15-year long GMST trends (Fig. 4a), the variability across 

the SST and wind stress nudging experiments is consider-

ably larger (Fig. 4b). The regression-based Pacific variability 

estimates reconcile observed and modelled warming during 

most of the examined period, except for temperature trends 

starting in the 1950s and during the ‘global warming hia-

tus’ although there is similarity in the temporal evolution 

during these periods. The pacemaker experiments display a 

larger spread and greater amplitude of GMST trends related 

to Pacific variability than the multiple regression estimates. 

Compared to the difference between observed and modelled 

GMST changes, several pacemaker experiments appear to 

overestimate the Pacific influence on GMST, but also sug-

gest that potentially the complete discrepancy between 

observed and modelled running 15-year trends can be attrib-

uted to Pacific variability. These findings are similar when 

we instead examine running 10-, and 20-year long trends 

(Fig. S6).

4.2.2  Pacific contribution to the ‘global warming hiatus’

Next, we exemplarily examine the Pacific contribution to the 

‘global warming hiatus’. This period is not only covered by 

all the studies, shows particularly large trends in the Pacific, 

but also the spread between the different studies is large. We 

use two different periods to define the ‘hiatus’, 1997–2012 

and 1992–2012. The latter period is motivated by the onset 

of the acceleration in Pacific trade winds (England et al. 

2014). The ‘hiatus’ ended with the years 2014–2016, when 

a strong El Niño released large amounts of heat from the 

north-western tropical Pacific (Yin et al. 2018), but we use 

2012 as the end-year because most studies in our intercom-

parison only include data until then (cf. Table S2).

During 1997–2012, the observed warming was between 

− 0.21 and − 0.11 °C smaller than the modelled temperature 

increase of the multi-model ensemble means when calcu-

lated as the linear trend multiplied by its length (Fig. 5a). 

For the years from 1992 to 2012, this difference ranges from 

− 0.28 to − 0.19 °C (Fig. 5b). For both periods GISTEMPv4 

shows slightly greater warming than CW19, but the uncer-

tainty in modelled warming is larger than observational 

uncertainty. CMIP6 shows greater warming than CMIP5 

and CMIP6_con and accordingly the largest divergence from 

observed GMST.

All inspected studies agree that the tropical Pacific acted 

to lower GMST trends during the early twenty-first century. 

The spread among the studies is, however, substantial and 

reaches a factor of more than five for 1992–2012 (Fig. 5b).

Most of the SST-based pacemaker studies indicate that 

the model—observation difference during both periods can 
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Fig. 5  The contribution of Pacific variability to GMST as esti-

mated by different studies during the period from a  1997 to 2012 

and b  1992 to 2012 (only best estimates are shown), calculated as 

the least squares linear trend multiplied by 16  years and 21 years, 

respectively  (bars). The time series of Johansson et  al. (2015) ends 

in 2011 and is therefore marked by an asterisk. The lower and upper 

(orange dot)  estimates of England et  al. (2014) come from interme-

diate and full complexity climate models, respectively. Note that we 

implemented the method of Peyser et al. (2016) as they examine a dif-

ferent period (details in supporting information). For the difference 

between observed and modelled warming, we show the 90% range 

across the resampled ensemble means (whiskers)
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be fully attributed to Pacific variability even under the high 

CMIP6 warming. The spread among the pacemaker studies 

is large, and several experiments find a contribution that is 

significantly larger than the actual model—observation dif-

ference. The experiments of Douville et al. (2015) show a 

cooling that is more than twice as large as that of the pace-

maker experiment of Deser et al. (2017), although they men-

tion that their model simulates a “weak but realistic ENSO-

GMST relationship” on an annual time scale. On average the 

SST-pacemaker experiments simulate a cooling of 0.36 °C 

during 1992–2012, which is larger than the actual difference 

of 0.19–0.28 °C between observed and simulated warming.

Experiments where wind stress is overridden by reanaly-

sis values span an even wider range. While Douville et al. 

(2015) find a contribution of − 0.12 °C for 1992–2012, the 

experiments of Watanabe et al. (2014) and Gastineau et al. 

(2019) show about four times larger influences on GMST. 

Douville et al. (2015) argue that MIROC5, the model used 

by Watanabe et al. (2014), has an unrealistically strong cor-

relation between Pacific SST and GMST. In the wind stress 

experiment of Gastineau et al. (2019) the simulated cool-

ing in the Nino3.4 region is more than twice as large as 

observed. This may be one reason why they find a larger 

Pacific contribution to the ‘hiatus’ than Swingedouw et al. 

(2017) who nudge eastern tropical SSTs in the same model. 

For the examined wind stress experiments, the global tem-

perature decrease related to Pacific variability is on average 

0.25 °C, which is sufficient to fully explain the observa-

tion—model discrepancy from 1992 to 2012. Among the 

wind stress pacemaker studies, the experiment of Svendsen 

et al. (2018) shows the smallest Pacific contribution dur-

ing both periods. The use of 20CR, which shows a some-

what smaller intensification in Pacific trade winds than the 

other reanalyses during the ‘global warming hiatus’, or the 

relatively small ensemble size (Table S2) resulting in some 

internal variability from outside the Pacific still being pre-

sent, might contribute to this.

The regression-based studies and variability analogues of 

Huber and Knutti (2014) show a smaller Pacific influence 

during the ‘global warming hiatus’, and these studies typi-

cally find additional contributions to the ‘hiatus’ from solar 

variability (e.g., Folland et al. 2018; Huber and Knutti 2014; 

Lean 2018) and stratospheric aerosols (Huber and Knutti 

2014). Apart from the study of Saenko et al. (2016), which 

uses wind stress as a predictor and finds a considerably 

larger Pacific contribution than the other multiple regression 

studies, the Pacific induced cooling is smaller than in any 

SST-based pacemaker experiment. The GMST cooling esti-

mated by multiple linear regression is on average 0.12 °C, 

or only about half of the difference between observed and 

modelled warming during 1992–2012 (estimates of Saenko 

et al. (2016) and Johansson et al. (2015) not included here). 

Adjusting the regression-based estimate upwards by about 

40%, which is how much stronger GMST responds to tropi-

cal Pacific variability on average on a decadal than an inter-

annual time scale according to CMIP5 models (Wang et al. 

2017), still results in an estimate less than half of that of the 

SST-pacemaker experiments. This suggests that there are 

further fundamental differences between the methods. The 

regression of modelled GMST onto the east to west tropi-

cal Pacific sea surface height gradient (Peyser et al. 2016), 

results in a significantly larger suppression of the global 

mean temperature increase from 1997 to 2012, roughly in 

line with SST-based pacemaker experiment. Due to the short 

observational record it is difficult to assess how realistically 

models simulate this relationship. The regression coefficient 

is, however, similar across CMIP5 and CMIP6 models (sup-

porting information).

In the following, we examine the differences between 

multiple linear regression and SST-based pacemaker experi-

ments by inspecting the roles of anthropogenic forcings on 

tropical Pacific SST (Sect. 4.3) and of model uncertainty 

(Sect. 4.4). Then, we assess whether tropical Pacific wind 

variability leads to consistent results, and whether or not the 

differences between wind pacemaker experiments can be 

explained by observational uncertainty (Sect. 4.5).

4.3  Influence of forced trend in Pacific SST

Several studies assume there is no or a negligible forced 

signal in the tropical Pacific SSTs and directly use the 

area-mean SST as a predictor for GMST (cf. Table S2). 

Sometimes a long-term linear trend is removed (e.g., Hu 

and Fedorov 2017), and while this removes some external 

forcing, it probably does not remove all (e.g., Mann et al. 

2014). If anthropogenic forcing is not fully accounted for, 

the tropical Pacific cooling due to internal variability dur-

ing the ‘global warming hiatus’ period is underestimated by 

attributing it to external forcing. The MEI also shows a long-

term positive trend, and might therefore contain a forced sig-

nal (Lewis and Curry 2018). Since the MEI is a combination 

of several variables, some of which might be less influenced 

by external forcing, it is not obvious where this signal origi-

nates. In pacemaker experiments the forced signal is implic-

itly removed as it is present in both the nudged and the freely 

evolving experiment. These experiments, however, rely on 

the faithful representation of the forced signal by a single 

climate model.

We estimate the forced signal in the tropical Pacific with 

the method of Turkington et al. (2019) and by using multi-

model means. Turkington et al. (2019) quantify the forced 

signal as the linear trend in tropical SSTs from 30° S to 

30° N over 1962–2011, a period chosen such that there is 

little trend in the IPO. The rate of global warming, how-

ever, increased significantly in the early 1970s (Rahmstorf 

et al. 2017) related to changes in anthropogenic forcing. 
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This might bias the linear trend low. The approach further 

assumes that the tropical-wide forced trend is similar to the 

forced signal in the eastern tropical Pacific. Different to 

Turkington et al. (2019), we only estimate one trend over 

the whole period instead of separately for every month.

Alternatively, we directly take the multi-model means 

over the respective regions as estimates of the forced sig-

nal. Some higher frequency variability is still present, and 

we therefore smooth the multi-model means with a loess 

smoother, although that also partly removes the volcanic 

signal (Fig. 6a). The multi-model means show similar forced 

responses, and relative to that the Turkington method under-

estimates the forced signal in the past two decades, yet the 

multi-model means could be biased. It has therefore been 

suggested to scale either the regional multi-model mean 

SST (e.g., Frankcombe et al. 2015) or the simulated GMST 

(e.g., Kajtar et al. 2019) against the observed SST evolution 

in the region of interest by means of linear regression. In 

the case of the eastern equatorial Pacific SST the scaling 

factor is, however, not stable, but decreases when the most 

recent decades are included. This is not surprising given the 

occurrence of the ‘global warming hiatus’. Nonetheless, the 

scaling approach indicates a forced signal that is in between 

the Turkington et al. approach and the unscaled regional 

ensemble means (Fig. S8). Since we sample a reasonable 

range of the forced response uncertainty, we do not include 

the scaling approach in the following analysis.

We subtract the estimates of the forced signal from the 

observed SSTs to obtain the actual internal variability. After 

the correction, SSTs become colder during the late period 

of the observational record (Fig. 6b). The approach of Turk-

ington et al. (2019) spuriously warms the mid-twentieth cen-

tury, which is a limitation of the linear extrapolation. Using 

these forcing corrected SST time series, we estimate the 

Pacific contribution to GMST with the variability analogues 

method.

Overall, the running 15-year long trends associated with 

Pacific variability exhibit agreement with the difference 

between observed and modelled warming, irrespective of 

the method used to estimate the forced response, but differ-

ences become evident during recent decades (Fig. 7a). Dur-

ing the ‘global warming hiatus’ the uncorrected, raw SST 

index underestimates the Pacific contribution as is expected 

from the presence of a forced signal (Fig. 6b).

From 1992 to 2012 (Fig.  7b), Pacific variability 

reduces the GMST increase by 0.09–0.10 °C when the 

forced warming of the Pacific is not accounted for. This 

is similar to the results of Rypdal (2018) and Huber and 

Knutti (2014), who directly use the uncorrected Nino3.4 

index. With the Turkington et  al. (2019) method, the 

Pacific contribution increases to 0.14–0.17 °C, and with 

the multi-model means removed, to 0.18–0.22 °C (with 

CMIP5 mean subtracted), 0.17–0.23 °C (with CMIP6), 

and 0.16–0.21 °C (with CMIP6_con). The results from 

the different climate model ensembles are similar, because 

their forced responses are similar (Fig. 6a). This demon-

strates the importance of removing the forced signal: It 

approximately doubles the influence of the Pacific during 

the ‘hiatus’.
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Fig. 6  a  Different estimates of the forced signal in the pacemaker 

region (with respect to 1961–1990) from 1950 to 2018. The observed 

monthly COBE-SST2 tropical ocean SST evolution (30° S–30° N) 

used to estimate the forced response with the Turkington et al. (2019) 

approach is shown in grey. We indicate extrapolation with the dashed 

part of the line. The CMIP ensemble mean time series are smoothed 

with a loess smoother. b Observed area-mean SST time series in the 

pacemaker region when the estimated forced signals are removed 

(reference period is 1961–1990). Results for the Nino3.4 region, with 

CMIP6 or CMIP6_con instead of CMIP5 to represent the forced sig-

nal, and with ERSSTv5 instead of COBE-SST2 are all similar and 

therefore not shown
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Kosaka and Xie (2013) additionally performed a SST-

based pacemaker experiment with fixed radiative forcings, 

which conceptually corresponds to using observed, uncor-

rected SST within a regression model or within variability 

analogues. The difference between the two types of experi-

ments reveals a similar effect as discussed, and instead of 

cooling by more than 0.4 °C during 1992–2012 (Fig. 5b), 

global temperatures are reduced by only 0.13 °C when 

forcings are kept constant.

Removing the forced response from observed SST 

naturally makes a smaller difference for earlier periods, 

because the radiative forcing was weaker. Nonetheless, 

the effect cannot be neglected. Depending on whether 

variability cools or warms the planet during a certain 

period, accounting for positive radiative forcing will either 

increase or decrease the Pacific influence. For the period 

1974–1995, as an example, the observed warming was 

greater than modelled, and the Pacific variability shows 

a positive trend. Part of the Pacific warming is externally 

driven and removing it lowers the internal variability 

contribution to the warming during this period. We sus-

pect this is one reason why the SST-based pacemaker and 

regression-based estimates overlap during this period (Fig. 

S7), but not during the ‘global warming hiatus’ (Fig. 5b).

4.4  Contribution of model uncertainty

While the method of estimating and removing the forced 

response from Pacific SST is important, in particular dur-

ing the recent ‘hiatus’ period, it does not explain why some 

SST-pacemaker studies find a Pacific contribution that is 

even larger. To examine this, we rank the climate models 

according to their sensitivities with which the simulated 

GMST responds to variability in the tropical Pacific on a 

decadal time scale. We estimate the sensitivities by regress-

ing GMST trends on pacemaker SST trends in each model’s 

control simulation for 16-year long trends (corresponding 

to the period 1997–2012), 21-year long (1992–2012) and 

22-year long trends (1974–1995). Then, we multiply these 

sensitivities with the observed SST change during each 

period. AMV may also affect GMST on these time scales, 

and including the modelled AMV as an additional predictor 

decreases the spread in regression coefficients relating the 

Pacific variability influence to GMST somewhat, but does 

not fundamentally change the conclusions.

This analysis demonstrates, in agreement with Wang 

et al. (2017), that there are considerable differences in how 

strongly tropical Pacific SST variability projects onto global 

mean temperatures between models. On the examined time 
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Fig. 7  a Difference between running 15-year long trends in observed 

and modelled GMST compared to the contribution of equatorial 

Pacific SST variability (average of COBE-SST2 and ERSSTv5) to 

GMST using the method of variability analogues. Solid lines indicate 

analogues that were selected based on variability in the pacemaker 

region, and dotted lines analogues based on the Nino3.4 region. The 

different colours represent methods of removing the forced response 

from observed SST. The CMIP6 and CMIP6_con estimates are omit-

ted here for clarity as they are similar to the CMIP5 ensemble mean 

(Fig.  6a). The dark grey range indicates the minimum to maximum 

difference between  the different observational GMST datasets and 

multi-model means, and in light grey the 95% range across the differ-

ent combinations with resampled ensemble means is shown. Similar 

figures, but for running 10-year and 20-year long trends are shown in 

the supporting information Figure S9. b Contribution of Pacific vari-

ability to GMST during the period from 1992 to 2012 calculated as 

the least squares linear trend multiplied by 21 years (bars). The grey 

dots in (b) indicate estimates for which the modelled and observed 

time series were not standardized prior to selecting the analogues. For 

the difference between observed and modelled warming, we show the 

90% range across the resampled ensemble means (whiskers)
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scales, there is at least a factor of two difference between 

low- and high-sensitivity models (Fig. 8). The combination 

of model uncertainty and forced signal explains most of the 

spread across the studies examined: if the forced signal is 

not accounted for, even high-sensitivity models would not 

be able to fully explain the ‘global warming hiatus’ (which 

is also the case for the control experiment of Kosaka and 

Xie (2013) as discussed in the previous section). In absolute 

terms, the spread between low- and high-sensitivity mod-

els is relatively small if the forced signal is not removed. 

However, if it is accounted for, the sensitivity of a single 

model becomes more important, and the ‘hiatus’ contribu-

tion ranges from less than 0.15 °C to around 0.40 °C cooling 

(Fig. 8; middle), as we indeed observe (Fig. 5b). From 1974 

to 1995, when Pacific variability acted to increase GMST, 

removing the forced response reduces Pacific warming and 

accordingly the model spread shrinks.

To verify whether modelled sensitivities are supported 

by observations, we subtract estimates of the forced signal, 

based on the multi-model ensemble means, from the SST 

and GMST time series from 1900 to 2018 and then follow 

the procedure as described. As shown in Fig. 8, observation-

ally based estimates are comparable to that of the multi-

model median, consistent with a similar analysis of Kajtar 

et al. (2019) for the IPO. Model-based estimates of the 

Pacific contribution to GMST variability should therefore 

be based on a sufficiently large number of climate models, 

either by repeating pacemaker experiments with different 

models, or by using variability analogues from a large set of 

control simulations.

4.5  Variability analogues on wind trends

Motivated by the large spread across wind-stress based 

pacemaker experiments (Figs. 5, S7), we next address the 

question, whether these experiments are expected to result 

in a similar Pacific contribution as SST-based setups, and 

what role observational uncertainty plays. Therefore, we 

first examine the wind response in analogues selected from 

tropical Pacific SST.

In these analogues, the standardized variability in zonal 

wind stress in the western tropical Pacific agrees well with 

observed variability (Fig. 9a), but 15-year long trends in 

absolute wind stress are generally underestimated (Fig. 9b). 

Swingedouw et al. (2017) observe a similar underestimation 

in wind stress trends when they nudge towards observed 

SSTs in their pacemaker experiment. This might indicate 

too weak SST-wind coupling in the climate model ensem-

ble, other sources of internal variability (Swingedouw et al. 

2017), or that the wind stress trends are partly driven by 

processes outside the Pacific, such as tropical Atlantic Ocean 

SST variations (e.g., Chikamoto et al. 2016; McGregor et al. 

2014).
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Fig. 8  Contribution of Pacific variability to GMST depending on 

model sensitivity and method of estimating the forced signal (i.e., 

raw, that is without forcing correction, Turkington, CMIP5, CMIP6, 

and CMIP6_con). The sensitivity with which GMST responds to 

Pacific internal variability is estimated from the SST in the pace-

maker region of CMIP5 and CMIP6 control simulations with a length 

of at least 400 years (Table S1) and is multiplied with the observed 

SST trend (average of COBE-SST2 and ERSSTv5 with the different 

estimates of the forced signal removed as indicated). Shown are the 

likely (17–83%) and 90% (5–95%) ranges. For the observational esti-

mate we display the minimum to maximum range across 36 estimates 

of the sensitivity with which GMST responds to Pacific variability 

based on combinations of GMST dataset, SST dataset, and method 

of removing the forced signal from the GMST and SST. The grey 

shaded areas indicate the difference between observed and multi-

model mean warming during each period
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There is only a negligible forced Pacific wind stress trend 

in the historical simulations (Fig. 9b), consistent with the 

findings of Watanabe et al. (2014), which circumvents the 

need for estimating and removing the forced signal when 

searching for wind-based variability analogues. Unlike the 

SST time series, we do not standardize the wind stress prior 
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Fig. 9  a  Monthly mean zonal wind stress anomalies in the western 

equatorial Pacific (Saenko region; cf. Figure 2) from SST-based vari-

ability analogues (with multi-model means removed from pacemaker 

region) and two reanalyses, JRA-55 and ERA5. The  time series are 

standardized over the period 1982–2010. The correlation coefficients 

between the wind stress variability from SST-analogues and from 

reanalyses are 0.71 and 0.75 with JRA-55 and ERA5, respectively. 

b Running 15-year long trends in wind stress from SST-based varia-

bility analogues, from historical CMIP5 and CMIP6 ensemble means, 

and from  four reanalysis datasets  (Saenko region; trends start every 

month). While the standardized month-to-month wind stress variabil-

ity is well-matched, its long-term trends are underestimated by the 

SST analogues
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long SST trends in the pacemaker region starting every month. 

The grey shading indicates the minimum to maximum difference 

between different SST datasets and methods of removing the forced 

trend from the observations. The coloured lines show the SST trends 

for analogues selected based on the observed wind stress in the Sae-

nko region (solid) and in the England region (dashed) from differ-

ent reanalyses. b  Difference between running 15-year long trends 

in observed and modelled GMST compared to the contribution of 

wind variability estimated using the method of variability analogues. 

Solid lines indicate analogues that were selected based on variability 

in the Saenko region, and dotted lines analogues based on the Eng-

land region. The dark grey range indicates the minimum to maximum 

difference between  the different observational GMST datasets and 

multi-model means, and in light grey the 95% range across the differ-
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figures, but for running 10-year and 20-year long trends are shown in 

the supporting information Figure S9
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to selecting analogues, as the standardized wind stress varia-

bility is already well captured when searching for SST-based 

analogues, but the absolute trend is underestimated.

The eastern equatorial Pacific SST response is overes-

timated in some wind-stress experiments (England et al. 

2014; Gastineau et al. 2019), and we examine whether this 

is also the case with the variability analogues. As depicted 

in Fig. 10a, 15-year long trends in tropical Pacific SST are 

generally well-matched in the analogues based on wind vari-

ability. While SST trends starting in the 1960s tend to be 

underestimated in the analogues, trends starting from the 

early 1990s are overestimated. It is striking that the overes-

timation in the latter period is less severe than the underesti-

mation of wind stress trends in SST-based analogues during 

the same period (cf. Figure 9b). We do not investigate this 

further, but it could be related to the set of models selected 

to provide analogues, and to a general tendency of the ana-

logues to underestimate large changes in the target quantity.

Given that the wind stress analogues realistically repro-

duce eastern Pacific SST, we still consider them a useful 

setup for quantifying the Pacific influence on GMST. Except 

for trends starting in the 1950s, the effect of Pacific vari-

ability estimated from wind analogues reconciles observed 

and modelled GMST changes (Fig. 10b), and is similar to 

estimates based on SST-analogues after accounting for the 

forced response (Fig. 7a). Observational uncertainty is prob-

ably not the main reason for the differences among the wind-

stress pacemaker experiments, because the different reanaly-

ses show similar trends (Fig. 9b) and accordingly similar 

imprints on GMST during the studied period (Fig. 10b). 

However, we only examine the wind variability over a rela-

tively small region, whereas the pacemaker experiments 

prescribe winds over a much larger region (Table S2), and 

significant differences might exist elsewhere.

To examine the spread among wind-based pacemaker 

experiments further, we regress modelled GMST trends 

against wind stress trends (i.e., as in Sect. 4.4 for tropi-

cal Pacific SST). This reveals that the spread in regression 

slopes between models is even larger than with tropical 

Pacific SST (Fig. S10), which might not be surprising given 

that the wind variability is less directly connected to GMST 

variability (Saenko et al. 2016). This reaffirms the need for 

repeating pacemaker experiments with multiple different 

climate models.

5  Discussion

While we demonstrate that models that track the observed 

tropical Pacific variability (either by nudging or by search-

ing for sufficiently short analogues) closely resemble the 

observed GMST changes, we have not yet examined whether 

models are actually capable of doing so on their own. Fig-

ure 11 compares both the observed SST trends in the tropical 

Pacific (Fig. 11b), from which we remove different estimates 

of the forced signal, and wind stress trends from reanalyses 

(Fig. 11a) with modelled variability from piControl simula-

tions during the ‘global warming hiatus’. Consistent with the 

results of England et al. (2014), CMIP5 models are unable to 

simulate the intensification of trade winds during the ‘global 
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warming hiatus’ (Fig. 11a). Observed wind stress trends 

starting in the early 1990s are not seen in any CMIP5 model 

irrespective of the reanalysis. Although the CMIP6 ensem-

ble displays a broader range of 21-year long Pacific trade 

wind trends, only one model, MIROC6, simulates trends 

within the observed range.

Climate models generally appear to underestimate Pacific 

trade wind variability on a decadal time scale (Kajtar et al. 

2018; Kociuba and Power 2015), possibly related to model 

biases in Atlantic mean SST, which mute the contribution of 

Atlantic SST variations to Pacific trade wind trends (Kajtar 

et al. 2018; McGregor et al. 2018), or there is an external, 

forced contribution to wind stress that models miss (cf. 

Figure 9b). In particular, the origin of the tropical Atlan-

tic warming during the ‘global warming hiatus’, whether 

internal variability or anthropogenically forced, matters 

for the interpretation of the Pacific trade wind acceleration 

(McGregor et al. 2018). It has further been suggested that 

anthropogenic aerosols play a role during the ‘global warm-

ing hiatus’ by altering the trade winds and the state of the 

PDO (Smith et al. 2016; Takahashi and Watanabe 2016), but 

the robustness of these results has been questioned (Kuntz 

and Schrag 2016; Oudar et al. 2018). Further, observational 

uncertainties exist, and these are particularly large in the 

pre-satellite era (Bordbar et al. 2017; Kajtar et al. 2018). 

Reanalyses have been argued to overestimate the intensifica-

tion of the Pacific Walker circulation during the past dec-

ades when compared to satellite-derived estimates (Chung 

et al. 2019), but de Boisséson et al. (2014) found the tropical 

Pacific trade wind trends, which are the surface expression 

of the Walker circulation cell, to be robust in different obser-

vations including reanalyses.

Regarding the eastern tropical Pacific SST trends, 

Fyfe and Gillett (2014) found that none of 117 histori-

cal CMIP5 simulations reproduces the observed regional 

cooling from 1993 to 2012, and Kajtar et al. (2019) argue 

that the CMIP5 ensemble underestimates IPO variabil-

ity on time scales greater than 10 years. When search-

ing for 21-year long trends in the piControl simulations, 

both the CMIP5 and CMIP6 ensembles show trends as 

observed during the ‘global warming hiatus’ from 1992 

to 2012 (Fig. 11b), but with a higher frequency in the 

CMIP6 ensemble. Whereas 9–23 out of 33 CMIP5 models 

(depending on the dataset, and the method of removing 

the forced response from the observations) are capable 

of simulating cooling equal to or exceeding the observed 

eastern tropical Pacific cooling, 13–28 out of 35 CMIP6 

models do so.

There is some evidence that the response of the tropi-

cal Pacific SST to anthropogenic forcing is biased in 

CMIP5 models (Coats and Karnauskas 2017), with too 

much warming in the eastern tropical Pacific, possibly 

related to a climatological cold bias of models’ equatorial 

cold tongues (Seager et al. 2019). If that is the case, the 

Pacific cooling during the ‘global warming hiatus’ from 

internal variability is smaller, as discussed in Sect. 4.3. 

This, in turn, would imply that less of the discrepancy 

between observed and modelled warming during the 

‘global warming hiatus’ can be attributed to Pacific inter-

nal variability (cf. Figure 7b). A more detailed analysis of 
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Fig. 12  a  Observed and modelled annual GMST anomalies since 

1950 (reference period is 1961–1990). For the 90% ensemble spread 

we use one member per model, otherwise we first average the realiza-

tions of each model. An estimate of the Pacific variability influence 

on GMST based on the average of analogues from both COBE-SST2 

and ERSSTv5 in the pacemaker region is added to the climate model 

ensemble means. We remove the regional CMIP6_con mean from the 

observed eastern tropical Pacific SST prior to selecting the variabil-

ity analogues. b Trends in observed and modelled GMST with differ-

ent start years that all end in year 2018. Like Fig. 3a, but with added 

Pacific variability to the multi-model means. The results are similar 

when an estimate of Pacific variability based on wind stress is added 

to the multi-model means instead (Fig. S11) or an estimate based on 

the multi-model median regression coefficient (Fig. S12)
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the CMIP6 ensemble will be required to assess whether 

the cold tongue bias has improved from CMIP5 and how 

to best quantify the forced signal in the tropical Pacific. 

This issue is common to all methods of quantifying the 

Pacific influence on GMST based on observed SST. Bet-

ter constraining the forced signal in the tropical Pacific 

will help to reduce the uncertainty of the influence of 

internal Pacific variability on GMST during the ‘hiatus’ 

and in the future.

6  Conclusion: reconciling observed 
and modelled global mean temperature

While the three multi-model means track the overall 

observed GMST change from 1950 to 2018 well, with 

Pearson correlation coefficients of 0.96, 0.94, and 0.95, for 

CMIP5, CMIP6 and CMIP6_con, respectively, they do not 

match the year-to-year variability (Fig. 1a), and differences 

exist on decadal time scales (Fig. 1b). After adding in the 

influence of the tropical Pacific, keeping the potential limi-

tations discussed in the previous section in mind, most of 

the discrepancies between observed and modelled GMST 

are resolved, and the correlation coefficients increase to 

0.99 (with CMIP5), 0.97 (CMIP6), and 0.98 (CMIP6_con) 

(Fig. 12a). In agreement with Lehner et al. (2016), the appar-

ent mismatch between simulated and observed volcanic 

cooling is also resolved after adjusting the multi-model 

means for the effect of Pacific variability.

Whereas the GMST trends of the CMIP5 and CMIP6_

con ensemble means are similar to the observed trends 

after accounting for Pacific variability, the CMIP6 warming 

remains larger than observed during the past four decades 

(Fig. 12b). This is consistent with growing evidence that 

some CMIP6 models with a high TCR, present in CMIP6 

but not in CMIP6_con, overestimate past and future warm-

ing (Brunner et al. 2020; Dittus et al. 2020; Liang et al. 

2020; Nijsse et al. 2020; Tokarska et al. 2020; Winton et al. 

2020), and supports a TCR of around or slightly below 

1.8 °C. However, we stress that uncertainties in the tropical 

forced signal (Fig. 6) and the sensitivity with which GMST 

responds to Pacific variability (Fig. 8) remain.

The good agreement between observed and modelled 

warming since 1950 does not necessarily imply that they 

agree for the right reasons. First, there is significant uncer-

tainty in the forced signal, as is evident from the ensemble 

spread, but this is not represented when analysing multi-

model ensemble means, and similar forced signals can be 

achieved with various combinations of aerosol forcing 

and climate sensitivity (Kiehl 2007; Knutti 2008). Sec-

ond, observational uncertainty remains (e.g., Davis et al. 

2019), which might influence both the difference between 

modelled and observed warming, and the indices of inter-

nal variability used in this study. Third, further modes of 

internal variability might affect the observed global mean 

temperature evolution. In particular, the Atlantic Multi-

decadal Variability (AMV) has been argued to contribute 

significantly to GMST variations (e.g., Chen and Tung 

2018; Chylek et al. 2016; Wu et al. 2019), although this 

view has been challenged repeatedly (e.g., Booth et al. 

2012; Haustein et al. 2019). In the supporting information 

we estimate the AMV contribution to GMST and show 

that it does not reduce the difference between models and 

observations, but on the contrary, increases it. Further 

research is required to better understand this, but we note 

that the AMV contribution to GMST is relatively small 

after 1980 irrespectively.

We have shown that differences in the estimated Pacific 

contribution to GMST arise primarily from the method 

of how (and if) the forced signal in the tropical Pacific is 

accounted for and from the sensitivity of GMST on tropical 

Pacific SST and wind variability on a decadal time scale 

which varies substantially across models, in agreement 

with Wang et al. (2017) and Bordbar et al. (2019). When we 

account for this, we can reproduce most of the spread across 

the 18 studies examined. Further factors, such as a time-

scale dependence of the Pacific influence on GMST (Peyser 

et al. 2016; Wang et al. 2017) likely further contribute to the 

differences between the studies.

Our results demonstrate that pacemaker experiments 

using a single model should be interpreted with caution. 

Based on observations, we have demonstrated that high 

sensitivities between tropical Pacific SST and GMST as 

simulated by some models are unlikely, but observations 

support a sensitivity similar to the multi-model median, 

consistent with Kajtar et  al. (2019). To obtain robust 

estimates, pacemaker experiments should therefore be 

repeated with several models, as is currently done within 

CMIP6. For IPSL-CM5A-LR, the wind-stress simula-

tion indicates a greater Pacific contribution to the ‘hiatus’ 

than the SST-nudging experiment (Gastineau et al. 2019; 

Swingedouw et al. 2017), whereas it is the opposite for 

CNRM-CM5 (Douville et al. 2015). Artificial heat uptake 

in SST-based pacemaker experiments is therefore presum-

ably not a major concern compared to other uncertainties 

when quantifying the Pacific effect on GMST.

For multiple-regression approaches we recommend 

careful evaluation of whether the predictors contain a 

forced signal, how it influences the results, and how to 

best remove it prior to the analysis. There might be cases 

where it is justifiable not removing the forced signal, e.g., 

if a minimum Pacific contribution to the ‘global warming 

hiatus’ is estimated, but the assumptions should be clearly 

stated.
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users .york.ac.uk/~kdc3/paper s/cover age20 13/serie s.html (‘Had-
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(used for Fig. S1). Berkeley Earth Surface Temperature was down-

loaded from http://berke leyea rth.org/data/ (also used for Fig. S1). 

COBE-SST2 (https ://www.esrl.noaa.gov/psd/data/gridd ed/data.cobe2 

.html), and ERSSTv5 (https ://www.esrl.noaa.gov/psd/data/gridd ed/

data.noaa.ersst .v5.html) were obtained from NOAA/OAR/ESRL PSD, 

Boulder, Colorado, USA. ERA5 wind stress data was downloaded from 

https ://cds.clima te.coper nicus .eu/, JRA-55 data from https ://jra.kisho 

u.go.jp/JRA-55/index _en.html, and MERRA2 data was downloaded 
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