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Approaches to identify extracellular receptor–ligand
interactions
Laura Wood and Gavin J Wright

Thousands of secreted factors and plasma membrane-

associated cell surface receptors are categorised into families

that vary widely in their structures and functions. They often

participate in extracellular binding events, but due to their

unique physicochemical properties, their interactions are

challenging to study. As lists of extracellular proteins become

more complete and accurate, new methodologies are being

developed to systematically identify how these proteins

interact. Two main approaches have been used: direct binding

between recombinant soluble receptor ectodomains and cell-

based assays. Recent advances in chemoproteomic reagents,

cDNA overexpression, and cell-based genetic approaches

promote the identification of extracellular protein–protein

interactions within the context of an intact plasma membrane in

living cells and opens up the discovery of cell surface

recognition events that were previously intractable.
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Introduction
Multicellular organisms are composed of many different

cell types that co-ordinate their activities to form and

maintain complex biological structures such as tissues

and organs. As discrete units, cells must be able to recognise

local cues and activate signalling pathways to alter cell

behaviour in accordance with their immediate surround-

ings. To accomplish this, an array of structurally varied

protein receptors embedded within the semi-permeable

lipid bilayer of the plasma membrane serve as an interface

between the external space and cell interior. These mole-

cules usually require an N-terminal signal peptide for

transport to the cell surface and can be tethered to the outer

membrane through a glycosylphosphatidylinositol (GPI)-

lipid modification, or contain one or more transmembrane

domains. Regions that project out into the extracellular

space are capable of binding soluble secreted factors or cell

surface ligands exposed on adjacent cells and receptors that

span the plasma membrane can relay instructional informa-

tion to the cytoplasm to activate cell responses such as

migration, differentiation, proliferation, cell growth and

apoptosis. Cell surface receptor–ligand binding between

cells (trans-interactions) are essential regulatory events

coordinating many developmental and biological processes,

and aberrant loss or gain of extracellular recognition can

contribute to inappropriate changes in cell behaviour (e.g.

cancer metastasis [1]). Receptors are also at the centre of

host-pathogen interactions where protein binding is essen-

tial for influencing the pathology of infection which confers

a major public health risk in relation to emerging diseases,

most significantly by determining host tropism [2]. Motiva-

tions to study extracellular interactions are driven, not only

by their wide ranging implications in development and

disease, but also due to their accessibility to systematically

delivered therapeutics, making these class of interactions

tractabledrug and vaccine targets.Currently�70%ofFDA-

approved drugs target proteins containing transmembrane

domains and/or signal peptides [3,4].

The unique biophysical properties of secreted and mem-

brane spanning receptors make them a difficult subset of

proteins to study. Firstly, oxidising environments, such as

those found in the extracellular space, are required for

disulphide bond formation between cysteine residues

which are required for correct folding of protein ectodo-

mains. Secondly, without an intact plasma membrane,

solubilisation of full length functional receptors can be

difficult to achieve. This is due to the amphipathic nature

of transmembrane proteins which often contain both

hydrophilic glycans, as well as stretches of hydrophobic

amino acids which span the membrane. Finally, recogni-

tion events involving cell surface receptors are frequently

low affinity (KDs in mM–mM range) and usually require

localised clustering within the plasma membrane to

increase binding avidity [5]. Physiologically, this means

that protein–protein interactions can be easily reversed,

allowing the cell to react quickly to continual changes in

surrounding stimuli. Biochemically, this presents chal-

lenges and monovalent binding events with fast dissocia-

tion rates may not be detected with many high-through-

put methods [5,6]. Certainly, interactions involving

extracellular proteins were found to be underrepresented

in commonly used protein–protein interaction screens
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(e.g. Yeast-2-Hybrid (Y2H), Mammalian Protein–Protein

Interaction Trap (MAPPIT), LUminescence-based

Mammalian IntERactome (LUMIER)) [7] and binding

events with proteins containing transmembrane helices or

hydrophobic regions are also depleted in larger Y2H and

co-fractionation studies [8]. Systematic interactome maps

employing affinity purification–mass spectrometry (AP–

MS) of stably expressed bait proteins do appear to iden-

tify plasma membrane binding partners, but whether

these interactions represent trans-interactions on the cell

surface is not clear [9,10].

Recent efforts to better classify the extracellular inter-

actome (‘secretome’ and ‘surfaceome’) highlights the

potential complexity of this interaction network [3,11–

13]. Factors that are secreted into the extracellular space

are predicted to form �15% of the human proteome

based on computational models to identify proteins

containing signal peptides, but lacking transmembrane

domains [3]. Similarly, the surfaceome is comprised of

thousands of proteins with 1492 glycoproteins across

41 human cell lines accessible to chemoproteomic cap-

ture on the cell surface [12], while >1700 proteins have

been confirmed to localise at plasma membranes based

on immunocytochemistry observations [3,11]. Here, we

aim to review some of the key methods used to system-

atically identify interactions between these groups of

proteins. Particular emphasis has been placed on recent

approaches that- first, take account of the biochemical

challenges described above in identifying trans-interac-

tions and second, have the potential to be developed, or

are currently being applied, as high-throughput techni-

ques. We discuss two broad experimental platforms: the

use of heterologous expression systems in the production

of large recombinant protein libraries consisting of solu-

ble receptor ectodomains and approaches that use living

cells to study cell surface interactions within the physi-

ologically relevant microenvironment of the plasma

membrane.

High-throughput detection: recombinant
protein libraries
An important discovery in the development of high-

throughput assays to detect cell surface interactions is

that receptor ectodomains, when expressed as soluble

recombinant proteins, can retain ligand binding func-

tions [5,6]. Using mammalian and insect cell lines,

recombinant proteins can be processed with appropri-

ate post-translational modifications, including glycans

and disulphide bonds, which are often critical for cor-

rect folding. Most methods utilise a ‘prey’ and ‘bait’

approach whereby ectodomains are immobilised on a

solid surface and systematically probed for direct inter-

actions with another recombinant protein (Figure 1)

[14–18]. Multimerisation of proteins is an important

step in this process as it functions to increase the

binding avidities of transient interactions and occurs

in two formats: localised conjugation in a microtitre well

(baits) or using an oligomerisation tag (preys). This

method has successfully discovered many ligand–

receptor interactions, such as those essential for mero-

zoite invasion of erythrocytes [19], neural guidance and

interconnectivity [15,17], and studies focused within

defined protein families [16,20]. More recently, this

technique has been used for the first time to screen a

library of single pass transmembrane receptor ectodo-

mains (�1300) against recombinantly produced viral

envelope proteins [21��]. By taking advantage of differ-

ent multimerisation tags, Martinez-Martin et al. were

able to produce trimers and pentamers of distinct

glycoproteins found on the surface of the human

cyto-megalovirus (HCMV) and found non-overlapping

receptor binding partners for the two HCMV com-

plexes. Of these, NRP2, a novel binding partner of

the pentameric complex, was shown to play an impor-

tant role in HCMV infection of epithelial and endothe-

lial cells [21��].

Protein production is resource intensive and many

studies limit the number of soluble ectodomains by

concentrating on a subset of proteins, such as surface

receptors expressed on a specific cell type (e.g. ery-

throcytes, platelets). To expand the number of proteins

tested and reduce the amount of material required for

each interaction assay, microarray technology enables

the spotting of thousands of recombinant extracellular

domains on a single slide and fluorescence signals,

rather than enzymatic reactions, can be used to map

protein–protein binding events (Figure 1) [22,23�].

The largest of these screened 40 500 binary events

and identified 51 novel interactions between human

receptors and an immunomodulatory protein on ade-

novirus family members [23�]. This methodology also

has its problems, with potential issues in printing

reproducibility between slides and long print runs that

may compromise protein functionality if not main-

tained at low temperatures. Nucleic Acid Programma-

ble Arrays (NAPPA) support an alternative microarray

format whereby printed complementary DNAs

(cDNAs) can be transcribed and translated in vitro

directly on slides, and therefore eliminates the need

for resource intensive protein purifications [24,25].

Combined with a microfluidic platform, Glick et al.,

was able to utilise this technology to create arrays of

�2100 human membrane proteins and could success-

fully identify virus-receptor interactions [26]. As this is

a cell-free system, it is still unclear as to what extent

missing post-translation modifications and incorrect

folding may affect receptor binding properties across

the library.

The major drawback of recombinant expression libraries

is that they only work for ectodomains that can be

functionally expressed as a single contiguous region,
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including type I and type II single pass transmembrane

proteins, GPI anchored proteins and secreted polypep-

tides. Multi-pass membrane proteins and co-factor com-

plexes are usually excluded from these expression lists,

although integrin receptor combinations do appear to

maintain binding specificities when co-expressed as a

and b subunits [27]. In addition to this, large recombinant

protein libraries are beyond the scope of many laborato-

ries that may only be interested in identifying the inter-

action partners for one or a small group of proteins. Cell-

based assays can serve as an alternative approach by

simply using the endogenous receptor repertoire as an

existing bait library, or utilising the cell machinery to

exogenously overexpress cell surface proteins. Provided

the plasma membrane remains intact, this can function as

a platform to study cell surface recognition events that

were previously biochemically intractable.

High-throughput detection: cell-based assays
Ligand-receptor capture proteomics

Advances in mass spectrometry sensitivity and quan-

titation, together with improved isolation techniques,

have been instrumental in the identification of large

protein interactomes from complex mixtures (e.g.

crude cell extracts) [9,10,28]. To gain access to the

internal cell proteome, plasma membranes must be

disrupted. In some instances, this can lead to non-

functional receptors since membrane-spanning poly-

peptides may no longer be able to maintain their

native conformation. Larger insoluble plasma mem-

brane fragments may also pellet during early isolation

steps, causing membrane-associated proteins to be

depleted from downstream analysis. Although classical

AP–MS studies have had success in identifying host

receptors for a number of virus glycoproteins, includ-

ing HCMV and Herpes simplex virus (HSV) [29,30],

extracellular protein interactions can be transient in

nature (t1/2 <1 s) [5] and washes containing salts and

detergents to remove non-specific binders may also

exclude weak cell surface interactions. To overcome

these challenges, the Wollscheid group synthesised a

trifunctional compound (TRICEPS) that utilises the

glycan rich coat displayed by many cell surface pro-

teins to capture receptor interactions on intact living

30 Sequences and topology
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Extracellular protein interaction screening using soluble recombinant ectodomains.

Secreted factors, GPI anchored proteins and the ectodomains of single-pass transmembrane receptors can be expressed in heterologous

expression systems where they are released into the cell media and either used directly in supernatants or concentrated with purification tags.

Screening usually requires two protein libraries: a bait (A–C) and a prey (1–3). Prey recombinant proteins are typically oligomerised using a tag

that promotes spontaneous multimerisation (e.g. dimers, trimers, pentamers), while bait proteins are conjugated to a solid substrate. In this

schematic, bait proteins have been tagged with biotin and bound to a streptavidin coated surface, although other methods have been used

[16,18]. In well-based detection, baits and preys are systematically screened against one another to account for all pairwise interactions. Prey

proteins are fused with enzymatic reporter molecules so that binding to the bait library can be assessed using colorimetric measurement changes

after substrate addition. Microarray technology is capable of spotting large recombinant bait libraries in a defined layout onto treated slides.

Protein A microbeads coated with an unlabelled Fc-fusion prey protein and Cy5-labelled IgG can then be used to map extracellular interactions

using localised fluorescence signals imaged using a microarray scanner [22,23�]. Binding to the arrayed bait library can also be detected using

fluorescently labelled antibodies against a specific tag on the prey [65].
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cells [31,32]. TRICEPS is covalently conjugated to the

primary amines of a ligand of interest, while a second

functional group facilitates crosslinking to glycosy-

lated binding partners on the surface of cells cultured

in an oxidising environment. A final biotin group is

bound by streptavidin for the affinity purification of

peptides containing N-glycosylation motifs, and gly-

can cleavage followed by mass spectrometry analysis

reveals enriched ligand interactors. Secreted proteins,

therapeutic antibodies, peptides and virus particles

were all shown to act as successful probes in the

capture of known cell surface recognition events

[31]. Notably, they were able to verify binding of a

peptide (apelin-17) with its target G-protein-coupled

receptor (Apelin receptor), highlighting that protein

interactions with multi-spanning cell surface receptors

can indeed be identified by techniques that take into

account the integrity of the cell membrane. Further

development of this concept has led to the creation of

a trifunctional crosslinker called ASB (aldehyde-reac-

tive aminooxy group, a sulfhydryl, and a biotin) [33]

and more recently HATRIC-based ligand receptor

capture (HATRIC-LRC) [34�]. In the latter, experi-

ments can be performed in a physiologically relevant

environment (pH 7.4), opening up the discovery to

pH-sensitive cell surface interactions. The use of

azide click chemistry to label glycoproteins for affinity

isolation also means that peptides within the full

length protein can be used for mass spectrometry

identification (not just N-glycosylated peptides)

reducing the need for large amounts of starting mate-

rial—an important technical consideration for cell

lines that are difficult to grow in culture [34�].

Although TRICEPS, ASB and HATRIC possess many

advantages when it comes to studying receptor  bind-

ing events in their natural states, components of the

cell surface must be glycosylated and therefore a

subset of glycan-free proteins may be missing from

these interaction lists.

Expression cloning using cDNA expression libraries

In expression cloning, a library of complementary DNAs

(cDNAs) is transfected into cultured cell lines and

screened for a phenotype of interest. Multiple subdivid-

ing rounds filter ‘positive’ and ‘negative’ cDNA pools

until a single expression plasmid is recovered [35]. In

regards to extracellular interactions, a common readout

would be cells that have gained the ability to bind a

recombinant ligand of interest. In the past this technique

was crucial in the discovery of a number of growth factor

receptors [36–38]. Adapted protocols have been used to

identify interactions between Hepatitis C virus and

multi-spanning transmembrane proteins CD81 [39],

Claudin-1 [40] and Occludin [41] and more recently

the low affinity binding (KD of �12 mM) between egg

and sperm surface proteins during fertilisation [42]. In

recent years, genome sequencing and gene annotation

have enabled projects such as the Mammalian Gene

Collection [43] and the Orfeome collaboration [44�] to

compile sequence-verified plasmid libraries. This inno-

vation supports the replacement of pooled approaches

with individual cDNA transfections as it eliminates the

need for iterative rounds of selection and instead reveals

an immediate binary interaction (Figure 2). As an exam-

ple, Lin et al. expressed �400 surface receptors in COS7

cells and probed with a similar library of ectodomain-Fc

fusions reporting a single positive hit, the Netrin-G1 and

NGL-1 interaction [45]. Recent efforts to make this more

high-throughput have seen this technique develop into a

‘microarray’-based screen. The Sabatini group first

showed that spotted cDNAs (120–150 mm in diameter)

could be ‘reverse transfected’ into HEK293T cells grown

over the top of slides, with subsequent protein expression

only seen in localised areas where cells had come in direct

contact with the patterned plasmids [46]. Large libraries

of expression plasmids encoding for full length plasma

membrane receptors can be arrayed on slides, reverse

transfected into cells, and the overexpressed receptors

used as a surface to probe for extracellular interactions

(Figure 2). EMP1, a Plasmodium falciparum (Pf) protein

exposed on infected erythrocytes, was shown to bind to

cells locally overexpressing the endothelial protein C

receptor (EPCR) using a commercially available adaption

of this technology [47]. Thousands of interactions can be

probed in a single experiment, with the most recent

attempts screening 3559 and 4493 cell surface proteins

against Hom-1 virus particles [48] and a recombinant

growth factor (GDF15) [49��], respectively.

CRISPR and haploid genetic screens

CRISPR/Cas9 technology and haploid genetic screens

allow genome scale study of loss of function phenotypes

[50–53]. In the pooled CRISPR/Cas9 approach, a library

of guide RNAs are targeted to essentially all protein-

coding genes within the genome so that libraries of cells,

each deficient in a non-essential gene, can be created

[50,51]. In haploid cell screens, retroviral gene-traps

integrate into the genome and inactivate single alleles

through insertional mutagenesis [52,53]. By selecting for

cell populations that are refractory to pathogen infection,

these gene disruption techniques have been particularly

successful in the discovery of virus-host cell entry factors

[54]. Known virus recognition events with human cell

surface receptors have been corroborated using both

CRISPR and haploid genetic screens: Hepatitis C Virus

(Occludin, CD81, Claudin-1 [55]), Zika virus (AXL [56]),

HIV (CD4 and CCR5 [57]), Poliovirus (PVR [58]) and

Coxsackie virus B1 (CXADR [58]) and these approaches

have also been used to identify novel host receptors for

viruses [59–62,63�].

Fluorescently conjugated protein extracellular domains

that bind to endogenous receptors on the surface of cells

can be used as an effective marker during fluorescence-
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activated cell sorting (FACS) [64��]. By selecting cells

that exhibit a ‘loss of binding’ phenotype seven low

affinity ligand–receptor interactions, and a novel binding

event, were reported using pooled CRISPR/Cas9 tech-

nology. Multi-pass transmembrane proteins were discov-

ered in two instances; first as a direct receptor for Syncy-

tin-1, and second as a cell surface chaperone for basigin,

the receptor of PfRH5. The latter highlights one of the

main advantages of this technique—the ability to explore

contributions from genes in pathways critical for receptor

presentation on the cell surface–and includes compo-

nents such as transcription factors, trafficking proteins

and post-translational modification enzymes. For exam-

ple, CD59 surface detection with an antibody was found

to depend on GPI anchor biosynthesis pathway compo-

nents [64��], while plasma membrane localisation of

CCR5, an essential receptor for HIV infection, requires

factors that attach sulfates to key tyrosine residues [57].

Genome-wide approaches can also be used to identify

complex carbohydrate-based receptors, such as surface

displayed heparan sulfates. When evaluating genes

responsible for loss of PfRH5 cell binding, both basigin

and heparan biosynthesis components were identified as

high confidence hits [64��]. A protein receptor containing

immunoglobulin-like domains and heparan biosynthesis

enzymes were also enriched in genetic screens studying

adeno-associated virus infection [61] and highlights that

multiple cell surface receptors can be detected in a single

screen and these can be protein or non-protein-based

molecules. Therefore, a crucial advantage of this tech-

nique is that no prior assumptions need to be made

regarding the molecular nature of the receptors involved.

Conclusions and perspectives
In this review, we present an overview of the latest high-

throughput techniques used to study extracellular

protein–protein interactions. Although efforts have been

made to identify genes that encode proteins destined for

the cell surface or extracellular space, a definitive list that

takes into account the localisation patterns of canonical

and alternatively spliced isoforms, as well as genetic

variants, is currently not complete. This level of com-

plexity is a major research challenge and even if full

coverage of the extracellular proteome is achieved, any

one method is unlikely to detect all interaction networks

since each have their own advantages and disadvantages

(Table 1). With the dropping costs of gene synthesis and

improved yields in heterologous protein expression sys-

tems, producing large recombinant libraries is not as

daunting as it once was; however, the technique is still

limited by its inability to identify receptor interactions

involving multiple co-factors. Cell-based assays provide

an opportunity to bridge this gap by ensuring that protein

interactions are studied on intact cell surfaces. In genome

32 Sequences and topology
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Extracellular protein interaction screens using cDNA transfection protocols. cDNAs encoding full length receptors are introduced into cells using

commercially available transfection reagents. The cell utilises its own machinery to overexpress receptors on the cell surface and this in turn is

used as a platform to study extracellular protein–protein interactions with ligands such as recombinant protein ectodomains and virus particles. In

well-based detection, cDNAs are transfected individually into cells grown in microtitre wells (A–C). Prey recombinant proteins (1–3) are then

incubated with cells and interactions detected using fluorescently labelled antibodies and fluorescence microscopy imaging. Alternatively, cDNAs

can be spotted onto slides with a microarrayer and reverse transfected into a lawn of cells. Cells that locally take up cDNAs will express the

specific receptors on their cell surface and detection of extracellular interactions can be mapped using fluorescent antibodies against a specific

tag on the recombinant prey.
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wide genetic screens, the use of intact living cells enables

a phenotype-driven approach for evaluating protein bind-

ing events, and may have a greater potential for revealing

physiologically relevant interactions, such as those

described for virus infection models. One of the most

interesting outcomes is that genome wide loss-of-func-

tion screens can identify, not only direct ligand binding

partners, but also upstream pathways critical for receptor

presentation on the cell surface. Highlighting multiple

targets at different points along the same pathway is likely

to be helpful in drug discovery pipelines. All of these

methods have the ability to uncover independent and

overlapping protein binding events and this is deter-

mined, in part, by the biochemical nature of the receptor

in question. With the potential for increased scalability

and sensitivity, integration of these interaction networks

will be necessary for the construction of a comprehensive

and accurate map of the extracellular interactome.
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Table 1

Advantages and disadvantages of extracellular protein–protein interaction screens

Biochemical assays Cell-based assays

Recombinant protein production Chemoproteomic

reagents

cDNA expression

libraries

Genome wide loss-of-function

screens

Advantages Ectodomains from secreted

factors, single-pass and GPI

linked proteins can be

expressed and solubilised

Potential to identify

interactions with

endogenously expressed

single-pass, GPI linked,

multi-pass and multi-

subunit receptors

Potential to identify

interactions with

overexpressed single-pass,

GPI linked, multi-pass and

multi-subunit receptors

Potential to identify interactions

with protein receptors, non-

protein receptors (e.g. Heparan

sulfate) and upstream pathway

components

Suitable post-translational

modifications may increase the

likelihood of correct folding

Full length functional

receptors are studied

within the context of the

cell surface

microenvironment

Full length functional

receptors are studied within

the context of the cell

membrane, although the

surface microenvironment is

altered due to forced

overexpression of a receptor

Full length functional receptors

are studied within the context of

the cell surface

microenvironment

Multimerisation strategies

increase the binding avidity of

low affinity cell surface

interactions

Variety of ligands can be

used to probe cell

surface interactions—

peptides, viruses,

proteins

Variety of ligands can be

used to probe cell surface

interactions— proteins,

viruses

Variety of ligands can be used to

probe cell surface interactions

and the readout is phenotype

driven. Can study processes

such as pathogen invasion and

cell survival

Recombinant proteins can be

concentrated using purification

tags and protein activities

normalised for robust readouts

in downstream assays

HATRIC-LRC: Can

detect pH sensitive

interactions and requires

low amounts of starting

material

Sequence validated Open

reading frame (ORF)

expression clones are readily

available. cDNA libraries are

stable and can be frozen for

long term storage

No prior assumptions on the

nature of the receptor need to be

made

Disadvantages Post-translational modifications

may be missed (e.g. under

glycosylated).

A fraction of the protein may be

misfolded.

Depends on the

endogenous levels of a

receptor. Non-

expressing or low

abundance receptors

may be missed

Depends on the cell’s ability

to overexpress and transport

receptors to the cell surface

Depends on the endogenous

levels of a receptor. Non-

expressing or low abundance

receptors may be missed

Protein production is costly and

resource intensive. Low

expressers can be difficult to

obtain in sufficient amounts.

Requires receptor to be

glycosylated

High numbers of transient

transfections performed for

every individual screen.

Potential variation in

transfection efficiency

Difficult to identify essential

genes as the cells with mutations

in these genes are likely to drop

out of the population causing

under sampling

Long-term storage difficult—

multiple freeze–thaws may

cause protein denaturation

Amine conjugation may

mask ligand binding sites

(e.g. protein binding

domains containing

lysine residues)

Large cDNA libraries can be

difficult to compile and

organise.

The use of loss-of-function

approaches makes it difficult to

identify functionally redundant

receptors

Multi-pass membrane proteins

and multi-subunit receptors are

often biochemically intractable

Mild chemical oxidation

of living cells may inhibit

some cell surface

interactions

Co-transfection probably

limited to multi-subunit

complexes with 2–3

components

Large numbers of cells are

required for statistically

significant results. This leads to

long cell sorting times, reducing

the throughput of interaction

screens
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