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Abstract 20 

 Polychlorinated dibenzo-p-dioxins and -furans (PCDD/PCDFs) are highly toxic organic 21 

pollutants in soils and sediments which persist over timescales that extend from decades to 22 

centuries. There is a growing need to develop effective technologies for remediating 23 

PCDD/Fs-contaminated soils and sediments to protect human and ecosystem health. The use 24 

of sorbent amendments to sequester PCDD/Fs has emerged as one promising technology. A 25 

synthesis method is described here to create a magnetic activated carbon composite 26 

(AC-Fe3O4) for dioxin removal and sampling that could be recovered from soils using 27 

magnetic separation. Six AC-Fe3O4 composites were evaluated (five granular ACs (GACs) 28 

and one fine-textured powder AC(PAC)) for their magnetization and ability to sequester 29 

dibenzo-p-dioxin (DD). Both GAC/PAC and GAC/PAC-Fe3O4 composites effectively 30 

removed DD from aqueous solution. The sorption affinity of DD for GAC-Fe3O4 was slightly 31 

reduced compared to GAC alone, which is attributed to the blocking of sorption sites. The 32 

magnetization of a GAC-Fe3O4 composite reached 5.38 emu/g based on SQUID results, 33 

allowing the adsorbent to be easily separated from aqueous solution using an external 34 

magnetic field. Similarly, a fine-textured PAC-Fe3O4 composite was synthesized with a 35 

magnetization of 9.3 emu/g. 36 

 37 

Keywords: dibenzo-p-dioxin, granular activated carbon, Fe3O4, magnetic separation, 38 
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activated carbon-Fe3O4 composite 39 

1. Introduction 40 

Polychlorinated dibenzo-p-dioxins (PCDDs) are prototypical persistent organic pollutants 41 

(POPs) that are commonly found in soils and sediments. Due to their exceptionally low water 42 

solubilities, these highly toxic lipophilic substances are highly bio-accumulative (Guruge et 43 

al., 2005; Maier et al., 2016; Champoux et al., 2017). Exposure to PCDDs, even at trace 44 

concentrations (Denison et al., 1989; Eljarrat et al., 2002), can result in measurable toxic and 45 

carcinogenic effects in mammals (Huwe, 2002; McKay, 2002; Charnley and Doull, 2005). 46 

PCDDs occur both naturally and from anthropogenic activities which include forest fires, 47 

coal combustion, iron ore sintering, chlorine bleaching of pulp and paper, waste incineration, 48 

and as by-products of pesticide manufacturing and the chlor-alkali process (Fiedler, 1996; 49 

Everaert and Baeyens, 2002; Kulkarni et al., 2008; Zheng et al., 2008; Zhou et al., 2016; 50 

Prisciandaroa et al., 2017; Zhao et al., 2017). Owing to their lipophilicity, PCDD/Fs 51 

accumulate in surface soils, sediments and biota, including the fatty tissues of fish (WHO, 52 

2010). In natural environments, they occur predominantly in the sorbed state associated with 53 

pyrogenic carbonaceous matter (PCM), amorphous organic matter, and clays (Ferrario et al., 54 

2000; Fabietti et al., 2010). In fact, the significant role of PCM as a sorption domain has been 55 

well established (Cornelissen et al., 2005). As a group, PCDD/Fs are characterized by low 56 

aqueous solubilities and high octanol-water coefficients Kow (Shiu et al., 1988; Kim et al., 57 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Huwe%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=11902908
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2002; Li et al., 2009). Consequently, their concentrations in natural waters are extremely low 58 

with concentration ranges of pg/L to fg/L (Charlestra et al., 2008; Cornelissen et al., 2008b; 59 

Louchouarn et al., 2018). PCDD/F-contaminated soils are found in ecosystems worldwide 60 

(Masunaga et al., 2001; Moon et al., 2008; Zheng et al., 2008), and have proven difficult and 61 

expensive to remediate. For example, the estimated cleanup cost of a single Superfund site 62 

along the Passaic River which is contaminated by PCDD/Fs has exceeded one billion US 63 

dollars. 64 

Traditional site remediation has relied on removal of the contaminants via excavation or 65 

dredging followed by disposal in a hazardous waste landfill. Recently, sorbent amendments 66 

have gained attention as a means to lower or even eliminate bioavailability of soil/sediment-67 

bound contaminants (Ghosh et al., 2011; Cornelissen et al., 2012; Hale et al., 2012; 68 

Cornelissen et al., 2016; Cho et al., 2017), and this has formed the basis of a new direction in 69 

management of sites contaminated with PCDD/Fs (Ghosh et al., 2011). Activated carbon 70 

(AC) materials (including granular activated carbon (GAC) and powdered activated carbon 71 

(PAC), has emerged as an effective sorbent amendment for this purpose (Cornelissen et al., 72 

2012; Denyes et al., 2013; Gomez-Eyles et al., 2013; Balasubramani and Rifai, 2018).  73 

The retrieval of the amendment with its sorbed contaminants after deployment has 74 

become a priority for a number of reasons. First, complete removal of contaminants, rather 75 

than just immobilization, is preferred by many environmental regulatory agencies (e.g., 76 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Moon%20HB%5BAuthor%5D&cauthor=true&cauthor_uid=18727999
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USEPA, 1997). Second, recovery of the sorbent amendment after its use as a passive sampler 77 

can help determine mass transfer kinetics (Cornelissen et al., 2008a; Oen et al., 2011). 78 

Adsorbent magnetization is an emerging remediation area where magnetic separation 79 

simplifies isolation and regeneration (Mohan et al., 2014). Numerous studies have 80 

demonstrated that activated carbon/Fe3O4 composites can be synthesized that maintain high 81 

surface area and high sorption affinities for a growing list of contaminants that includes 82 

organic dyes (Do et al., 2011), arsenic (Zhang et al., 2007, Zhang et al., 2010), heavy metals 83 

(Han et al., 2015), pesticides and PAHs (Mohan et al., 2014).  Our previous work showed 84 

that magnetic Fe3O4 can be easily fabricated from the hydrothermal ferrite process and has 85 

the potential to remove/recover toxic/precious elements from aqueous solutions (Tu et al., 86 

2012; Tu et al., 2013; Tu et al., 2015). To date, adsorbent magnetization has not been applied 87 

to applications involving PCDD/Fs.       88 

In our prior work, we provided the first evidence that bioavailability of TCDD sorbed to 89 

two contrasting GACs and one PAC was eliminated in the mammalian (mouse) model. This 90 

conclusion was based upon the use of two highly sensitive bioassays, hepatic induction of 91 

cyp1A1 mRNA, an indirect measure of TCDD exposure, and immunoglobulin M antibody-92 

forming cell response, a direct measure of immune response (Boyd et al., 2017; Sallach et al., 93 

2019). Prior to this, reductions in bioavailability had only been established based on simpler 94 

model organisms (e.g., worms) or passive samplers (Fagervold et al., 2010; Chai et al., 2011; 95 
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Chai et al., 2012). Although the ACs represented a wide range of particle size and pore size 96 

distributions, they were equally effective in eliminating the bioavailability of TCDD, making 97 

them viable candidates for remediation. In this study, we pursued an additional line of 98 

investigation to determine if these same ACs could be functionalized using in situ synthesis 99 

of Fe3O4 for subsequent magnetic retrieval (Indhu et al., 2015; Choi et al., 2016) without 100 

compromising their affinity for dioxins.  101 

AC-Fe3O4 composites were synthesized using the same GACs/PAC used in prior 102 

bioavailability studies (Boyd et al., 2017; Sallach et al., 2019). The specific goals of the 103 

current work were to (1) synthesize GAC/PAC-Fe3O4 composites using ACs shown to be 104 

effective in eliminating TCDD bioavailability in mammals, with emphasis on gaining new 105 

physicochemical insight into the interaction between GAC/PAC and Fe3O4, (2) characterize 106 

the composites using a combination of X-ray diffraction (XRD), scanning electron 107 

microscopy (SEM), N2-BET and micropore analysis, and superconducting quantum 108 

interference device (SQUID); and (3) evaluate sorption characteristics (kinetics and 109 

equilibration) of GAC/PAC, Fe3O4, and the GAC/PAC-Fe3O4 composite for aqueous phase 110 

dibenzo-p-dioxin (DD). The compound DD served as an isostructural conservative surrogate 111 

for PCDD/Fs, which are important targets for sequestration using environmental geosorbents 112 

due to their extreme recalcitrance in natural environments (Van Den Berg et al., 1998; 113 

Sallach et al., 2019; Johnston et al., 2012). 114 



7 

2. Materials and methods 115 

2.1. Chemicals and materials 116 

All solutions were prepared with deionized water. Fe3O4 was synthesized from ferrous 117 

sulfate FeSO4 (> 99.9%, Fisher Scientific, USA) and sodium hydroxide NaOH (99.5%, 118 

Fisher Scientific, USA). Dibenzo-p-dioxin (99% pure) was purchased from ChemService 119 

(West Chester, PA, USA) and was used as received. All the reagents are of analytical grade 120 

and used without further purification. Five GACs (DSRA, G60, FM-1, TOG-LF, and, F400) 121 

and one fine textured PAC (WPC) were purchased/obtained from USEPA, Sigma Aldrich, 122 

Cabot, Calgon Carbon Corp,. Selected physical properties of the six GACs/PAC are given in 123 

Table 1.  124 

2.2. Synthesis procedure for magnetic AC-Fe3O4 composites 125 

The magnetic GAC/PAC-Fe3O4 composite synthesis followed two synthesis procedures 126 

modified from our previously published method (Tu et al., 2013). Method A was performed 127 

using 0.01 M FeSO4 at T=338 K, pH 10, and a reaction time of 2 h. Method B was carried 128 

out using 0.1 M FeSO4 at T=298 K, pH 10, and the same 2 h reaction time. Briefly, one gram 129 

of GAC/PAC material was dried under vacuum at room temperature for 20 h using a vacuum 130 

oven (Model 280 A, Fisher Scientific, USA). Dried GAC/PAC was then immersed in 0.01 M 131 

(Method A) or 0.1 M (Method B) FeSO4 solution (0.5 L) and mixed continuously at room 132 

temperature for 20 h. After mixing, the pH was adjusted to 10 by dropwise addition of 0.1 M 133 
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NaOH and then air was bubbled to the solution to initiate the reaction. The synthesis 134 

reactions were carried out at 338 K (Method A) or 298 K (Method B) for 2 h while 135 

maintaining the pH at 10. Finally, the resultant AC-Fe3O4 material was rinsed 5x with DI 136 

water to remove free Fe3O4, and successfully magnetized GAC/PAC-Fe3O4 composites was 137 

separated from the solution via magnet. The corresponding synthetic reaction of Fe3O4 can be 138 

described as Eq. 1 (Tu et al., 2013). 139 

3 Fe2+ + 6 OH- + 1/2 O2  Fe3O4 + 3 H2O .....................................................(1) 140 

2.3. Characterization of AC-Fe3O4 composite 141 

The crystal phases were determined by X-ray diffraction (XRD; X’Pert Pro, Philips, 142 

Netherlands) using graphite monochromatic cobalt radiation over the 2θ range 10-80o. The 143 

surface morphology and particle size were examined by scanning electron microscopy (SEM; 144 

Nova NanoSEM, Oxford instruments, UK). The saturation magnetization of the adsorbent 145 

was measured using a Superconducting Quantum Interference Device (SQUID 146 

magnetometer; MPMS-3, Quantum Design, USA) at 300 ±1 K. N2 BET and micropore 147 

analysis was conducted using a Micromeritics 3Flex Multiport Chemi/Physi/Micropore 148 

Analyzer.     149 

2.4. Measurement of adsorption isotherm 150 

Batch adsorption experiments were conducted in duplicate using five initial aqueous DD 151 

concentrations (0.18, 0.3, 0.4, 0.6 and 0.8 mg/L) prepared by a serial dilution of 800 mg/L of 152 
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DD methanol stock solution. The amount of methanol in the aqueous solutions was 0.1% 153 

which is considered to have minimal cosolvent effects. Aqueous solutions of DD were 154 

sonicated for 60 min at room temperature in a water bath sonicator prior to mixing with the 155 

GAC/PAC (Branson 120, Branson Ultrasonics, Danbury, CT, USA).  156 

 Two and half (2.5) mg of the adsorbent (GAC, PAC, GAC-Fe3O4, PAC-Fe3O4) was 157 

placed in 30 mL Corex glass tubes (Kimble, Vineland, NJ, USA) with 158 

polytetrafluoroethylene (PTFE)-lined screw caps, and mixed with a 30 mL aliquot of DD in 159 

aqueous solutions (methanol 0.1 %). Control samples containing the initial aqueous DD 160 

solutions 0.6 and 0.8 mg/L of DD solution without AC were prepared for calibration to 161 

determine the losses of DD in the batch reactor. Measured values of DD in the control 162 

samples ranged from 0.58 to 0.62 mg/L and 0.78 to 0.82 mg/L for the 0.6 and 0.8 mg/L DD 163 

solutions, respectively. These results indicated that loss of DD to glassware can be ignored.  164 

The suspensions were sonicated for 30 sec prior to shaking at a speed of 60 rpm in a rotary 165 

shaker (Glas-Col, Terre Haute, IN, USA) at room temperature for 10-48 h to achieve the 166 

apparent sorption equilibrium. The supernatant and adsorbent were separated by 167 

centrifugation for GAC/PAC and by external magnetic field for GAC/PAC-Fe3O4 168 

composites. An aliquot of 1.0 mL of supernatant and DD standards (0.0, 0.18, 0.3, 0.4, 0.6 169 

and 0.8 mg/L) were transferred to HPLC vials. In order to prevent any sorption of DD by 170 

HPLC vials, 0.5 mL of methanol (99.9%) was added to each vial prior to the addition of the 171 
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supernatant. HPLC vials containing supernatant and methanol were vortexed for 30 sec using 172 

a digital mini-vortexer (VWR, Radnor, PA, USA). Samples were then analyzed for DD 173 

concentrations by direct injection of 50 µL into a Thermo Scientific high-performance liquid 174 

chromatography (HPLC) system (Ultimate 3000) equipped with a UV detector and a 150×175 

4.60 mm 5 micron Luna 5 m C8(2) 100 Å column (S/N 514816-4). Isocratic elution was 176 

performed using a mobile phase of 80% methanol: 20% water (v/v) with a flow rate of 1.0 177 

mL/min and wavelength of 223 nm for detection.  178 

The amount of DD sorbed (qe, mg/kg) was calculated as the difference between the 179 

amount initially added and that remaining in the solution after equilibration (Eq. 2):  180 

qe = (Co−Ce)×Vmads ……………………………………………………….…………(2) 181 

where Co and Ce are DD concentration in liquid phase at time zero and after equilibration 182 

(mg/L), respectively; V is the solution volume used in DD adsorption (L); mads is GAC/PAC 183 

mass (kg). 184 

2.5. Desorption 185 

Following collection of the supernatant after equilibrium had been reached, the remaining 186 

supernatant was carefully decanted and the solid phase was re-suspended in a 30 mL solution 187 

of 25% and 99.9% methanol and water (v/v). Tubes were sonicated for 30 sec prior to 188 

shaking 24 h at 60 rpm to ensure equilibrium. Then, the supernatant and adsorbent were 189 

separated by either centrifugation (GAC/PAC) or external magnetic field (GAC/PAC-Fe3O4 190 
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composite). Approximately 1.5 mL aliquots of supernatant and standards of 0.18, 0.3, 0.4, 0.6 191 

and 0.8 mg/L were transferred to HPLC vials for HPLC analysis. The amount of DD 192 

desorbed was calculated directly from the concentration of DD present in the supernatant 193 

following equation Eq. 3: 194 

Desorption efficiency = 
C×V

X
×100%…………………………………….....(3) 195 

where C (mg/L) is the concentration of DD in the desorption solution, V (L) is the volume of 196 

the desorption solution, and X (g) is the amount of DD adsorbed. 197 

 198 

3. Results and discussion 199 

3.1. Adsorbent characterization in GAC 200 

Six activated carbon materials consisting of five granular activated carbon (GAC) 201 

materials (F400, FM-1, G60, TOG-LF, and DSRA) and one fine textured powdered activated 202 

carbon powder (PAC) (WPC) were functionalized with Fe3O4. Selected physical properties of 203 

the six materials are given in Table 1.  All but one of these GAC/PAC materials (DSRA) 204 

were used in recent TCDD bioavailability studies and were found to be highly effective in 205 

eliminating mammalian bioavailability of TCDD (Boyd et al., 2017; Sallach et al., 2019).  206 

The activated carbon materials (Table 1) were functionalized using two different 207 

magnetite synthesis methods. Given their large specific surface areas and micropore (0-2 nm 208 

pores) volumes (Table 1), some magnetite synthesis was expected to occur in the micro- and 209 
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mesopores (2-50 nm pores) of the GAC/PAC, along with surface decoration of exterior 210 

surfaces of the GAC/PAC particles rendering the GAC/PAC-Fe3O4 composites magnetic. 211 

Fe3O4 synthesis Method A was performed at elevated temperature (338 K) using 0.01 M 212 

FeSO4. The resulting magnetization of the PAC-Fe3O4 composite was successful with a value 213 

of 9.7 emu/g (Table 1). In contract, observed magnetization values measured at 300 K for the 214 

five GACs were weak with values of 0.61 (DSRA), 0.54 (FM-1), 0.49 (TOG-LF), 0.46 (G60) 215 

and 0.35 (F-400) emu/g (Table 1). For comparison, the magnetization of Fe3O4 synthesized 216 

using Synthesis Method A without GAC/PAC was 71.9 emu/g.  Weak magnetization values 217 

in the ranged of 0.35-0.61 emu/g were not sufficient to allow rapid magnetic separation.      218 

Because the magnetization values resulting from synthesis Method A for the granular 219 

activated carbon samples were weak (0.35-0.61 emu/g), the Fe3O4 synthesis procedure was 220 

modified using synthesis Method B, which utilized a higher concentration of FeSO4 (0.1 M) 221 

and a lower temperature of 298 K. The granular activated carbon sample DSRA was selected 222 

because it showed the highest level of magnetization among the five GAC materials 223 

evaluated using Method A (Table 1). Synthesis Method B resulted in a DSRA-Fe3O4 224 

composite with a significantly improved magnetization value of 5.38 emu/g (Table 1). No 225 

residual magnetism was detected in either of the GAC(DSRA)-Fe3O4 (Synthesis Method B) 226 

or PAC(WPC)/Fe3O4 (Synthesis Method A) composites indicating that these two materials 227 

are superparamagnetic (Table 1). For simplicity, the GAC(DSRA)-Fe3O4 complex (using 228 
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Synthesis Method B) will be referred to as GAC-Fe3O4(B) and the PAC(WPC)-Fe3O4 229 

complex (using Synthesis Method A) will be referred to as PAC-Fe3O4(A), where (A) and 230 

(B) refer to Synthesis Methods A and B, respectively.    231 

The GAC-Fe3O4(B) composite in aqueous suspension was efficiently recovered by 232 

applying an external magnetic field. The complete (~100%) separation of the GAC-Fe3O4(B) 233 

composite from solution using a magnet was achieved within only 20 seconds (Supplemental 234 

Information Fig. S1). When the external magnetic field was removed, the GAC-Fe3O4(B) 235 

composite could be readily dispersed again in water by physical shaking.  236 

The XRD patterns of the GAC-Fe3O4(B) and PAC-Fe3O4(A) composites are shown in 237 

Fig. 2. The observed diffraction peaks at d-spacings of 4.846, 2.968, 2.531, 2.423, 2.099, 238 

1.713, 1.615, and 1.484 Å matched the XRD reflections of Fe3O4 (JCPDS file number 04-239 

007-9093). No other peaks were detected in the XRD pattern of the GAC-Fe3O4(B)  240 

confirming that the only crystalline phase present is Fe3O4 nanoparticles in the GAC-241 

Fe3O4(B) composite. In addition to the Fe3O4 peaks, the PAC-Fe3O4(A) composite had small 242 

peaks at 24.2, 31.0 and 58.5 °2.  243 

Further characterization of the GAC and the GAC-Fe3O4(B) composite was provided by 244 

SEM imaging of the two materials at different levels of magnification (Figs. 3a-3f). The 245 

average bulk size of the GAC was ~1 mm with <5% passing through a 40 US Mesh sieve 246 

(420 m) (Fig. 3a); ‘large’ pores were observed ranging in size from several µm to >10 µm 247 
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(Figs. 3b and 3c). The synthesized Fe3O4 particles were observed to be spherical, and their 248 

primary particle size ranged between 20 and 120 nm (Fig. 3d). From the SEM images it is 249 

evident that the synthesized Fe3O4 nanoparticles were randomly distributed on the surfaces 250 

and pores of the GAC particles (Fig. 3f). 251 

3.2 N2 BET and Textural Analysis 252 

N2 BET and micro-textural analysis of the activated carbon materials prior to magnetite 253 

synthesis are presented in Table 1. The supplier of the activated carbon, feedstock, along with 254 

N2 BET surface area and micropore analysis are presented in Table 1. The five granular 255 

activated carbon samples ranged in percentage micropore (0-2 nm) volume from 29 to 82% 256 

of the total micropore and mesopore (2-50 nm) volume.  The fine textured WPC powder had 257 

very little mesoporosity with 91% of its pore volume in the micropore range.  Of the six 258 

samples, five were used in prior toxicology studies to assess TCDD bioavailability (Boyd et 259 

al., 2017; Sallach et al., 2019). Although these ACs represented a wide range of particle size 260 

and pore size distributions, they were equally effective in eliminating the bioavailability of 261 

TCDD, making them viable candidates for remediation. After Fe3O4 synthesis, the specific 262 

surface area of the GAC(DSRA)-Fe3O4 composite decreased from 822 to 633 m2/g along 263 

with a modest reduction in micropore volume (0.388 to 0.262 g/cc) indicative of some partial 264 

pore blocking by the magnetite particles (Table 1). 265 
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3.3. Batch equilibrium sorption and kinetics 266 

Batch sorption isotherms of dibenzo-p-dioxin (DD) to GAC and GAC-Fe3O4(B) are 267 

shown in Fig. 4. Both GAC and GAC-Fe3O4 composite showed a high affinity for aqueous 268 

phase DD at low equilibrium concentrations (<0.005 mg/L) up to a sorbed concentration 269 

about of about 4000 mg/kg. At higher equilibrium concentrations (0.005-0.12 mg/L), sorption 270 

isotherms showed some nonlinear behavior exhibiting high affinity at low equilibrium 271 

concentration followed by an “S-shaped” response (Giles and Smith, 1974). The GAC-272 

Fe3O4(B) isotherm is shifted to higher equilibrium concentrations (i.e., lower affinity) 273 

compared the GAC, however, both materials sorbed > 8000 mg/kg. These results could be 274 

explained by sorption processes involving easily accessible external sites and less accessible 275 

pores. Since Fe3O4 demonstrated no sorption affinity for DD, its presence within the GAC 276 

composite likely blocked some sorption sites or access to certain pores manifesting a slight 277 

decrease in DD affinity.  278 

The kinetics of DD sorption by GAC and GAC-Fe3O4 composite were evaluated over a 279 

period of 40 h using the batch equilibration method (described above) with initial aqueous 280 

phase DD concentrations of 0.18, 0.4, and 0.8 mg/L (Fig. 5). Sorption kinetics of DD can be 281 

separated into two phases. Initially, within the first 10 h, both GAC and GAC-Fe3O4 282 

demonstrated comparatively rapid uptake of DD for all three initial concentrations. This was 283 

followed by a slower phase (>50 h) to reach apparent equilibrium.  284 
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For the lower and intermediate initial DD concentrations of 0.18 and 0.4 mg/L, DD 285 

uptake from aqueous solution by GAC was rapid and nearly complete within the first 10 h; 286 

the percent DD removal approached 100 percent (Fig 5c-f). However, at the higher initial DD 287 

concentration of 0.8 mg/L, there is a more gradual approach to apparent equilibrium over 288 

time (Fig. 5a-b). For the initial concentrations of 0.18 and 0.4 mg/L, DD adsorption by GAC 289 

was essentially complete by 10 h, and the total uptake of DD from aqueous solution 290 

approached 100 percent. For the initial concentration of 0.8 mg/L the data indicate that 291 

equilibrium had not been achieved after 50 h for GAC-Fe3O4.  292 

For this system, it is assumed that sorption kinetics are controlled surface adsorption with 293 

associated resistance to film diffusion followed by an emerging contribution to DD sorption 294 

via intraparticle diffusion. Pseudo-second order kinetic models are commonly used to 295 

describe sorption kinetics for these types of interactions (Ho and, McKay, 1999; 296 

Amarasinghe and Williams, 2007).  The pseudo-second order kinetic model was able to fit 297 

the experimental data well (see Table 2).  The pseudo-second order model results are plotted 298 

on the kinetics data shown in Fig. 5. 299 

The correlation coefficients (R2) and kinetic parameters derived from the pseudo-second 300 

order models are summarized in Table 2. These results suggest that the rate-limiting step may 301 

be some type of site-specific mechanism involving direct interaction between the sorbent and 302 

sorbate (Amarasinghe and Williams, 2007). The kinetic rate constant (k2) from the pseudo-303 
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second order model decreased with increasing initial DD concentrations (Table 1), indicating 304 

that the DD adsorption rates are faster at lower concentrations. In other words, the time 305 

required to reach equilibrium increased as the initial DD concentration increased. This is 306 

likely due to competition for active surface sites and pores of the sorbent which is greater at a 307 

higher DD concentration. 308 

3.4 Desorption of DD 309 

Desorption of DD into solutions of either 25% or 99.9% methanol and water (v/v) 310 

desorption solutions were used to evaluate the reversibility of DD sequestration by GAC and 311 

the GAC-Fe3O4 composite. Desorption of DD from GAC and GAC-Fe3O4 in 99.9% methanol 312 

was 19% and 14.3% (after 20 h), respectively, and 11.2% and 12.4% for 25% 313 

methanol/water, respectively.  These results agree with our prior study that showed 22-27% 314 

of TCDD bound to three of the activated carbons samples used in the present study could be 315 

desorbed after 64 hours of Soxhlet extraction using toluene (Sallach et et., 2019). 316 

Magnetizing GAC with Fe3O4 had little to no effect on the propensity of DD to desorb. That 317 

the fraction of released DD was less than 20% even for 99.9% methanol clearly indicated the 318 

strong affinity between DD and GAC; once sorbed DD appears to be largely irreversibly-319 

sequestered within the pore structure of GAC. The resistance to desorption, even into 320 

methanol, is consistent with our prior observation that sequestration of 2,3,7,8-TCDD by AC 321 

eliminated its mammalian bioavailability (Boyd et al., 2017; Stedtfeld et al., 2017). 322 
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3.5 Sorption removal comparison of fine-textured AC-Fe3O4 to GAC-Fe3O4 323 

The uptake of DD by GAC, GAC-DSR-Fe3O4(B), PAC and PAC-Fe3O4(A) as a function 324 

of time are shown in Fig. 6. As expected, uptake of DD by the fine-textured AC (WPC) was 325 

rapid and nearly stoichiometric. More than 90% of the WPC has a particle size of < 45 m 326 

(Sallach et al., 2019). In contrast, sorption kinetics for DD uptake by the coarse-textured 327 

GAC and GAC-Fe3O4(B) were considerably slower. Although the surface area of the PAC, 328 

GAC and their Fe3O4 derivatives are comparable, most of the surface area in GAC can only 329 

be accessed through intraparticle diffusion, resulting in slower sorption kinetics (Figs. 5-6).  330 

4. Discussion 331 

The activated carbon materials, including GAC and PAC, used here to form the magnetic 332 

variants were also used in our prior bioavailability studies (Boyd et al., 2017; Stedtfeld et al., 333 

2017; Sallach et al., 2019), along with natural geosorbents including clay minerals and silica 334 

(Boyd et al., 2011; Kaplan et al., 2011; Chai et al., 2016). Among these, only GAC and PAC 335 

eliminated the bioavailability of sorbed TCDD to a mammalian (mouse) model.  336 

Mammalian bioavailability was evaluated in our prior work using two highly sensitive 337 

bioassays, hepatic induction of cyp1A1 mRNA, an indirect measure of TCDD exposure, and 338 

immunoglobulin M antibody-forming cell response, a direct measure of immune response 339 

(Boyd et al., 2017; Sallach et al., 2019).  In contrast to the complete elimination of TCDD 340 

bioavailability achieved via sequestration by GAC/PAC, TCDD bound to clay minerals and 341 
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silica was found to be 100% bioavailable. The lack of mammalian bioavailability of TCDD 342 

bound to GAC/PACs was consistent with a related study showing contaminant bioavailability 343 

to lower organisms was significantly decreased in the presence of AC (Chai et al., 2012). In 344 

addition, attempts to extract sorbed TCDD from ACs using Soxhlet extraction revealed that 345 

only a minor fraction of the total TCDD present could be recovered (Sallach et al., 2019). 346 

From an applied perspective, these laboratory results are now leading to the use of GAC/PAC 347 

sorbent amendments in large-scale remediation efforts for impacted soils, sediments and 348 

water bodies (Samuelsson et al., 2017; Payne et al., 2019; Cornelissen et al., 2016; 349 

Beckingham et al., 2011). Given our earlier results showing elimination of mammalian 350 

TCDD bioavailability, creating magnetic GAC/PAC composites that could be used as a 351 

retrievable form of GAC/PAC sorbent amendments was attempted. The ability to retrieve 352 

magnetized GAC/PAC would enhance their utility as passive samplers in field settings and in 353 

ongoing laboratory studies. For example, our earlier mammalian studies would have 354 

benefited from using a magnetic AC to determine the amount TCDD in fecal pellets from 355 

mice that were dosed with TCDD–AC (Boyd et al., 2017; Stedfeldt et al., 2017; Sallach et al., 356 

2018). Likewise, the ability to ultimately retrieve (magnetized) GAC/PAC sorbent 357 

amendments used to remediate areas with especially high levels of contamination would 358 

provide both an immediate benefit, i.e., bioavailability reduction, and make contaminant 359 

removal possible in the longer term. 360 
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The synthesis procedure using a lower concentration of FeSO4 (0.01 M) at an elevated 361 

temperature (338 K), Synthesis Method A, was successful in synthesizing a magnetic PAC-362 

Fe3O4 composite (PAC-Fe3O4(A)).  In the case of the PAC, magnetization most likely 363 

occurs on the external surfaces of fine-textured AC and this could be accomplished using the 364 

lower concentration of FeSO4. However, Method A only produced weak magnetization 365 

values for the GAC-Fe3O4 composites.  One could argue that this procedure was not able to 366 

synthesize Fe3O4 particles within the coarse textured GACs. The procedure was modified 367 

using a higher concentration of FeSO4 (0.1 M) and lower temperature that resulted in a 368 

sufficiently magnetic GAC-Fe3O4(B) composite.  369 

Both the GAC-Fe3O4(B) and PAC-Fe3O4(A) composites revealed the presence of Fe3O4 370 

based on X-ray diffraction analysis (Fig. 2) and it is possible that careful XRD studies could 371 

be used as a surrogate for the more difficult to obtain SQUID magnetization results. N2 BET 372 

surface area and textural analysis showed that both the GAC and PAC materials were 373 

characterized by high N2-surface area (802-822 m2/g).  The specific surface area of the 374 

GAC-Fe3O4(B) composite showed a modest reduction in both surface area (822 to 633 m2/g) 375 

and micropore volume (0.38 g/cc to 0.26 g/cc) compared to the starting GAC (Table 1).  376 

The batch sorption isotherms of dibenzo-p-dioxin (DD) on the GAC and GAC-Fe3O4(B) 377 

composites showed that sorption affinity of DD was slightly reduced due to the presence of 378 

magnetite particles (GAC-Fe3O4(B)) compared GAC. The decrease in surface area and DD 379 
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sorption is interpreted as some blocking of pore throats. Overall, the sorption isotherms for 380 

both GAC and GAC-Fe3O4(B) showed some sorption nonlinearity, consistent with a range of 381 

sorption sites of varying accessibility.  382 

The sorption kinetics of DD uptake by GAC, GAC-Fe3O4(B), PAC and PAC-Fe3O4(A) 383 

were strongly dependent on particle size. Uptake of DD by the fine textured PAC and PAC-384 

Fe3O4(A) composite was rapid and complete within 10 hours.  In contrast, sorption uptake 385 

was much slower for GAC and the GAC-Fe3O4(B) composite (Fig. 4 and 5) owing to the 386 

larger particle size.  Sorption equilibria had not been reached for the GAC-Fe3O4(B) 387 

composite after 40 h. These results are consistent with prior work showing the influence of 388 

particle size on sorption kinetics of hydrophobic organic solutes on activated carbon and 389 

biochars (Ahn et al., 2005; Kang et al., 2018). As shown, the rate of DD uptake by the fine 390 

textured AC and AC-Fe3O4(A) is rapid with showing 97% removal of DD from aqueous 391 

solution after one hour. The larger sized GAC, with particle diameters ~ 1 mm (5% < 420 392 

m), showed much slower uptake (Fig. 6a) and is attributed to the longer diffusion pathways 393 

to binding sites and pore structures in GAC. 394 

We demonstrated that both a GAC and a PAC could be magnetized and, more 395 

importantly, the GAC-Fe3O4(B) and PAC-Fe3O4(A) composites maintained high sorption 396 

affinity for dioxin.  Particle size was a dominant factor in controlling sorption kinetics, with 397 

the fine-textured PAC showing nearly complete uptake of dioxin within 1 hour compared to 398 
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considerably slower uptake by the coarse texture GAC. These differences could be significant 399 

in animal dosing studies but less significant for materials deployed as passive samplers over 400 

periods of months to years. Finally, these results could prove useful in the design of large-401 

scale recoverable geosorbents manufactured for contaminant removal.  402 
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Table titles: 614 

Table 1. Selected physical properties of GAC, GAC-Fe3O4 and PAC.  615 

Table 2. Kinetic parameters at different concentration for adsorption of DD by using DSRA 616 

and GAC-Fe3O4 composite. 617 

 618 

Figure Captions 619 

Fig. 1. Saturation magnetization of GACs and PAC-Fe3O4 composites measured by SQUID. 620 

Fig. 2. X-ray powder diffraction (XRD) patterns of the GAC-Fe3O4(B) and PAC-Fe3O4(A) 621 

composites along with reference reflections for magnetite Fe3O4. 622 

Fig. 3. Scanning electron microscopy (SEM) images of (a) DSRA (120X magnitude); (b) 623 

DSRA (500X magnitude); (c) DSRA (800X magnitude); (d) GAC-Fe3O4 composite 624 

(50000X magnitude); (e) GAC-Fe3O4 composite (150000X magnitude); and (f) GAC-625 

Fe3O4 composite (350000X magnitude). 626 
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Fig. 4. Batch equilibrium sorption isotherms of dibenzo-p-dioxin (DD) on GAC (black 627 

squares) and GAC-Fe3O4(B) (red circles). Conditions: T=298 K, solution volume=30 628 

mL, adsorbent =2.5 mg, contact time=10-48 h. 629 

Fig. 5. Sorption kinetics of dibenzo-p-dioxin (DD) uptake by GAC and GAC-Fe3O4(B) over 630 

40 h of contact. Top figure shows results from initial concentration of 0.8 mg/L, 631 

middle figure shows results from initial concentration of 0.4 mg/L, and lower figure 632 

shows initial concentration of 0.18 mg/L. GAC is represented by black squares and 633 

GAC-Fe3O4(B) is represented by red circles. Conditions: T=298 K, solution 634 

volume=30 mL, adsorbent =2.5 mg. 635 

Fig. 6. Sorption kinetics of dibenzo-p-dioxin (DD) uptake by GAC, GAC-Fe3O4(B), PAC and 636 

PAC-Fe3O4(A) over 18 h of contact. PAC is represented by black squares, PAC-637 

Fe3O4(A) is represented by solid red circles, GAC is represented by open black 638 

squares, and GAC-Fe3O4(B) is represented by open red circles. Conditions: T=298 K, 639 

solution volume=30 mL, adsorbent =2.5 mg. Conditions: DD concentration=0.8 640 

mg/L, T=298 K, solution volume=30 mL, adsorbent=2.5 mg, contact time=1 h. 641 
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Table 1. Selected physical properties of the activated carbon materials 

 

Material Supplier Source 
Surface Area 

(m2/g) 
Mesopore vol. 

g/cc (% of total) 
Micropore vol. 

g/cc (% of total) 

aMagnetization 
after Syn. Method A 

(emu/g) 

bMagnetization 
after Syn. Method B 

(emu/g) 

G60 Cabot Lignite 987 0.38 (57%) 0.29 (43%) 0.46  

FM-1 Cabot Lignite 520 0.36 (71%) 0.15 (29%) 0.54  

TOG-LF Calgon Coal 916 0.15 (33%) 0.30 (67% 0.49  

F-400 Calgon Coal 1044 0.16 (31%) 0.36 (69%) 0.35  

WPC (AC) Calgon Coconut 802 0.03 (9%) 0.29 (91%) 9.7  

DSRA (GAC) Calgon Pool Rej. 822 0.11 (22%) 0.38 (78%) 0.61  

DSRA-Fe3O4 Calgon Pool Rej. 633 0.06 (18%) 0.26 (82%)  5.38 

Note:  
a: Magnetization after Fe3O4 impregnation at conditions of 338 K and 0.01 M FeSO4. 
b: Magnetization after Fe3O4 impregnation at conditions of 298 K and 0.1 M FeSO4. 
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Table 2. The pseudo-second order kinetic model for GAC (DSRA) and GAC-Fe3O4(B) 

 

 GAC (DSRA)  GAC-Fe3O4 (B) 

 qe k2 

Adjusted 

R Square  qe k2 

Adjusted R 

Square 

0.18 mg/L 2160 7.62E-04 0.990  2160 7.02E-04 0.994 

0.4 mg/L 4800 1.26E-04 0.893  4800 8.47E-05 0.916 

0.8 mg/L 9600 4.10E-05 0.967  9600 1.17E-05 0.973 
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