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Ecography A comprehensive understanding of the relationship between land cover, climate change
43: 1118-1142, 2020 and disturbance dynamics is needed to inform scenarios of vegetation change on the
doi: 10.1111/ecog.04990 African continent. Although significant advances have been made, large uncertainties

exist in projections of future biodiversity and ecosystem change for the world’s larg-
Subject Editor: Tim Bonebrake est tropical landmass. To better illustrate the effects of climate—disturbance—ecosys-
Editor-in-Chief: Miguel Aratjo tem interactions on continental-scale vegetation change, we apply a novel statistical
Accepted 27 March 2020 multivariate envelope approach to subfossil pollen data and climate model outputs

(TraCE-21ka). We target paleoenvironmental records across continental Africa, from
the African Humid Period (AHP: ca 14 700-5500 yr BP) — an interval of spatially
and temporally variable hydroclimatic conditions — until recent times, to improve our
understanding of overarching vegetation trends and to compare changes between forest
and grassy biomes (savanna and grassland). Our results suggest that although climate
variability was the dominant driver of change, forest and grassy biomes responded
asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in
increasingly diverse climatic conditions, during the second half of the AHP whilst
that of forest did not; 2) forest retreat occurred much more slowly during the mid
to late Holocene compared to the early AHP forest expansion; and 3) as forest and
grassy biomes diverged during the second half of the AHD, their ecological relationship
(envelope overlap) fundamentally changed. Based on these asymmetries and associated
changes in human land use, we propose and discuss three hypotheses about the influ-
ence of anthropogenic disturbance on continental-scale vegetation change.

Keywords: African humid period, climate—disturbance—ecosystem interactions,
disturbance dynamics, land use and land cover change, paleoecological
reconstruction, vegetation change
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Introduction
Variability during the African Humid Period (AHP)

The AHP was an interval of exceptionally wetter conditions
over much of tropical Africa (Kutzbach and Otto-Bliesner
1982, Street-Perrott and Perrott 1990, deMenocal et al.
2000, Gasse 2000, Lézine et al. 2011), characterized by con-
tinental-scale changes in the patterns and spatial extents of
vegetation, aquatic ecosystems, and an expanded footprint
of human occupation (deMenocal et al. 2000, Renssen et al.
2006, Lézine et al. 2011, Manning and Timpson 2014,
Tierney et al. 2017). The AHP is thought to be primarily
driven by the response of the west African summer mon-
soon to orbital forcing (Haug et al. 2001, Fleitmann et al.
2003) through a modulation of the Saharan heat low
(Chauvin et al. 2010) and land-sea temperature contrasts
(Gasse 2000, Lézine et al. 2011). Summer insolation peaked
ca 11 000-9000 BP (Holocene Thermal Maximum: HTM),
then decreased from ca 10 000 BP to the present day (Fig. 1).
However, uncertainty remains over the drivers, timing and
abruptness of change during the AHP, resulting in discrep-
ancies between observed data and predicted conditions.
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Models frequently underestimate the amplitude and extent
of the northern monsoon (Braconnot et al. 2012, Perez-
Sanzetal. 2014, Claussen etal. 2017), and many paleoclimate
proxy records find that vegetation responded non-linearly to
insolation change, with a locally abrupt and spatially asyn-
chronous termination of the AHP (Claussen et al. 1999,
deMenocal et al. 2000, Shanahan et al. 2015). While some
climatic events in southern Africa are contemporaneous
with those that characterise the AHP, the AHP wet period
has never been recorded in any southern Africa records
(Chase et al. 2019, Scott et al. 2012, Chevalier and Chase
2015, Burrough and Thomas 2013). Due to these complexi-
ties and the influence of different weather systems in different
geographical areas (Schefuf et al. 2005), the hydroclimatic
response of the African rainbelt in and out of the AHP was
variable between regions (Table 1).

In this study, we focus on continental-scale vegetation
changes during the termination of the AHD, ca 5500-3500
BP, and during an earlier, short-lived dry event that we define
as the ‘Green Sahara pause’ after Tierney et al. (2017). The
Green Sahara Pause was a pronounced dry interval ca 8000—
7000 BP (although some records date as early as 8400 BP:
Shanahan et al. 2008), associated with prolonged desiccation
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Figure 1. Major climatic events indicated over records of (a) atmospheric methane concentrations (EPICA community members 2006), (b)
atmospheric carbon dioxide concentrations (Monnin 2006), (c) June—August insolation at 6°N (Laskar et al. 2004). Key climatic events
include: (1) a period of pre-AHP increasing insolation and reduced precipitation due to the combined effects of cold global temperatures,
deglaciation meltwater on the Atlantic meridional overturning circulation (AMOC) and the presence of polar ice caps, (2) the onset of the
AHP at the beginning of the Belling-Allerad period, associated with increasing AMOC ca 14 700 BP, (3) the Younger Dryas ca 12 700-11
500 B, (4) peak insolation levels during the Holocene climatic optimum (HTM), (5) the 8ka Green Sahara Pause and (6) the time-

transgressive termination of the AHP.
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Table 1. Summary of regional context during the African Humid Period (references provided in the Supplementary material).

Northern Africa: lake status databases indicate enhanced annual precipitation-evaporation during the AHP (Jolly et al. 1998b,

Lézine et al. 2011), and vegetation records show that the Sahara was vegetated with species from modern tropical forests and wooded
grasslands, which arrived at various rates and increased biodiversity, forming land cover compositions with no modern analogue
(Jolly et al. 1998a, Hély et al. 2009, Lézine 2009, Watrin et al. 2009, Amaral et al. 2013). Geological and archaeological records
indicate that the Sahara-Sahel boundary reached as far as 23-31°N (Kuper and Kropelin 2006, Tierney et al. 2017), and that the AHP
had significant impacts on the radiocarbon footprint of human activity (Manning and Timpson 2014). Due to diverse mechanisms and
feedbacks in the arid and sub-arid belt, ecosystem change during the termination of the AHP was likely variable across the Sahara
(Renssen et al. 2006, Liu et al. 2007), although spatial differences are difficult to interpret due to a paucity of continuous, reliable
vegetation records (Hoelzmann et al. 2004, Lézine 2009, albeit see Kropelin et al. 2008).

Eastern Africa: broadly synchronous and abrupt transitions into and out of the AHP were observed across eastern Africa (Tierney and
deMenocal 2013), implying a common driver of vegetation change (Tierney et al. 2008, Tierney et al. 2011, Tierney and deMenocal
2013). The termination of the AHP occurred ca 5000-3000 BP (Msaky et al. 2005), as elsewhere in western and central Africa, with a
relatively abrupt shift towards arid conditions ca 4500-3500 BP (Hamilton 1982, Vincens 1986, Bonnefille and Chalié 2000,

Wooller et al. 2000, 2003, Kiage and Liu 2006, Marchant et al. 2018). This period was characterized by reduced rainfall, strengthened
precipitation seasonality, and increased abundances of drought-adapted taxa (e.g. Podocarpus; Bonnefille and Chalié 2000,
Thompson et al. 2002, Kiage and Liu 2006), with high altitude changes becoming apparent from ca 4500 BP (Hamilton 1982, Vincens
1986) and aridification events centering around 4000 BP (Jolly et al. 1997, Gasse 2000, Marchant and Hooghiemstra 2004, Kiage and
Liu 2006).

Western Africa: evidence exists for both abrupt (Salzmann and Hoelzmann 2005) and gradual (Salzmann et al. 2002, Lézine 2009)
vegetation change during the AHP in northern tropical Africa; this likely occurred in a time-transgressive manner, e.g. as a result of
differing ecological communities and edaphic conditions, or nonlinear response of vegetation to precipitation thresholds (Marchant
and Hooghiemstra 2004, Liu et al. 2007, Waller et al. 2007, Vincens et al. 2010, Lebamba et al. 2016), whereby the northernmost and
driest geographic areas of west Africa were first affected by the termination of the AHP (Salzmann and Hoelzmann 2005, Waller et al.
2007, Vincens et al. 2010, Amaral et al. 2013, Bremond et al. 2017). During the termination of the AHP, aridification often occurred in
two stages and at varying speeds, punctuated by a short-term increase in precipitation. Aridification from ca 5000 BP was frequently
associated with increasing appearances of Elaeis guineensis (Waller et al. 2007, Vincens et al. 2010, Shanahan et al. 2015).

Central African forests: few records from the central and west African forest zone capture the entirety of the AHP, but where present,
records show forest expansion ca 15 000 BP, followed by an accelerated expansion after the Younger Dryas (Maley and Brenac 1998,
Miller and Gosling 2014, Lézine et al. 2019). Forest reached its maxima ca 10 000 BP, with Guineo-Congolian taxa appearing in
records as far north as 10°N (Salzmann et al. 2002). Regional records indicate that the termination of the AHP unfolded in a stepwise
fashion, demonstrating savanna encroachment and culminating in a dramatic reduction of forest by ca 4000 BP (Vincens et al. 2010);
this was also associated with the disappearance of forest taxa from pollen records outside the modern forest boundary (Salzmann et al.
2002, Salzmann and Hoelzmann 2005). A later phase of forest perturbation appears clearest in Atlantic Central African records ca
2500 BP (Ngomanda et al. 2009a, b, Lebamba et al. 2016), signaled by greater representation of light-demanding forest taxa, and
savanna to a limited extent (Elenga et al. 1996, Vincens et al. 1999). In contrast, records from the interior of the forest zone
demonstrated limited disturbance (Brncic et al. 2007).

Southern Africa: while many records exhibit change during AHP onset or termination, no site exhibits both. This indicates that the AHP
did not extend into southern Africa, but that there was a strong connection to changes observed elsewhere in Africa. For example,
rainfall decreased ca 4500 BP in Namibia, followed by more apparent drying from ca 3800 BP (Scott et al. 1991, Dupont et al.
2008, Chase et al. 2009, 2010). An abrupt drying also began in Angola ca 3700 BP, associated with an increase in Cyperaceae and
grasses, suggesting a strong increase in savanna patches, light-loving trees (e.g. Alchornea, Elaeis guineensis) and fire-associated
taxa (Dupont et al. 2008). These synchronies with the drivers of Northern Hemisphere climate change reflect a strong correlation
to coastal upwelling in the southeast Atlantic (Farmer et al. 2005, Chase et al. 2019). Records from southwestern Africa also
reflect a wetter early-to-mid-Holocene compared to present (Scott et al. 1991, Dupont et al. 2008, Chase et al. 2019), but fail to
document any strong increase in rainfall contemporaneous with the onset of the AHP. In the eastern tropical and subtropical regions,
rainfall variability appears to be more sensitive to local summer insolation and global temperatures (Holmgren et al. 1999, 2003,
Scheful$ et al. 2011, Chevalier and Chase 2015, Cordova et al. 2017). Records from Zambia and Malawi suggest little to no change
during the Holocene (Konecky et al. 2011, Burrough and Willis 2015, Haberyan 2018). Variability in the winter-rainfall and year-
round zones to the South (cf. Chase and Meadows 2007) respond to changes in several regional climate drivers, e.g. strength and
position of the southern Westerlies, temperature of the Agulhas Current, and strength of the summer rain-bearing systems (Chase et al.
2013, 20154, b, 2017, Quick et al. 2016, 2018, Chase and Quick 2018, Faith et al. 2018).

across much of tropical Africa. Evidence for drying occurs
in paleo-records from the Sahara (-19-23°N: Tierney et al.
2017), Sahel (-15°N in Niedermeyer et al. 2010), eastern and
western Africa (Gasse and Van Campo 1994, Shanahan et al.
2008, Tierney et al. 2008), and numerous lake level records
from the tropics and subtropics (Gasse 2000). The beginning
of this interval is roughly coeval with the north Atlantic 8.2ka
cooling event, but is thought to have lasted much longer in
Africa (ca 1000 yr: Shanahan et al. 2008, Tierney et al. 2017)
relative to other continents, and corresponded with a decrease

in plant richness and abundance (Hély and Lézine 2014).
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Evidence suggests that AHP termination occurred in a time-
transgressive manner, whereby humid conditions ended earli-
est and most abruptly in northeastern Africa, ca 5500 BE, and
later and more gradually in west and central Africa, ca 3000
BP (Schefuf§ et al. 2005, Shanahan et al. 2015, Tierney et al.
2017, Garcin et al. 2018). A review of data from eastern and
central Africa demonstrates that numerous sites shifted to
drier, more pronounced seasonality, particularly after 4000
BP (Marchant and Hooghiemstra 2004). Even if the AHP
did not reach southern Africa, contemporaneous yet heter-
ogenous changes in rainfall trends and patterns have been



Table 2. Summary of vegetation—environment interactions (references provided in the Supplementary material).

Vegetation—climate feedbacks and nonlinear changes in rainfall: vegetation feedbacks (Foley et al. 1998, Richardson et al. 2013) likely
had significant and sudden impacts on mid-Holocene monsoon change, particularly during the termination of the AHP. It is widely
acknowledged that vegetation responds to transitional climatic intervals in complex and varied ways, often exhibiting non-linear or
individualist behaviors (Watrin et al. 2009, Tierney et al. 2010, Vincens et al. 2010, Lézine et al. 2013, Platts et al. 2013), capable of
affecting climate change in return (e.g. changes in albedo, surface roughness, leaf area index, fractional vegetation coverage, soil
moisture: Kutzbach et al. 1996, Claussen 1997, Galopolski et al. 1998, Claussen et al. 1999, deMenocal et al. 2000). The mechanics of
this relationship are debated for the AHP: some research suggests that vegetation-climate feedbacks are a primary driver of instability
and nonlinear changes in the AHP rainbelt (Braconnot et al. 1999, Claussen et al. 1999, deMenocal et al. 2000, Renssen et al. 2003,
2006), while other research suggests that this instability reflects a nonlinear response of vegetation to climate change, i.e. a non-linear
response to precipitation thresholds in the face of strong climate variability (Liu et al. 2007).

Hydrological dynamics: hydrological dynamics affect the vegetation—climate relationship, and likely had significant effects on climate
and vegetation change during the AHP, e.g. via climate feedbacks from open water surfaces and variable recharge and discharge rates

of aquifers (Hoelzmann et al. 1998, Mulitza et al. 2008, Stager et al. 2011, Krinner et al. 2012, Shanahan et al. 2012, Lézine et al.
2011, Armitage et al. 2015). Hydrological dynamics may be responsible for asynchronous rates of aridification (e.g. Bodélé Basin
[Armitage et al. 2015] vs Lake Yoa [Eggermont et al. 2008, Kropelin et al. 2008, Francus et al. 2013]). In addition, the rapid
aridification of large open water surfaces, e.g. Lake Chad’s Bodélé Basin, are thought to exert strong control over biogeochemical
cycling and to act as a climatic ‘tipping element’ (Hoelzmann et al. 1998, Rosenfeld et al. 2001, Bristow et al. 2009, Washington et al.
2009, Krinner et al. 2012). However the timing of these transitions are debated (Lézine et al. 2011, Krinner et al. 2012, Armitage et al.
2015), making it difficult to determine their effects on vegetation change.

Disturbance dynamics: vegetation-climate relationships during the AHP are complicated by natural and anthropogenic disturbance
dynamics (e.g. herbivory, fire, land clearance, atmospheric CO,, niche construction), which are capable of producing non-linear
responses to climate change. For example, elephant herbivory is capable of modifying African savannas (Valeix et al. 2011), and
anthropogenic land cover change is capable of affecting forest composition (Finch et al. 2017), aboveground carbon stocks
(Pellikka et al. 2018), and ecohydrological feedbacks (Muchura et al. 2014). A number of studies have pointed to the role of dynamic
instabilities as a mechanism behind non-linear vegetation change during the AHP (Brovkin et al. 1998, Scheffer et al. 2001,

Renssen et al. 2006, Shanahan et al. 2015, Wright 2017), but the roles of different types of disturbance are unclear.

reconstructed across the subcontinent (Scott et al. 2012,
Chevalier and Chase 2015, Quick et al. 2018, Chase et al.
2019).

The drivers of vegetation change during the AHP are
numerous and difficult to disentangle (Table 2), and non-
analogue vegetation assemblages make temporal compari-
son challenging (Watrin et al. 2009). Many drivers of forest
and grassy biome distribution have been proposed, includ-
ing climate (McCarthy et al. 2001, Good and Caylor 2011),
human land use (Greve et al. 2011, Lehmann and Parr
2016), herbivory (Goheen et al. 2010, Odadi et al. 2011,
Hempson et al. 2015), changing fire regimes (Bowman et al.
2009, Hempson et al. 2018), soils (Furley et al. 1992), vary-
ing atmospheric CO, (Ehleringer et al. 1997, Bond and
Midgley 2012, Buitenwerf et al. 2012, Scheiter et al. 2012),
and interactions between drivers (Smit and Prins 2015,
Archibald and Hempson 2016). This complexity makes the
spatially and temporally dynamic patterns of forest-savanna
vegetation mosaics difficult to predict (House et al. 2003,
Sankaran et al. 2008, Murphy and Bowman 2012). Thus,
understanding the effects of climate—disturbance—ecosystem
interactions is critical for informing future ecosystem change
under different climate and land use scenarios (Sala et al.
2000, Bond 2008, Lehmann and Parr 2016).

Disturbance and grassy biomes

Used here, the term ‘disturbance’ (no value judgement
inferred) refers to changes in environmental conditions that
affect ecosystems, e.g. composition, structure and func-
tion. Examples of disturbance dynamics include changes in
herbivory patterns (Hempson et al. 2015) and fire regimes

(Bond et al. 2005, Archibald et al. 2013, Archibald and
Hempson 2016, Oliveras and Malhi 2016), niche construc-
tion processes (O’Brien and Laland 2012), and changing
atmospheric CO, concentration (Bond and Midgley 2012).
Because the long-term influence of disturbance at continen-
tal-scale is poorly understood, substantial uncertainties exist
in future projections of biodiversity and ecosystem change
(Niang et al. 2014, Midgley and Bond 2015), especially for
African grassy biomes (savanna and grasslands), which are
exceptionally extensive (White et al. 2000) and dispropor-
tionately affected by disturbance dynamics (Bond 2005). The
role of human land use in past vegetation change is especially
difficult to discern, given the many confounding drivers of
climate and vegetation change, which are both spatially and
temporally variable.

Anthropogenic changes in fire regimes, whether via hunt-
ing-gathering or agriculture, have been found to increase or
maintain open woodland and savanna biomes (Bird et al.
2008, Burrough and Willis 2015, Roos et al. 2018) and can
have significant impacts on vegetation change (Eriksen and
Watson 2009, Rucina et al. 2009). There is little doubt that
anthropogenic changes to fire regimes shape African vegeta-
tion cover today (Bowman et al. 2009, Kull and Laris 2009),
but the extent and timing of these impacts in the past are
less clear. The radiocarbon footprint of human activity was
affected by climatic change on a broad scale during the
Holocene (Manning and Timpson 2014), but there is con-
siderable debate over the extent to which anthropogenic dis-
turbance affected environmental change: for example, the
human contribution to west-central African forest decline
ca 2500 BP (Clist et al. 2018, Garcin et al. 2018), and
whether the expansion of pastoralism prematurely advanced
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(Wright 2017) or delayed (Brierley et al. 2018) the termina-
tion of the AHP.

Archaeological summary

From the last glacial period until the HTM, there is evidence
for diverse hunting-gathering populations across the African
continent (Phillipson 2005). Evidence for increasing occu-
pation by hunter-gatherers in northern Africa began during
the early Holocene (Kuper and Kropelin 2006, Manning and
Timpson 2014), followed by pastoralist societies from ca 7500
BP (Di Lernia 2006, Dunne et al. 2012). Changes in central
Saharan land use strategies are evidenced during the early-
mid Holocene ca 8900-7400 BD, with evidence of increased
sedentism, corralling of Barbary sheep, and storage of wild
cereals (Cancellieri and di Lernia 2014). However, by 7000
BP, there was a distinct shift in Saharan land use strategies as
domestic animals were widely adopted and residential mobil-
ity may have increased (Tafuri et al. 2006). Radiocarbon date
densities further reflect major demographic change in north
Africa, including a large increase after 11 000 BP, a tempo-
rary decline ca 7600—-6700 BP, and a second major decline ca
6300-5200 BP (Manning and Timpson 2014). From ca 5000
BP, animal production spread southwards into sub-Saharan
Africa, occurring in mosaics or multiple events that often pre-
ceded cultivation in the east and resulted in complex interac-
tions between pastoralists and hunter—gatherers (Marshall and
Hildebrand 2002, Crowther et al. 2018). Genetic data points
to population expansion of Bantu-speaking agropastoralists
out of west Africa from ca 5000 to 4000 BP (Coelho et al.
2009, Gignoux et al. 2011, Skoglund et al. 2017), tending
to follow savanna corridors southward and eastward over the
following millennia (Grollemund et al. 2015). Expansion
is thought to have occurred in two phases, both associated
with central African forest decline. The first phase is thought
to have facilitated early settlement in the forest periphery ca
4000 BP, and the second phase, ca 3000-2500 BD, is thought
to have facilitated extensive and rapid expansion into the core
of the central African forest block, associated with cereal cul-
tivation, metallurgy and increasing appearance of oil palm
Elaeis guineensis in east Africa (de Maret 2013, Oslisly et al.
2013, Bostoen et al. 2015). Furthermore, quantification of
the Holocene animal production niche demonstrates anthro-
pogenic niche construction processes at a continental scale,

with the most significant expansion events occurring ca 6500
BP and 4500 BP (Phelps et al. 2020).

Research aims

We present the first African vegetation reconstructions, from
the last glacial period to modern times, using a statistical mul-
tivariate envelope approach on synthesized subfossil pollen
records and simulated climate information. Our reconstruc-
tions reflect the effects of climate-disturbance—ecosystem
interactions at the continental scale, however, we do not aim
to determine causality between these factors. Instead, we aim
to 1) provide a quantitative summary of broadscale vegetation
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change during the AHP, a period of high spatial and tempo-
ral variability; 2) to describe asymmetries between changes
in forest and grassy biomes; and 3) to provide results-based
hypotheses about the continental-scale role of anthropogenic
disturbance on the observed asymmetries, which require
testing in future studies. While this research does not focus
on the localized impacts of human land use, it does discuss
the broader role that anthropogenic disturbance could have
played in the observed vegetation trends.

Material and methods

1) Compile pollen datasets and generate a harmonized
pollen taxa list

The datasets compiled for this study comprise an updated set
of pollen records, extracted from the African Pollen Database
(APD: Vincens et al. 2007; online APD paradox database
<http://fpd.sedoo.fr/fpd/bibli.do>), the European Pollen
Database (Fyfe et al. 2009), the ACER pollen and charcoal
database (Sanchez Goni et al. 2017), and additional recent
publications (Appendices: <https://doi.pangaca.de/10.1594/
PANGAEA.905309> [Phelps et al. 2019a]). These datas-
ets represent 349 distinct pollen records and 11 259 pollen
samples since 20 000 BP (Supplementary material Fig. A2).
Using these records, we generated a harmonized pollen taxa
list from 5010 different taxa names (Appendix 4, using The
Plant List 2013, ver. 1.1), resulting in 2217 consolidated
names across all data sources.

2) Generate chronologies for each sediment core

We updated all the site chronologies that were either
uncalibrated, or calibrated with old calibration curves (8:
Phelps et al. 2019a) using linear age-depth modeling (clam:
Blaauw 2010) of calibrated radiocarbon dates (INTcal13 for
Northern Hemisphere sites: Reimer et al. 2013; SHcal13 for
Southern Hemisphere: Hogg et al. 2013).

3) Sort pollen taxa into vegetation groups using a
harmonized PFT assignment

Because different regions contain different floras, plant taxa
are typically grouped based on their ‘functional convergence’,
or ability to grow in similar environments, i.e. Plant func-
tional type (PFT: Prentice et al. 1992, Steffen 1996), so that
inter-regional comparisons can be made (i.e. using biomiza-
tion schemes: Prentice et al. 1996, Prentice and Webb 1998).
A number of pollen-based biome reconstructions exist for
select regions and time intervals on the African continent
(Jolly et al. 1998, Elenga et al. 2000, Vincens et al. 2006,
Lebamba et al. 2009, Lézine et al. 2009). However, PFT
assighments often vary between schemes (Dallmeyer et al.
2019). In order to make use of these reconstructions, we
therefore systematized African PFT assignments under a uni-
fied pollen taxa list (Appendix 9: Phelps et al. 2019a).



Using the systematized list of PFTs, we then sorted pol-
len taxa into mutually exclusive vegetation groups: forest (F),
grassy biomes (S.st: ‘savanna’ and ‘steppe’ categories were
pooled), xeric (x), and desert (D). A complete taxa list is
provided for forest and grassy biomes (Supplementary mate-
rial Table Al). To ensure that our vegetation reconstructions
accurately reflect our vegetation groups, we excluded any
conflicting taxa from our analyses, i.e. those classified under
more than one vegetation group, such as African Acacia and
Uapaca without species identifications that occur in both for-
est and savanna biomes. Although previous research demon-
strates that plant species are likely to maintain their ancestral
ecological traits (i.e. biome stasis: Crisp et al. 2009), exclud-
ing these taxa allowed us to filter out pollen that represents
multiple vegetation groups or taxa that could change biomes
through time, producing robust vegetation groups. In this
sense, one can use modern-day biomization schemes to
understand long-term change.

The aforementioned vegetation groups comprised our pri-
mary methodological approach (the ‘direct’ method). Since
this classification relies on sensitive, yet few, indicator taxa,
we also conducted supplementary analyses (the ‘indirect’
method) using a deductive approach. In the indirect method,
classification relied on calculating the difference between
broader vegetation groups, while maximizing the number of
taxa used, and permitted comparison between savanna and
steppe separately. For further detail on the indirect method,
see Supplementary material. Hereafter, the term ‘steppe’
explicitly refers to the group of taxa defined by PFT assign-
ments for Africa (Appendix 9; for geographic distributions
see Supplementary material Movie $4), and is representative
of grasslands.

4) Calculate relative pollen percentages
(occurrence records) for each vegetation group

To enable comparability between all the samples, we calcu-
lated relative group percentages for each sample using exclu-
sively the taxa belonging to one of the four groups (forest,
grassy biomes, desert, xeric). We excluded pollen presences
lower than 0.5% prior to rescaling. Ultimately, we define
non-null values for each group as geolocated occurrence
records. Using the generated chronological information for
each sediment core, we linearly interpolated relative vegeta-
tion percentages between samples at 100-yr resolution. Note,
however, that our results and discussion focus on millennial-
scale trends due to chronological uncertainties.

5) Obtain paleoclimate information and define the
background climate space

We obtained nine paleoclimate variables for Africa from
the TraCE-21ka simulation (Liu et al. 2009) of the
Community Climate System Model (CCSM3) — a global
coupled atmosphere-ocean-sea-ice-land general circulation

model. Projections were obtained from 20 000 to 100 BP,

using 100-year averages centered on each century (e.g. 900
BP+50) at 2.5X2.5° spatial resolution (Fordham et al.
2017). We then performed a principal component analysis
(PCA), thus providing a bi-dimensional climate space with
which to compare climatic conditions and realized climatic
envelopes. The first two PCA axes explain 84.1% of vari-
ance (PC1=62.8%, PC2=21.3%: Fig. 2) and summarize the
main African temperature and precipitation gradients (mean,
seasonality and range: Supplementary material Fig. A3 [top],
Table A2, A3); this provides the background climate space of
our study, within which we plotted, measured and compared
vegetation envelopes.

6) Quantify temporal changes in the climatic
envelope using niche dynamic metrics

Niche dynamic metrics are traditionally used to quantify and
compare climatic niches, i.e. the set of climatic conditions, or
envelope, where a species occurs and maintains populations.
The realized climatic niche is traditionally inferred from
field observations (Holt 2009) and represents the portion of
the fundamental niche that is occupied at a given time. We
quantified climatic envelope dynamics from our occurrence
records using a modified set of methods from Phelps et al.
(2020; see also Broennimann et al. 2012, Petitpierre et al.
2012, Maiorano et al. 2013, Guisan et al. 2014; R Core
Team; ‘ecospat’ package in R), whereby we pooled together
the niches of indicator taxa to form a mutually exclusive cli-
matic envelope for each vegetation group. We applied these
methods continent-wide to reconstruct and quantify changes
in African vegetation climatic envelopes at 100-yr intervals,
beginning at 20 000 BP. These methods are suitable for our
purposes because they are equipped to deal with incomplete
sampling coverage in geographic space, which is a significant
limitation of paleo-records on the African continent. They
also allow analysis of temporal patterns of ecological change,
i.e. changes in climatic envelope breadth for vegetation
groups that include a variety of distinct vegetation biomes.
This approach is suitable for reconstructing vegetation enve-
lopes in non-analogous climatic conditions because vegeta-
tion envelopes are allowed to overlap, rather than assigning
one biome per grid cell as in traditional approaches.

We calculated and plotted the density of occurrence
records for each vegetation group along the two primary
PCA axes (Fig. 2; see PCA-env in Broennimann et al. 2012).
Each occurrence was weighted by the rounded percentage
of the vegetation group being reconstructed. For example,
if forest comprised 40.4% of the pollen sum for site one and
80.8% at site two, then we duplicated occurrence records
40 and 81 times, respectively. To quantify changes in the
climatic envelope through time, we then used two over-
lap metrics to determine the breadth of our multidimen-
sional vegetation envelopes. First, we used a density-based
metric (a niche overlap metric [Broennimann et al 2012]
based on Schoener’s D [Warren et al. 2008], implemented
as in Phelps et al. [2020]) to measure the breadth of each
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Figure 2. Climatic envelope overlap between forest and grassy biomes, mapped in climate space using TraCE-21ka climate information and
the direct methodological approach (‘ecospat’ package in R, R Core Team; for additional methodology: Broennimann et al. 2012). Green
areas represent climatic spaces where only forest taxa occurred; red areas represent climatic spaces where only savanna or steppe taxa
occurred (grassy biomes); and blue/purple areas represent climatic spaces where forest and grassy biomes overlapped in their climatic distri-
bution. The solid red outline indicates the extent of the pooled climatic space across the entire study period. Darker areas represent higher
densities of overlap. For visualizations of more time intervals, see Supplementary material Fig. A4 and Movies 8a—b; for climate variable

contribution to PCA axes, see Table A2.

vegetation envelope, according to the climatic density of
occurrence records (Dden). Second, we used a binarized
metric (Dbin), independent of climate density, to measure
the climatic extent of the vegetation envelope (Guisan et al.
2014). Third, we used both of these metrics to measure
overlap between forest and grassy biome climatic envelopes
at each time interval (Fig. 3, Supplementary material Fig.
A5). Climatic envelopes reflect the effects of climate—dis-
turbance—ecosystem interactions on a continental scale, as
these are based on the climatic density and extent of any
given taxa.
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7) Map vegetation reconstructions

We reconstructed and projected each climatic vegetation
envelope into geographic space using modern WorldClim
information, then rescaled its occurrence density from 0 to 1
based on the maximum occurrence density of its vegetation
group across 20 000 yr, to permit visual comparison between
vegetation groups. This results in continuous maps of climatic
suitability for each vegetation group (Fig. 4, Supplementary
material Fig. AGa—d). We also generated multivariate envi-
ronmental similarity surfaces (MESS) for each time interval
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Figure 3. Schoeners D envelope overlap (Dden) and binarized D
(Dbin) values plotted from the last glacial period until recent times,
using the direct methodological approach and TraCE-21ka climate
information. ‘Forest breadth’: D values represent the proportion of
the entire African climate space occupied by forest taxa; ‘Grassy
biome breadth’: D values represent the portion occupied by grassy
biome taxa; ‘Forest-Grassy biome overlap’: D values represent the
climatic overlap between the forest and grassy biome envelopes.
Rectangle (a) represents the Younger Dryas, (b) the Green Sahara
Pause and (c) the termination of the AHP, including the first phase
of central African forest decline. For further analysis, see
Supplementary material Fig. A5.

(‘ecospat’ package in R, see Elith 2010), as an indication of
sampling coverage (Fig. 4, Supplementary material Fig. AGa—
d): blue areas indicate well-sampled climatic spaces, whereas
red areas indicate poorly-sampled climatic spaces.

Results

We provide the first continental-scale African vegetation
reconstructions from the last glacial period until recent
times, and detail three non-linear responses between forest
and grassy biomes to insolation change. Our results improve
the understanding of broadscale vegetation trends during
the AHP and lead us to propose three hypotheses about the
potential role of anthropogenic disturbance.

Sampling coverage

Multivariate environmental similarity surface (MESS) anal-
yses demonstrate that our sampling coverage is relatively
comprehensive in sub-Saharan Africa throughout the study
interval (blue spaces in Fig. 4), especially for east Africa.
Coverage is relatively poor in northern Africa, albeit to
varying degrees through time, and in parts of central and
southwestern Africa (red spaces: Fig. 4, Supplementary
material Movies S7a—d). Vegetation patterns reconstructed
in red areas thus have higher uncertainties, requiring fur-
ther sampling to improve reconstructions. For example,
the section of persistent reduced vegetation cover in the
middle of the central African forest block is an artefact
caused by limited sampling of the climate affecting the
region (Fig. 4).

Forest and grassy biome response to northern
hemisphere summer insolation

Our vegetation envelope reconstructions demonstrate that
the climatic density of forest and grassy biomes were closely
linked to changes in northern hemisphere summer inso-
lation on a continental scale (Fig. 3 Dden; Fig. 1). From
the end of the last glacial period untl the HTM, forest
and grassy biomes expanded into northern Africa (Fig. 3,
Supplementary material Fig. A5, Movies S1, S2), with grassy
biomes reaching beyond forest into higher latitudes, espe-
cially after the Younger Dryas. The climatic density of forest
and grassy biomes peaked during the early Holocene, then
contracted after the HTM as northern hemisphere summer
insolation decreased (Fig. 3: Dden). Although plotted enve-
lope metrics do not provide a clear indication of hydrological
changes at different laticudes, mapped forest reconstructions
clearly reflect the time-transgressive nature of forest expan-
sion and contraction (Supplementary material Movies S1—
S6). These observed trends are in accordance with existing
research on the African continent and reflect findings from
numerous studies, e.g. that during the AHP, changes in veg-
etation distribution reflect wetter conditions in the Sahara
(Supplementary material Movies S1, S2).
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Figure 4. The climatic envelope of forest projected into geographic
space (left); the climatic envelope of grassy biomes (savanna and steppe)
projected into geographic space (center); sampling coverage, deter-
mined using multivariate environmental similarity surface (MESS)
analysis (right). For all maps, the direct methodology and repeated
modern-day WorldClim data were utilized (for further time intervals
see Supplementary material Movies and Fig. A6). For MESS analyses
(=1 to 1), negative (red) values indicate a dissimilar sample area to the
overall climate space, i.e. poor sampling coverage, and positive values
(blue) indicate climate similarity, i.e. good sampling coverage.
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Non-linear vegetation responses to climate change

By comparing temporal changes in forest and grassy biomes,
we observed three novel, non-linear vegetation responses to
insolation change.

1) Trends in the climatic extent of forest and grassy biomes
diverged significantly after the HTM as grassy biomes
expanded

While the climatic extent (Dbin) of forest remained closely
linked to insolation until the termination of the AHP, the cli-
matic extent of grassy biomes increased significantly after the
HTM, leading into the first phase of central African forest
decline, ca 4000 BP (Fig. 3, Supplementary material Fig. A5).

2) A strong hysteresis was observed in the rate of forest
response to climate change between the beginning and end of
the African Humid Period

Forest envelope expansion occurred significantly faster lead-
ing up to the HTM than the rate of contraction afterwards.
This hysteresis was associated with increasing atmospheric
CO, concentrations (Fig. 1) and relative abundance of for-
est pollen (Supplementary material Fig. A7). Given changes
in sampling through time (Supplementary material Fig. A2),
this finding requires closer investigation, yet comparison
between envelopes (Dbin: no hysteresis; Dden: hysteresis)
strongly suggests that sampling bias is not responsible for
this observed non-linear response, nor for the observed dif-
ferences between forest and grassy biome trends, as these were
reconstructed using the same methodology.

3) As forest and grassy biomes diverged after the HTM, their
relationship (envelope overlap) fundamentally changed

As insolation increased from the end of the last glacial period
until the HTM, the ovetlapping climatic density of forest
and grassy biome envelopes decreased significantly (Fig. 3).
Rather than reconverging as insolation decreased after the
HTM, the overlapping climatic density between them
remained low and relatively stable until recent times (Dden:
0.2-0.36; Fig. 3). This post-HTM stasis was further associ-
ated with high but variable overlap between the extent of for-
est and grassy biomes (Dbin; 0.65-1), as well as differences in
their geographic distribution (Fig. 4, Supplementary material
Movies S1, S2). In other words, forest and grassy biomes con-
tinued to occupy similar climates, but their climatic densities
became more distinct from one another.

At ca 4500-4000 BP, nearing the first phase of the Bantu
expansion and central African forest decline, indirect meth-
ods indicate that the climatic extent (Dbin) and density
(Dden) of forest contracted substantially and anomalously
(Supplementary material Fig. A5c). In contrast, direct meth-
ods show that the forest envelope expanded ca 5000-4000
BP, coinciding with a recorded precipitation increase from
leaf wax records (Fig. 3, Supplementary material Fig. A5;
Shanahan et al. 2015). Here, our results are likely record-
ing two separate but complementary findings: first, when few
indicator taxa are considered (direct analyses), the increas-
ing precipitation signal is apparent; second, when a larger



number of taxa are analyzed (indirect analyses), a large decline
in forest taxa is apparent. These concurrent changes between
forest and grassy biomes suggest that a temporary instability
or tipping point may have been reached ca 4500-4000 BP,
characteristic of disturbance-driven alternative stable states
(Hirota et al. 2011). In this sense, forest decline appears to
have been driven by additional factors besides climate change,
closely associated with or caused by the expansion of grassy
biomes into forested areas (Supplementary material Fig. A5:
indirect; Fig. 3: Dbin).

After AHP termination, the climatic density (Dden) of
forest decreased from ca 3000 BP until modern times (Fig. 3,
Supplementary material Fig. A5); the average relative per-
cent of forest stabilized (Supplementary material Fig. A7);
and a clear southward contraction of forest was observed in
the Sahel during the second phase of central African forest
decline (ca 3000-2000 BP; Supplementary material Movies
Sla—d, Fig. 3¢, Supplementary material Fig. A5c). In contrast
to forest, the climatic density and extent of grassy biomes
increased after AHP termination (Fig. 3, Supplementary
material Fig. A5) and the average relative percentage of grassy
biomes peaked (Supplementary material Fig. A7). From ca
4000 to 1500 BP, savanna in particular expanded and shifted
southward, becoming noticeably patchier in its geographic
distribution (Supplementary material Fig. A5, Movie S3).
These post-AHP patterns suggest that taxa from grassy
biomes continued to encroach on forested areas, especially
due to the simultaneous increase in climatic overlap between
forest and grassy biome extent (Dbin), the expansion of the
grassy biome envelope, and the contraction of the forest
envelope (Fig. 3).

Disturbance-driven hypotheses

By modeling the climatic vegetation envelope, we inherently
reconstruct temporal changes that result from climate—dis-
turbance—ecosystem interactions. Although we cannot con-
clusively determine the causality of vegetation change, we
employ complementary methods that reveal clues about
potential drivers of change and allow us to form hypotheses.
The three observed non-linear vegetation responses to inso-
lation change raise questions about the role of disturbance
in vegetation changes observed after the HTM, especially by
way of savanna expansion and the formation of alternative
stable states. To this end, we form three disturbance-driven
hypotheses that are interlinked, but require explicit testing:
1) increasing human population levels, the development of
pyrotechnologies, and land clearance associated with the
spread of cultivation and Bantu expansion contributed to the
expansion of grassy biomes during and after the termination
of the AHP. 2) The spread and development of African ani-
mal production into sub-Saharan Africa preferentially ben-
efitted grassy biome development over forest and may have
influenced the first phase of (peripheral) central African for-
est decline, typically assumed to be driven solely by climate
change. 3) Increasing anthropogenic landscape disturbance
and carbon dioxide concentrations interacted to cause the

formation of alternative stable states detectable at continen-
tal scale, especially during and after the termination of the
African Humid Period.

Supporting details for these hypotheses are discussed below.

Discussion

We reconstructed continental-scale vegetation trends in
Africa by synthesizing paleo-records and analyzing temporal
changes in the climatic envelopes of select vegetation groups,
namely forest and grassy biomes. By measuring the climatic
breadth of these mutually exclusive, taxa-based groups, our
approach is suitable for reconstructing broadscale vegetation
trends, while maintaining the integrity of vegetation and cli-
matic conditions for individual occurrence records. Using
this approach, we provide a novel perspective from which
to understand the combined effects of climate—disturbance—
ecosystem interactions on forest and grassy biome Change
since the end of the last glacial period. Given that the rate
and amplitude of vegetation change is highly variable across
paleo-records, our reconstructions are useful for understand-
ing continental-scale trends during the onset and termination
of the AHP.

We observed three non-linear vegetation responses to cli-
mate change between the beginning and end of the AHD,
suggesting Holocene disturbance as a potential driver that
requires investigation. However, nonlinear changes can also
result from or interact with vegetation-climate feedbacks,
nonlinear changes in rainfall and hydrological dynamics
(Table 2). Potential sources of disturbance include anthro-
pogenic land use change, e.g. the expansion of agriculture
(Neumann et al. 2012a, Kahlheber et al. 2014, Russell et al.
2014, Stevens et al. 2014, Burgarella et al. 2018) and the
animal production niche (Marshall and Hildebrand 2002,
Phelps et al. 2020); the development of metal production
(Chirikure 2018); fire management (Phillipson 2005, Butz
2009, Killick 2016); and natural disturbance, e.g. the effects
of increasing atmospheric carbon dioxide (Fig. 1) on tree
recruitment (Bond and Midgley 2012) and changes in grazing
and browsing patterns of wild herbivores (Valeix et al. 2011).
To this end, we propose and discuss three vegetation-distur-
bance hypotheses, focusing on the role of anthropogenic land
use and the establishment of alternative stable states.

Hypothesis (1): increasing anthropogenic disturbance
associated with the spread of agriculture, the development
of pyrotechologies and the Bantu expansion led to land
clearances, which provided grassy biomes with an increased
advantage after the AHP.

The termination of the AHP was a period of rapid agricul-
tural expansion along the Sahara-Sahel border and into west
Africa. Domesticated pearl millet Pennisetum glancum first
appeared ca 5500 BP in northern Mali (Manning et al. 2011)
and spread rapidly into the Sahelo-Sudanian belt, intensify-
ing around 4000 BP (Neumann et al. 1996, Klee et al. 2000,
D’Andreaetal. 2001, Zachand Klee2003, Ozainneetal. 2009).

The spread of agriculture and associated increase in social
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complexity into west Africa was driven by a broad scale
migration of populations from the north, moving in response
to the increasing aridification of the Sahara. Recent genomic
analysis of other West African cultivars furthermore indi-
cates the Niger basin as a major cradle of African agriculture
(Meyer et al. 2016, Scarcelli et al. 2019). This southward
spread of population also brought with it a new suite of pyro-
technologies (Killick 2016), including large scale ceramic
production throughout the Sahelian region (Jordan et al.
2016), and by ca 3500 BD the emergence of centralized
urban settlements (Bedaux et al. 2005) and early metal pro-
duction (Chirikure 2018). These changes occurred around
the first phase of west-central African forest decline, ca
4000 B, which is often attributed to climate change alone
(Bostoen et al. 2015). However, patterns of change in cli-
matic vegetation envelopes suggest that forest contraction
ca 4000 BP occurred during a period of increased precipita-
tion (Shanahan et al. 2015; direct methods: Fig. 3), as grassy
biomes encroached (indirect methods: Supplementary mate-
rial Fig. A5). Furthermore, these changes were preceded, ca
5000 BP, by evidence for early Bantu expansion (Coelho et al.
2009, Gignoux et al. 2011, Henn et al. 2011) — which pro-
gressively spread south and east out of west-central Africa and
tended to follow savanna corridors (Grollemund et al. 2015)
—and the spread of pastoralism into east Africa (Marshall and
Hildebrand 2002).

Whereas the first phase of central African forest decline
is thought to have facilitated early Bantu settlement in the
forest periphery, the second phase ca 3000-2500 BD is
thought to have facilitated extensive and rapid expansion
of Bantu-speech communities with cereal cultivation and
metallurgy into the core of the central African forest block
(Bostoen et al. 2015). Whether this migration could have
caused or contributed to the second phase of forest decline
is hotly debated (Bayon et al. 2012, Neumann et al. 2012b,
Clist et al. 2018, Garcin et al. 2018). While our results reflect
forest decline during this second phase, the decline was
much less pronounced and anomalous than the first (Fig. 3,
Supplementary material Fig. A5), with forest appearing to
fall back in line with a linear response to insolation change.
Oppositely, grassy biomes demonstrated a highly non-linear
response to insolation change, expanding from ca 3000 BP
until recent times (Fig. 3) as forest continued to contract
(albeit potentially buffered by increasing atmospheric CO,
[Fig. 1]) and Bantu-speaking communities spread into east-
ern and southern Africa (Grollemund et al. 2015). Although
the causal relationship between land use and land cover
change is not tested here, the observed expansion of grassy
biomes corresponds with increasing human disturbance, and
therefore requires consideration as a possible cause of vegeta-
tion change.

Hypothesis (2): the expansion of the African animal pro-
duction niche preferentially benefitted grassy biome develop-
ment after the HTM.

Compared with the expansion of the animal produc-
tion niche (Phelps et al. 2020), our results circumstantially

1128

suggest that from the Green Sahara Pause until recent times,
animal production may have played a role in preferentially
benefitting grassy biome development. The climatic niche
of animal production expanded significantly after the Green
Sahara Pause (Phelps et al. 2020). This was coincident with
a non-linear (heightened) response of grassy biomes to inso-
lation forcing (Fig. 3) and a period of declining radiocar-
bon date densities in North African archaeological records
(Manning and Timpson 2014). Furthermore, simultaneous
changes in the extent and overlap (Dbin) between forest and
grassy biomes suggest that grassy biomes, especially savanna,
encroached on forests after the HTM, and that a new eco-
logical relationship was established between them (Fig. 2, 3).
It is known that savanna expansion can result from distur-
bance dynamics, including changing fire regimes and grazing
patterns, (see ‘Gulliver effect’: Bond and Van Wilgen 1996,
Bond etal. 2005, ‘pyromes’: Archibald et al. 2013). Therefore,
these coincident changes suggest that modifications to land
use strategies, e.g. the introduction and subsequent expan-
sion of mobile pastoralist strategies (Marshall and Hildebrand
2002, Smith 1992), could have driven a heightened extent of
grassy biomes and the divergence between forest and grassy
biomes (Fig. 3). This would be consistent with previous
findings that pastoralism provided an adaptive strategy dur-
ing this period of high susceptibility to population collapse,
and that traditional pastoral strategies may have provided a
competitive advantage to savanna grass species (Brierley et al.
2018). Other forms of early to mid Holocene land use
change also require investigation, including changes in hunt-
ing-gathering fire and grazing regimes (Phillipson 2005) and
the management of wild flora and fauna (Cancellieri and di
Lernia 2014).

As discussed above, the first phase of central African forest
decline is typically attributed to climate change, however, the
direct or indirect effects of expanding animal production on
vegetation change are poorly understood. The extent of grassy
biomes was heightened for millennia before the first phase
of central African forest decline, ca 8000-4500 BP, poten-
tially putting pressure on continued savanna expansion dur-
ing the termination of the AHP. Similar changes are apparent
between the distributions of grassy biomes (Supplementary
material Movies S1-S3) and animal production (Phelps et al.
2020), as both became increasingly concentrated in the Sahel.
This was followed by a significant expansion of the animal
production niche into sub-Saharan Africa ca 5000-4500 BP
(Phelps et al. 2020), peak grassy biome extent and an increase
in the climatic density of grassy biomes (Fig. 3), concurrent
with the aforementioned evidence for early Bantu expansion
(Grollemund et al. 2015) and the spread of pastoralism into
east Africa (Marshall and Hildebrand 2002).

Hypothesis (3): interactions between anthropogenic dis-
turbance and increasing atmospheric CO, interacted to form
alternative stable states, especially during and after the termi-
nation of the AHP.

Savanna expansion has the capacity to drive significant
ecological change, especially by perpetuating alternative



stable states or ‘hysteresis’ (McNaughton 1984, D’Antonio
and Vitousek 1992, Scheiter et al. 2012, Hempson et al.
2015, 2019). Oppositely, increasing atmospheric CO, con-
centrations are known to increase tree recruitment (Bond
and Midgley 2000, Kgope et al. 2010, Scheiter et al. 2012).
In modern studies, it is well established that opposing forces
such as these can lead to conflictual ecological relationships
between forest and grassy biomes, i.e. alternative stable states
influenced by disturbance dynamics (e.g. changes in fire, her-
bivory, atmospheric CO,), hydroclimatic interactions and
soils (Bond et al. 2003, Hirota et al. 2011, Staver et al. 2011a,
b, Favier et al. 2012, Dantas et al. 2016, Hempson et al.
2019). The long-term ecological ~manifestation of
alternative stable states is much less clear, however
(Moncrieff et al. 2014).

The observed hysteresis in forest response to insolation
change reflects existing studies on hydrological dynamics
during the AHP: abrupt increases in lakes and wetlands were
recorded leading up to the HTM, with maximum values
reached ca 9500-7500 BP, followed by a gradual decline of
hydrological records during the AHP (Lézine et al. 2011).
Vegetation feedbacks from the forest canopy may have slowed
this decline of water bodies after the HTM, e.g. through
increased transpiration (Lézine et al. 2011) and the forma-
tion of stratiform cloud cover (Maley 1996). Also important
to consider, is the increased growth of C, plants in response to
rising atmospheric CO, concentrations (Hittenschwiler et al.
1997, Polley et al. 1997, Prentice and Harrison 2009, Bond
and Midgley 2012; Fig. 1). For forest, the relative mean
abundance of taxa increased consistently from past to pres-
ent (Supplementary material Fig. A7, Movie S1), potentially
supported by increasing CO, (Bond and Midgley 2012,
Moncrieff et al. 2014; Fig. 1). In this sense it is conceivable
that vegetation-CO, interactions slowed the decline of forest
and affected precipitation levels, especially for C, forest can-
opy; via increased water-use efficiency and evapotranspiration
as a result of induced growth stimulation (i.e. increasing eco-
system level photosynthesis and net carbon uptake: Jolly and
Haxeltine 1997, Boom et al. 2002, Prentice and Harrison
2009, Keenan et al. 2013). In effect, this could have buffered,
i.c. slowed the decline of forest (Bond and Midgley 2012) in
the mid-Holocene, contributing to the observed non-linear
vegetation response to insolation change.

In contrast to forest, increasing atmospheric CO, is dis-
advantageous for many grassy taxa (those with C, photo-
synthetic pathways: Jolly and Haxeltine 1997, Norby et al.
2005, Keenan et al. 2013, Moncrieff et al. 2014). Despite
this, we observed heightened grassy biome extent (Dbin)
from the Green Sahara Pause until the termination of the
AHP, and an expansion of grassy biome extent and density
(Dden) after the AHP (Fig. 3). This strengthens the idea
that heightened grassy biome extent was driven by another
form of external disturbance (hypotheses 1/2), which
interacted with rising CO, concentrations. However,
direct consideration of grasses and C3—C4 plant composi-
tion are required.

Aside from the observed shift in post-HTM overlap
between forest and grassy biomes (Fig. 3), the geographic
appearance of high abundance savanna patches after the AHP
may further indicate stable alternative states (research sug-
gests that spatial organization in patches is a sign of alterna-
tive stable states: Gillson 2004, Kéfi et al. 2016). Although
disturbance dynamics can have a stabilizing effect on vegeta-
tion, they may also result in ‘catastrophic transitions” or ‘tip-
ping points’, such as sudden deforestation (D’antonio and
Vitousek 1992, Scheffer and Carpenter 2003, Aleman and
Staver 2018). In this sense, changes in fire regimes could have
interacted with rising CO, to stabilize vegetation change
(Brierley et al. 2018) and to cause rapid ecological shifts,
e.g. during the first phase of central African forest decline.
Therefore, the roles that anthropogenic disturbance and
atmospheric CO, played in the first and second phases of
central African forest decline require further consideration
and testing.

Our results raise questions about the impacts of chang-
ing land use practices on continental-scale vegetation change,
e.g. changes in grazing and fire regimes, the spread or inten-
sification of cultivation, and niche construction processes
associated with the expanding animal production niche
(Phelps et al. 2020). While our methods capture the effects of
climate—disturbance—ecosystem interactions at continental-
scale and provide insight about the potential causes of vegeta-
tion trends, our hypotheses require explicit testing in future
studies. Generally speaking, our findings should not be used
to interpret change at fine spatio-temporal scales due to the
coarse resolution of our study and chronological uncertain-
ties (Supplementary material Fig. A8). Unique combinations
of plant functional traits across African savannas result in
variable ecosystem response to disturbance (Osborne et al.
2018), and these require targeted research and management
strategies that we do not address here. Additional limitations
to consider include differing amounts and distributions of
pollen records before and after the HTM, which may influ-
ence the observed vegetation trends. For further discussion
of methodological limitations and future applications, see
Supplementary material.

Conclusion

We present the first African vegetation reconstructions, from
the last glacial period to modern times, using a statistical
multivariate envelope approach on synthesized subfossil pol-
len records and simulated climate information. Our novel
approach quantifies variations in the bioclimatic envelopes
of vegetation groups through time, providing insight into the
development of forest and grassy biomes during an interval
of hydroclimatic variability. Our results clarify broad-scale
vegetation trends during the African Humid Period, and are
in accordance with previous studies on the AHP. We addi-
tionally demonstrate three non-linear vegetation responses
to insolation change: first, grassy biome expansion led to a
divergence between forest and grassy biome envelopes after
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the HTM; second, there was a strong hysteresis in for-
est response to insolation change between the beginning
and end of the AHP; and third, the ecological relationship
between forest and grassy biomes fundamentally shifted after
the HTM, suggesting the formation of stable alternative
states. We pose three hypotheses to explain these non-linear
responses: first, increasing human population levels, the
development of pyrotechnologies, and land clearance asso-
ciated with the spread of cultivation and Bantu expansion
contributed to vegetation change; second, the spread and
development of African animal production into sub-Saharan
Africa preferentially benefitted grassy biome development;
and third, increasing anthropogenic landscape disturbance
and carbon dioxide concentrations interacted to cause the
formation of alternative stable states detectable at continental
scale. The rate and amplitude of vegetation change is variable
across African paleo-records, making it difficult to discern
broad-scale trends and to consider different drivers of change
at local-to-regional scales. Thus our broad-scale perspective
addresses this deficit and investigates the patterns that domi-
nate complex vegetation change during and after the AHP,
with implications for modeling vegetation change under
future projected climate scenarios.
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