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Abstract

Evolutionary methods are effective tools for obtaining high-quality results when

solving hard practical problems. Linkage learning may increase their effective-

ness. One of the state-of-the-art methods that employ linkage learning is the

Parameter-less Population Pyramid (P3). P3 is dedicated to solving single-

objective problems in discrete domains. Recent research shows that P3 is highly

competitive when addressing problems with so-called overlapping blocks, which

are typical for practical problems. In this paper, we consider a multi-objective

industrial process planning problem that arises from practice and is NP-hard.

To handle it, we propose a multi-objective version of P3. The extensive re-

search shows that our proposition outperforms the competing methods for the

considered practical problem and typical multi-objective benchmarks.

Keywords: Multi-objective genetic algorithms, Linkage learning,

Parameter-less population pyramid, Process manufacturing optimisation

1. Introduction

In industry, we often find combinatorial optimisation problems that are non-

trivial and NP-hard, which means that in practice, they cannot be solved in

polynomial time. Examples of such problems are production process planning
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or scheduling in single- or multi-objective domains. One of the most common is5

the Permutation Flow Shop Scheduling Problem (PFSP) [1, 2]. The objective

of PFSP is to optimise production quality. A solution in PFSP defines an order

in which the production tasks (jobs) are put on the plan by a scheduler. PSFP

is considered in single- [1, 2], multi- [3, 4] and many-objective versions [5]. For

some of the problems that emerge from industry optimisation, real numbers10

are employed to encode a solution [4, 6]. For others, sets of discrete values

(including binary values) can be used [7, 8].

In this paper, we consider a problem of manufacturing process planning in

factories producing bulk commodities. Such a process is comprised of manufac-

turing recipe selection and resource allocation. The main optimisation objective15

of this case study is to increase production line utilisation and, consequently, to

decrease the total production time (makespan) of batch production by executing

an appropriate number of recipes producing ordered amounts of commodities.

The extension beyond the typical covering problem is that the amount of the

commodities produced should be as close to the ordered ones as possible (i.e.,20

the surpluses should be minimised). The considered problem is an instance of

multi-objective optimisation and, as such, is referred to as the multi-objective

bulk commodity production problem (MOBCPP) in this paper. This problem

is practical and, being an extension of a classic covering problem, belongs to the

NP-hard class [9].25

MOBCPP is a multi-objective problem. In multi-objective optimisation we

consider m objective functions fi(x), i ∈ {0, 1, . . . ,m− 1}. Without loss of gen-

erality, we may state that the values of all these functions are to be minimised.

In this paper, we only consider problems with solutions encoded by l discrete

(binary) variables. Thus, a solution x is a binary vector x = (x0, x1, . . . , xl−1).30

For each x, the objective value vector is f(x) = (f0(x), f1(x), . . . , fm−1(x)).

A method in multi-objective optimisation is expected to return a Pareto

front [10, 11]. A Pareto front is a set of non-dominated solutions. A solution

x0 dominates a solution x1 if and only if fi(x
0) ≤ fi(x

1) ∀i ∈ {0, 1, . . . ,m− 1}

and f(x0) 6= f(x1). A solution that is not dominated by any other solution is a35
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Pareto-optimal solution. A Pareto-optimal set PS is a set of all Pareto-optimal

solutions. The Pareto-optimal front PF is a set of objective value vectors of all

Pareto-optimal solutions. The number of Pareto-optimal solutions may be large

for many problems (in continuous optimisation it is often infinite). Therefore,

usually, it is sufficient to find a good approximation of PF .40

If the scale of problem instances is large, metaheuristics may be employed

as effective and efficient solvers [8, 12, 6, 1]. Evolutionary methods are capable

of supporting high-quality solutions consuming a reasonable amount of compu-

tation resources. In some practical problems, there are more than one contra-

dicting objectives to optimise. For such problems, instead of a single solution, a45

set of so-called Pareto optimal solutions is sought. For each of these solutions,

improving a single objective causes worsening at least one other objective.

Many methods have been proposed for multi-objective optimisation, for in-

stance, the well-known NSGA-II [13] that employs mechanisms to bias the evo-

lutionary search towards PF and preserves the diversity of the final Pareto front50

approximation. Another proposition is the Multi-Objective Evolutionary Algo-

rithm based on Decomposition (MOEA/D) [14, 15, 16, 17, 18]. The idea behind

MOEA/D is to divide a Pareto front and exchange information only between

individuals that optimise a similar part of PF . One of the key advantages of

MOEA/D when compared to NSGA-II is that it does not require the computa-55

tion of so-called crowding distance that is computationally expensive. NSGA-II

and MOEA/D are typical reference methods in multi-objective optimisation

[19], so they are also employed as the baseline in this paper.

Solutions for the considered MOBCPP problem are binary-coded. Thus,

solution space is a discrete one. The methods that employ linkage learning are60

particularly effective in the optimisation of problems characterised by such so-

lution spaces. This observation applies to both: theoretical [20, 21, 19, 22] and

practical problems [1, 23, 24]. It is also shown that methods employing linkage

learning may significantly outperform the other that do not use such techniques

[20, 25, 19, 24]. One of the recent propositions dedicated to solving multi-65

objective problems is the Multi-objective Gene-pool Optimal Mixing Evolution-
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ary Algorithm (MO-GOMEA) [10, 19]. MO-GOMEA is based on the concept

of the Linkage Tree Genetic Algorithm (LTGA) [22, 26, 1]. LTGA is a Genetic

Algorithm (GA) that employs linkage learning techniques [21, 27, 22, 28] to im-

prove its effectiveness. Similarly to LTGA in the single-objective domains, MO-70

GOMEA has significantly outperformed competing methods (including NSGA-

II and MOEA/D) in multi-objective optimisation [10, 19]. Among all, to ob-

tain high-quality results, MO-GOMEA clusters the population and processes

the subpopulations separately. Therefore, it is capable of optimising different

Pareto front parts separately, with the use of linkage that is supposed to describe75

the features of each Pareto front part.

According to [29], the methods that employ linkage learning are dependent

on the quality of the linkage they use. If the quality of linkage is too low, linkage-

based methods perform similarly to their competitors that do not consider gene-

dependencies. In [30], the authors check the dependency between the method’s80

effectiveness and the linkage learning model. They show that if the problem

structure is complex (there are many gene dependencies) [31, 32], it is favourable

to learn linkage during the method execution rather than obtaining the linkage

in the pre-optimisation step. Finally, in [21], the authors show that to assure

the method’s effectiveness, the linkage should be of high quality, but it also85

should be diverse. To obtain this, they propose a method that utilises a multi-

population approach. Note that the multi-population approaches are usually

employed to increase population diversity [23, 20, 24], but they may also be

useful in obtaining a diverse linkage [21]. Note that the lack of linkage learning

diversity may be a likely reason for a poor performance of LTGA shown in90

[33]. The research considering the influence of linkage quality on the methods’

performance is in its early stage. For instance, it requires further investigation

of the reasons why linkage diversity is important to effectively solve problems

with complex structure (including so-called overlapping building blocks, which

is a typical feature of practical problems) [21]. Nevertheless, the objective of95

this paper is to use the conclusions of the research that has been already made

in this area, and to apply these conclusions as intuitions that shall guide us

4



to proposing an effective method for solving the MOBCPP problem. If the

intuitions are precise, such a method shall also be effective in solving typical

benchmarks employed in a multi-objective optimisation.100

As stated before, MO-GOMEA is a state-of-the-art method for multi-objective

optimisation. However, despite its high effectiveness, it also has some disadvan-

tages. First, it requires a clusterisation of the population. The number of re-

quired clusters is adjusted automatically at runtime. However, if the number of

clusters is too low or too high, the method may become ineffective [10]. Second,105

although LTGA (the single-objective base of MO-GOMEA) is highly effective in

single-objective optimisation for problems with so-called overlapping blocks, it is

outperformed by Parameter-less Population Pyramid (P3) [21, 27, 34, 35]. P3 is

another state-of-the-art method in single-objective optimisation. The problems

with overlapping blocks contain blocks of highly-dependent genes. However,110

some of the genes in these blocks are also dependent on the genes from other

blocks [21, 27, 34, 35]. The feature of inter-block dependencies is typical for

practical problems [31, 32].

In this paper, we propose a Multi-objective Parameter-less Population Pyra-

mid (MO-P3) to solve the MOBCPP problem effectively. The motivations be-115

hind proposing this method are as follows. In contrast to LTGA, P3 maintains

numerous different linkages at the same time that should be beneficial for prac-

tical problems [21]. MO-P3 uses this linkage diversity to omit the necessity

of population clusterisation. P3 is a relatively recent method proposition that

effectively solves single-objective problems with overlapping blocks. For such120

problems, P3 has been shown to be significantly more effective than LTGA and

Dependency Structure Matrix Genetic Algorithm II (DSMGA-II) [28]. Since

practical problems often contain blocks that overlap [31, 32], P3 seems to be

a good starting point for solving the practical multi-objective problem consid-

ered in this paper. At each MO-P3 iteration, a new individual is added to125

the population and updated with the use of collected linkages and the rest of

the population, similarly to P3. However, in MO-P3, each new individual is

assigned a weight vector that directs the search towards a chosen part of the
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Pareto front. Such a feature may be found similar to the MOEA/D behaviour.

The extensive experimental work described in this paper shows that for the130

considered practical problem, MO-P3 yields results of a higher quality than

NSGA-II and MOEA/D. MO-P3 also yields slightly better results than MO-

GOMEA. However, its main advantage over MO-GOMEA is that MO-P3 ob-

tains high-quality results significantly faster for MOBCPP (considering both

fitness evaluations and computation time). We also present the MO-P3 perfor-135

mance on typical benchmarks. Except for one of them, MO-P3 outperforms all

competing methods. Therefore, MO-P3 may be found useful in solving multi-

objective problems. Thus, the contribution of this paper is threefold. First, we

propose a method dedicated to solving a hard and industrially-relevant practical

problem. Second, we fill the gap in the field of Evolutionary Computation that140

is the lack of a P3-based method dedicated to solving multi-objective problems.

Finally, we show that MO-P3 is highly competitive when a typical benchmark

set is considered, so we can clearly state that our contribution goes beyond the

original problem we set out to solve, and that we propose a new and effective

method for multi-objective discrete optimisation.145

The rest of this paper is organised as follows. In the next section, we present

the related work that includes linkage learning, the presentation of the state-of-

the-art methods employing linkage, the issue of Pareto front clusterisation and

MO-GOMEA. In Section 3, we define the MOBCPP problem. In the fourth

section, we describe the proposed MO-P3 approach in detail. Sections 5 and 6150

report the results obtained for MOBCPP and the benchmark problems, respec-

tively. The results are discussed in the seventh section. Finally, the last section

points the future research directions and concludes this paper.

2. Related Work

In this section, we present the research related to our propositions. There-155

fore, in the first subsection, we discuss in detail the issue of linkage learning

and linkage learning techniques employed by methods considered in this paper.
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In Section 2.2, we show the details of modern evolutionary methods. These

methods are single-objective, but one of them is the base of our proposition and

another one is the base of the main competing method considered in this paper.160

In the fifth subsection, we present the latest advances in discrete multi-objective

optimisation. Finally, in the final two subsections, we present MOEA/D in more

detail and review previous research related to manufacturing scheduling using

multi-objective GAs.

2.1. Linkage Learning165

Linkage learning is one of the techniques that are used to detect features of

a problem to be optimised. Such knowledge is used during runtime to improve

its effectiveness and efficiency. In this section, we present the general linkage

classifications and more recent techniques employed by state-of-the-art methods

in evolutionary computation. In this paper we concentrate on linkage learning170

techniques dedicated for discrete domains. However, problem decomposition

was found useful also in continuous domains [36].

2.1.1. General Description and Classifications

Linkage is a piece of information that describes possible dependencies be-

tween genes. If such knowledge is accurate and used properly, it may signif-175

icantly increase the effectiveness of an evolutionary method. In recent years,

many different techniques were proposed to obtain linkage. These techniques

may be classified with regard to their features. For instance, linkage learning

techniques may be classified on the base of: how good and bad linkage are

distinguished, how linkage is represented and how linkage is stored [37]. If a180

method uses only a fitness value to differentiate between a good and bad link-

age, it employs a unimetric way, which is typical for older Genetic Algorithms

(GAs), but some relatively modern methods also adopt it [20, 38]. Neverthe-

less, current state-of-the-art methods (e.g., Parameter-less Population Pyramid

(P3) [27], Dependency Structure Matrix Genetic Algorithm (DSMGA-II) [28],185

Linkage Tree Genetic Algorithm (LTGA) [22]) employ a multi-metric approach,
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which means that they use more measures than pure fitness to find the linkage

of high quality. If the linkage is represented by dedicated structures (e.g., trees,

graphs, matrices or other), such representation is called virtual. The linkage

represented by the position of the gene in a genotype is called physical [20]. Fi-190

nally, the linkage may be stored in one central database or it may be distributed

in the population (i.e., each individual may carry its own linkage information).

More recent linkage classification was proposed in [39] and was supplemented

in [40, 12]. It considers five different ways of linkage generation. The first class

uses a perturbation and analyses the subsequent fitness changes [40]. Another195

way to generate linkage is to evolve the order of the genes in the chromosome,

which is referred to as interaction adaptation [20]. An evolutionary method may

also build probabilistic models like the Estimation of Distribution Algorithms

[25]. Surprisingly, linkage generated randomly, in some situations, may also

improve the method’s effectiveness [41]. Finally, the last class (proposed in200

[12]) is a comparison of evolution results. The methods employing this technique

compare the individuals that resulted from different evolutionary processes to

obtain linkage. Similar classification of linkage techniques that are employed in

Cooperative Coevolution may be found in [42].

2.1.2. Dependency Structure Matrix205

The Dependency Structure Matrix (DSM) is a square matrix that stores

the dependencies occurring between the components (genes). This structure is

derived from information theory [28] and is applied in evolutionary methods to

describe gene dependencies. The problem size n, where n is a number of genes,

determines the size of DSM. Each element di,j ∈ R of DSM = [di,j ]n×n indicates

how significantly the ith and jth genes are dependent on each other. Usually,

mutual information [43] is used as the dependency measure. It is defined as

I(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) ln
p(x, y)

p(x)p(y)
≥ 0, (1)

where X and Y are random variables. The value of mutual information is

proportional to the dependency strength between the pair of genes. If X and Y

8



Table 1: Population of individuals to demonstrate the DSM creation procedure

Population
Genotype

G1 G2 G3 G4

1st individual 0 1 0 1

2nd individual 0 1 0 1

3rd individual 1 1 1 1

4th individual 1 1 0 1

5th individual 0 0 1 1

are independent, the value of I(X,Y ) is low, because

p(x, y) = p(x)p(y) =⇒ ln
p(x, y)

p(x)p(y)
= ln 1 = 0. (2)

It is also assumed that ln p(x,y)
p(x)p(y) equals 0 when p(x, y), p(x) or p(y) is equal to

0 as well.

To demonstrate the process of DSM creation, we use the population of 5

binary-coded individuals presented in Table 1, where Gi denotes the ith gene.

Formula (1) represents the mutual information that can be calculated for any

pair of random variables. Particularly, it can be used to measure the dependency

between any two genes. Thus, a binary-adjusted version of formula (1) may be

defined as

I(Gi, Gj) =
∑

gi∈Gi

∑

gj∈Gj

pi,j(gi, gj) ln
pi,j(gi, gj)

pi(gi)pj(gj)
, (3)

where gi and gj indicate the possible values of the ith (Gi) and jth (Gj)

genes, respectively. For instance, if an optimisation problem is binary then

gi ∈ {0, 1} = Gi and gj ∈ {0, 1} = Gj . To calculate the probabilities presented210

in formula (3), all individuals in a population are taken into consideration. The

pi,j(gi, gj) value denotes the joint probability that a value of the ith gene is gi

and the jth gene has value gj simultaneously. Moreover, pi(gi) is used to indi-

cate the probability that a value of the ith gene is gi. Table 2 presents DSM

obtained for the population shown in Table 1. All DSM entries presented in215
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Table 2: DSM for the population presented in Table 1

G1 G2 G3 G4

G1 X 0.12 0.00 0.00

G2 0.12 X 0.22 0.00

G3 0.00 0.22 X 0.00

G4 0.00 0.00 0.00 X

Table 2 have been calculated using formula (3).

DSM-based linkage learning may lead to excellent results and is employed

by leading methods in the field of discrete optimisation [27, 22, 44, 28]. For

some problems, it facilitates finding a high-quality linkage [22], which is crucial

to solve the problem. Additionally, it aids updating the linkage information220

during runtime, which is key when addressing problems with complex structure

[30]. Such a structure may be commonly found in practical problems [31, 32].

As presented in [29], not all problem types are easy to decompose for a

DSM-based linkage learning. Recently, Linkage Learning based on Local Op-

timisation (3LO) was proposed in [21]. 3LO is an empirical linkage learning225

technique, which means that the dependencies predicted by other linkage learn-

ing techniques are replaced based on an empirical check. Thanks to the idea

behind it, 3LO is proven not to report any false linkage. The false linkage takes

place when two independent genes are pointed as being dependent by a linkage

learning technique. A drawback of 3LO is its computational cost. Therefore, the230

methods using it perform worse when overlapping problems need to be solved

[21]. This observation justifies the choice of a DSM-using method as the base

of our proposition.

2.1.3. Linkage Trees

DSM has been created to find linkage and it contains only pairwise gene-235

dependency values. Therefore, a clustering algorithm is employed to merge

pairs of genes into larger groups. Different techniques of DSM utilisation were
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Table 3: Distances between genes for the population presented in Table 1

G1 G2 G3 G4

G1 X 0.88 1.00 1.00

G2 0.88 X 0.76 1.00

G3 1.00 0.76 X 1.00

G4 1.00 1.00 1.00 X

proposed [28, 45, 22, 27]. The only technique employed by methods considered

in this paper is the linkage tree construction algorithm and hence it is described

in details below. Nevertheless, at the end of this section, we also give some240

insights into other DSM utilisation techniques.

To construct a linkage tree, the distance D(Gi, Gj) between the ith and jth

genes is calculated using mutual information (formula (3)) and joint entropy:

D(Gi, Gj) =
H(Gi, Gj)− I(Gi, Gj)

H(Gi, Gj)
, (4)

where

H(Gi, Gj) = −
∑

gi∈Gi

∑

gj∈Gj

pi,j(gi, gj) ln pi,j(gi, gj). (5)

Note that H(Gi, Gj) equal 0 implies that distance D(Gi, Gj) is 0 as well.

In Table 3, we report values of gene distances computed for the population245

presented in Table 1.

A linkage tree consists of the nodes corresponding to the clusters which

group the genes that are considered to be dependent on one another. During

linkage tree construction, the two most related clusters are joined. Initially, the

clusters containing one consecutive single gene are created. Thus, the linkage

tree construction algorithm creates n single-gene clusters, where n is the given

optimisation problem size. Then, the merging operation is repeated until only

one cluster (consisting of all genes) remains. Formula (4) is used to calculate

the distance between two clusters which contain only a single gene. If one of the
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Figure 1: Subsequent steps of the linkage tree creation process for the population from Table 1

clusters contains more than one gene, the following reduction formula is used:

D(Ck, (Ci ∪ Cj)) =
|Ci|

|Ci|+ |Cj |
D(Ck, Ci) +

|Cj |

|Ci|+ |Cj |
D(Ck, Cj), (6)

where |Ci|, |Cj | and |Ck| indicate the sizes of clusters Ci, Cj and Ck, respec-

tively. According to Table 3, the distance between clusters {G1} and {G2, G3}

is calculated as follows:

D({G1}, ({G2} ∪ {G3})) =
|{G1}|

|{G2}|+ |{G3}|
D({G1}, {G2})

+
|{G3}|

|{G2}|+ |{G3}|
D({G1}, {G3})

=
0.88

2
+

1

2
= 0.94.

(7)

The process of the linkage tree creation for DSM given in Table 1 is presented

step by step in Figure 1. To simplify the diagram, indication Gi has been

replaced by number i. For instance, in Figure 1, we use 1 instead of G1.

Linkage trees are employed by Linkage Tree Genetic Algorithm (LTGA)250

[22], also denoted as Linkage Tree Gene-pool Optimal Mixing Evolutionary Al-

gorithm (LT-GOMEA) [26]. Another method that employs linkage trees is

Parameter-less Population Pyramid (P3) [27, 34]. Both methods are described

in the next subsection.
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Another way of using DSM is creation of an incremental linkage set. The255

incremental linkage set consists of sequences of gene starting indexes. During

the process of gene-sequence creation, a single gene index is selected randomly.

Then, the index that has the strongest relation to the last gene in the sequence

and is not included in the sequence is added to the sequence. Incremental link-

age sets are employed by Dependency Structure Matrix Genetic Algorithm II260

(DSMGA-II) [28] and Two-edge Dependency Structure Matrix Genetic Algo-

rithm II (DMSGA-IIe) [45] that are presented in the next section.

2.2. DSM-using Methods

In this section, we present different methods that employ DSM and infor-

mation theory for linkage discovery.265

2.2.1. Linkage Tree Genetic Algorithm

Linkage trees have been employed by Linkage Tree Genetic Algorithm (LTGA) [22,

1], one of the first methods using DSM which has been shown to be highly effec-

tive. LTGA is a population-based method that uses the linkage tree construction

algorithm described in Section 2.1.3. Recently, LTGA has been improved and270

renamed to Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm

(LT-GOMEA) [1].

Instead of crossover, LTGA uses the operator called optimal mixing (OM).

During OM, two individuals (called source and donor) and a cluster (a node

from a linkage tree) are involved. The genes from the donor individual that are275

marked by the cluster replace the appropriate genes in the source individual.

The operation is reversed if the fitness of the source decreases. Otherwise, the

source remains modified. All individuals in the population are mixed using

OM. During OM, all clusters except the linkage tree root are considered. The

donor is selected randomly for each cluster. If, after OM, an individual remains280

unmodified, OM is executed for this individual once again with the best-found

individual as the donor. This step is called the force improvements (FI) phase.
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The second situation in which FI is executed takes place when the best-found

individual has not been improved for a certain number of iterations.

As an example of OM, let us consider a 6-bit binary problem. The genotype285

of a source individual is 110011, and its fitness is 6. The first considered cluster

marks genes 1,2, and 5, and the donor individual is 010101. After mixing, the

genotype of the donor individual will be 010001, and its fitness will decrease to 4.

Therefore, the change introduced by mixing is rejected (we wish to maximise the

fitness). The second considered cluster marks genes 2 and 3, and the randomly290

chosen donor individual for this cluster is 000111. After mixing, the donor’s

genotype will be 000101, and its fitness will be 6. Since fitness has not decreased,

the change is preserved. The third cluster marks genes from 2 to 5, and the

individual chosen for this cluster is 111111. After mixing, the genotype of the

donor will be 011111, and its fitness will be 7. Therefore, the change will be295

preserved. The operation of OM will continue in the manner shown above until

all the clusters that do not cover the whole genotype will be considered.

LTGA requires one parameter, namely the population size. Finding its ap-

propriate value for a particular test case via tuning may be difficult. Therefore,

a population-sizing scheme for LTGA was proposed in [1]. LTGA employing300

this scheme is denoted as LT-GOMEA. LT-GOMEA maintains multiple LTGA

instances with different population sizes. The first LTGA instance contains

only one individual. During LT-GOMEA execution, new LTGA instances with

a doubled population size are added at every 4th iteration. Some of the LTGA

instances may be found useless and deleted, which limits their number. A single305

LTGA instance is found useless if all of its individuals are the same or its av-

erage population fitness is worse than the average fitness of at least one LTGA

with a larger population size. Additionally, all LTGA instances with a smaller

population than the LTGA instance found useless are treated as useless as well.

All LTGA instances are isolated from each other. Only during the FI phase,310

the globally best individual (found by any LTGA instance) is used as a donor.

Additionally, LT-GOMEA introduces two changes to LTGA. First, LT-GOMEA

computes DSM on the base of the whole population, while LTGA uses only a

14



half of the population. Second, during the OM operation, LT-GOMEA con-

siders linkage tree clusters in a random order, while LTGA uses them in the315

order of their creation. These two changes are supposed to increase the quality

of linkage and remove the potential bias that may influence the method for a

particular problem, respectively.

2.2.2. Parameter-less Population Pyramid

Parameter-less Population Pyramid (P3) [27] uses the same linkage tree con-320

struction algorithm and the OM operator as LTGA. However, the population

structure is significantly different from any other GA-based method. P3 main-

tains its population in a pyramid-like structure divided into subpopulations

called levels. Every individual in the population is unique. The population size

is not limited and increases during runtime.325

The general P3 procedure can be described in the following way. At every

iteration, a new individual is created randomly and initially optimised by First

Improvement Hill Climber (FIHC) [27]. FIHC is a local search algorithm op-

erating on vector −→x of n decision variables, −→x = [x1, . . . , xn]. Initially, FIHC

randomly chooses a gene order. For each gene xi, all available values are checked330

until a fitness improvement is found. If so, then the original xi value is replaced.

This procedure is executed until no gene is changed during a FIHC iteration.

After the optimisation is done by FIHC, the new individual climbs up the pyra-

mid. With the use of OM, it is mixed with all individuals of a single level. The

bottom pyramid levels are considered first. If a fitness of the new individual is335

improved during this operation, a new individual is added to the pyramid level.

If a successful OM involves an individual from the top-level, a new level (sub-

population) is added to the pyramid. The overall idea of P3 work is presented

in Figure 2.

2.2.3. Dependency Structure Matrix Genetic Algorithm II340

Dependency Structure Matrix Genetic Algorithm II is another method that

employs DSM-based linkage learning [28]. However, unlike P3 or LTGA, it uses
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flowchart.png flowchart.png

Figure 2: P3 idea visualization

an incremental linkage set (ILS) instead of a linkage tree. ILS is a sequence

of gene indexes. The process of ILS building starts from a single gene index

and adds a new one with the strongest connection to the previously added gene345

(in terms of the DSM weights) that has not been included in the sequence

yet. Similarly to LTGA, DSMGA-II maintains a single population with a fixed

number of individuals. Two operators are used: restricted mixing and back

mixing. Restricted mixing is used to process a single individual. First, an

incremental linkage set is created, starting from a random gene index. Then,350

the consecutive genes are flipped according to the incremental linkage set. The

operation is maintained until a better fitness is obtained or until the same fitness

is obtained, but the modified individual is absent in the population. If all the

genes have been flipped but the fitness of the modified individuals is worse

than that of the starting individual, the changes done by restricted mixing are355

rejected. However, if restricted mixing leads to a change (i.e., the new individual

has a higher or the same fitness but with a genotype that does not exist in the

population), the back mixing operation is triggered. During back mixing, the

change introduced by restricted mixing is injected into other individuals. The
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injection is preserved if it improves fitness and rejected otherwise.360

DSMGA-II has been shown to be effective when solving theoretical [28] and

practical problems [46]. Recently, its parameter-less version that employs a

population-sizing scheme (denoted as psDSMGA-II) has been proposed in [44].

Although psDSMGA-II improves the effectiveness of the original DSMGA-II, its

main disadvantage is the same as for its predecessor: it is less effective in solving365

the problems with overlapping building blocks in comparison with LT-GOMEA

or P3 [35, 44].

2.3. Linkage Diversity

P3 is effective for solving hard computational problems [27, 34, 35]. Com-

pared to LT-GOMEA, P3 performs significantly better when the problem to be370

solved has highly overlapping blocks (e.g., NK fitness landscapes) [35]. This fea-

ture is important in practice because it is typical for real-life problems [32, 47].

To the best of our knowledge, no detailed analysis of P3 superiority over LT-

GOMEA and DSMGA-II in solving problems that overlap has been performed

and published yet. Below, we propose an explanation of this superiority.375

Let us introduce the deceptive function of unitation [48]. Formula (8) defines

the deceptive function of order k, the solution is binary-coded (i.e., is a string

of 0s and 1s).

dec(u) =











k − 1− u if u < k

k if u = k

, (8)

where u is a sum of gene values (so called unitation) and k is the deceptive

function size.380

The optimal solution of the order-3 deceptive function is 111, while the

suboptimum is 000. Let us consider the concatenation of three order-3 deceptive

functions, where the first three bits refer to the first function (building block),

the second three bits refer to the second function and so on. The optimal

solution to this problem is 111111111. However, most of the population of385

typical GA-based methods is deceived to the 000000000 solution. If this problem
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Figure 3: Linkage tree that represents a perfect linkage for the concatenation of three order-3

deceptive functions

Figure 4: Block positions dependencies for the problem constructed from the concatenation

of three order-3 deceptive functions without overlap and with overlap o = 1

is sufficiently large, it may become intractable. On the other hand, deceptive

functions’ concatenations are easy to be solved if the problem nature (the perfect

linkage) is known [49]. In the given example, the perfect linkage that groups

the dependent gene indexes is (1, 2, 3), (4, 5, 6) and (7, 8, 9). Such linkage may390

be represented by a single linkage tree (Figure 3).

Let us now consider the problem of overlapping deceptive functions that is

an example of a problem with overlapping blocks. The size of overlap is defined

by o ∈ {0, 1, . . . , k − 1}, where k is a length of all the considered blocks. The

first block is defined on the first k positions of the genotype. All blocks except395

the first one are defined on the last o positions of the preceding block and the

next k − o positions. For instance, the positions referring to the second block

start at the (k − o + 1)th position and finish at the (2 · k − o)th position. The

examples of deceptive blocks concatenations with and without overlap are given

in Figure 4.400

In Figure 5, we present possible linkage trees for the concatenation of three
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(a) Perfect linkage for the

first block on positions

{1, 2, 3}

(b) Perfect linkage for the

last block on positions

{3, 4, 5}

(c) Perfect linkage for the

last block on positions

{5, 6, 7}

Figure 5: Possible linkage trees for three order-3 deceptive functions concatenation with over-

lap o = 1

order-3 deceptive functions with the o = 1 overlap. Note that although all the

linkage trees are correct, each of them marks only one of the blocks. If the blocks

overlap, it is impossible to mark all blocks with a single tree. Therefore, main-

taining and using several different linkages at the same time may be beneficial405

when solving problems with overlaps This observation is confirmed by the results

presented in [21]. The proposed reasoning is valid only under the assumption

that a single linkage tree (even if it is correct) may not be enough to solve the

problem with overlaps. To the best of our knowledge, the study that analyses the

need for linkage diversity has not been proposed yet, but the results presented410

in the literature seem to support the above claim [21, 27, 34, 35, 44]. The com-

parison between the original DSMGA-II and DSMGA-II with population-sizing

(psDSMGA) show that psDSMGA-II significantly outperforms its predecessor

for overlapping problems [50]. A similar observation can be made for LTGA and

LT-GOMEA comparison [27, 35]. Population-sizing was proposed to eliminate415

the necessity of tuning and defining the population size parameter (see Section

2.2.1). However, as a side effect, population-sizing leads to the maintenance of

more than one LTGA/DSMGA-II population. All these populations maintain

separate linkages and communicate with each other via the global-best individ-
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Figure 6: The example of linkage diversity employment in P3

ual. Thus, the globally best individual may be updated by OM in which the420

donor may be any individual from any LTGA/DSMGA-II population. Depend-

ing on the population, a different linkage is used. The above reasoning leads to

the conclusion that population-sizing, as a side-effect, introduces a linkage diver-

sity (limited but it is still better than none) and this linkage diversity seems to

lead to the results’ quality improvement for problems with overlapping building425

blocks.

2.4. The significance of Linkage Quality and Diversity

As presented in [29], the quality of the linkage may be the key to solve hard

computational problems. To show the significance of using a diverse linkage, let
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us analyze an example shown in Figure 6. We consider a problem, built from430

three order-3 deceptive functions with overlap o = 1, presented in the lower part

of Figure 4. The P3-like population is divided into three levels. The linkage

information of the first, second, and third level corresponds to the Linkage Trees

presented in Figure 5 (a), (b), and (c), respectively. We assume that, among

all, the pyramid contains the following individuals:435

• Individual 1110000 (optimal for the first block), on the first level

• Individual 0011100 (optimal for the second block), on the second level

• Individual 0000111 (optimal for the third block), on the third level

In the example pictured in Figure 6, we analyze a single iteration of P3,

in which we try to add a new individual to the pyramid with the genotype440

0000000. It is possible that after OM with the individuals on the first level,

the new individual will receive the optimal value for the first block (after that,

the genotype of the new individual will be 1110000). If during the OM with

the second and third level, the new individual will receive the optimal value

for the second and the third block, respectively, then the final genotype of the445

new individual will be optimal (built only from 1s). Note that it is possible to

obtain an optimal individual because P3 employs many different linkages that

mark various parts of the genotype.

Let us now consider the same population of individuals but grouped in a

single population (such population contains individuals 1110000, 0011100, and450

0000111). We assume that the linkage corresponds to the Linkage Tree presented

in Figure 5 (b). Note that in such a situation, it is impossible to obtain the

optimal individual using OM. It is possible to insert the second block of 1s

from individual 0011100 to individuals 1110000, 0000111, and obtain individuals

1111100, 0011111, respectively. However, using the Linkage Tree from Figure455

5 (b), it is impossible to pass the first and the third block of 1s successfully,

without destroying the other blocks. Note that it is impossible to separately

insert 1s for genes 1, 2, 6, and 7 the fitness value of 1011111, 0111111, 1111101,
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and 0111110 is 6 and is lower than the fitness value of 0011111 and 1111100 that

is 7. Thus, an operation converting a single 0 into 1, for individuals 0011111460

and 1111100, will be rejected by OM.

For problems encoded with a large number of genes and with a high amount

of overlaps, the dependencies between genes will be significantly more complex.

Thus, it is intuitive that, in such cases, it is preferable to use more diverse linkage

information. LT-GOMEA uses a population-sizing mechanism. Thus, it also465

maintains many subpopulations, and therefore, it also maintains many linkages.

However, based on the research results presented in [29], the number of levels in

the pyramid is usually significantly higher than the number of subpopulations

maintained by LT-GOMEA. Thus, when P3 and LT-GOMEA are applied to

solve the problem, we may expect that P3 will use a more diverse linkage than470

LT-GOMEA. Therefore, P3 is more suitable to solve overlapping problems.

In this paper, as a competing method, we also consider NSGA-II that em-

ploys a standard crossover operator and no linkage learning mechanisms. Let us

consider the probability to successfully insert the first block of three 1s from in-

dividual 1110000 to individuals 0011100 and 0011111. We consider the uniform475

crossover that is independent of the gene order. The assumption that genetic

operators should be independent of gene order seems intuitive and is typical for

modern evolutionary algorithms [21]. The probability of successful insertion of

the first block of 1s to individual 0011100 is 2−4 (we need to exchange genes

1 and 2, and we shall not exchange genes 4 and 5). However, if we wish to480

insert the same block of 1s to individual 0011111, the probability will be 2−6.

Moreover, the probability to successfully exchange a particular building block

without destroying the other blocks will decrease quickly with the increase of

the problem size. Therefore, the typical crossover operators that do not use

linkage learning will not be effective when strong inter-gene dependencies exist.485

As shown above, the diverse linkage maintained by P3 may be highly useful

when overlapping problems are being solved. However, the pyramid-like form

of the P3 population has some drawbacks. For instance, when the number of

levels is large (eg., over 30), it may be hard to exchange some building blocks,
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even if appropriate linkage and appropriate blocks exist in the population. This490

issue has been detected for non-overlapping problems, and the modifications of

P3 to address this issue were proposed in [34, 35].

2.5. Pareto Front Clusterisation

The goal of multi-objective optimisation is to obtain a Pareto front that

covers or is relatively close to the optimal Pareto front. Thus, to measure the495

quality of a Pareto front, its proximity and diversity are often compared with

the optimal Pareto front [51]. To obtain a diverse and high-quality Pareto

front, evolutionary methods tend to preserve the overall population diversity,

often emphasising the diversity in the objective space. This may be achieved

by employing the crowding distance like in NSGA-II [13] or a density measure500

like in SPEA2 [52]. Nevertheless, such operators may not be sufficient to obtain

good quality results for hard optimisation problems. Therefore, linkage learn-

ing techniques may be useful to recognise the problem’s nature and exchange

appropriate solution parts during the optimisation process [10, 19]. However,

for different Pareto front parts, the problem’s features may be significantly dif-505

ferent. For instance, for the practical problem considered in this paper, the so-

lution minimising the production makespan may be significantly different from

the solution minimising production surpluses. Similar observations can be made

for other practical problems [19]. Therefore, some of the evolutionary methods

that are employed for the multi-objective optimisation split the population into510

clusters, usually based on the objective space [25, 53].

2.6. Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm

MO-GOMEA is a multi-objective version of LTGA (see Section 2.2.1). Ex-

cept for the concept of LTGA, it employs other ideas, like Pareto front cluster-

isation and elitist archive. MO-GOMEA is a parameter-less method, which is515

an important feature for practical purposes.

MO-GOMEA uses a so-called elitist archive. The elitist archive is a sepa-

rate population where non-dominated solutions are stored. Maintaining such a
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buffer is beneficial for multi-objective evolutionary algorithms because, during

the search, some non-dominated solutions may be discarded due to the stochas-520

tic nature of the search [19]. In some optimisation problems, the Pareto front

may contain an infinite (or too large to store) number of solutions [54]. Thus, if

a new non-dominated solution is found, it shall be added to the elitist archive

if it dominates at least one solution from the elitist archive or if it increases the

diversity of the archive in the solution space [54].525

At each method iteration, MO-GOMEA clusters its population with the

use of k -leader-means clustering [53]. The population is divided into k clusters

containing c solutions. In MO-GOMEA c = 2
k
· |PF |; such a size of c causes

the clusters to overlap and avoid the situation in which some individuals do not

belong to any cluster. Each cluster is a subpopulation that is later processed530

by LTGA. The only difference is that since the problem is multi-objective, the

source solution is found improved if, after the optimal mixing, the altered source

solution dominates its previous version or it can be added to the elitist archive.

MO-GOMEA requires specifying two parameters: the population size and the

number of clusters. To overcome this issue, it employs the so-called interleaved535

multi-start scheme (IMS) [19] that is equivalent to the population-sizing scheme

described in Section 2.2.1.

2.7. Multi-Objective Evolutionary Algorithm based on Decomposition

Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D)

is a multi-objective optimisation algorithm whose main principle is to decom-540

pose an m-objective problem into N single-objective subproblems [14]. The

three decomposition techniques in MOEA/D are: the weighted sum approach,

the Tchebycheff approach, and the penalty-based boundary intersection ap-

proach. For example, employing the Tchebycheff approach, maximisation of an

m-objective optimisation problem F (x) = (f1(x), . . . , fm(x))T can be decom-545

posed to the optimisation of the N subproblems and the objective function of
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the j-th subproblem, j = 1, . . . , N , is:

gte
(

x|λj , z∗
)

= max
1≤i≤m

{

λj
i |fi(x)− z∗i |

}

, (9)

where x indicates a given solution in the decision space, λj = (λj
1, . . . , λ

j
m) is

a weight vector, z∗ indicates a set of reference points z∗i = min{fi(x)|x ∈ Ω}

and | · | denotes the Euclidean distance. Several different methods for selecting550

weight vectors λj have been proposed, including classic simplex-centroid and

simplex-lattice, as well as more recent transformation methods and uniform

decomposition measurement [55].

Single-objective subproblems (9) are solved simultaneously, employing evo-

lutionary algorithms. Each solution to such single-objective subproblems forms555

a Pareto-optimal front of the original multi-objective problem F (x).

One of the main assumptions of MOEA/D is that the optimal solutions

to neighbouring subproblems (in terms of the Euclidean distance between the

corresponding weight vectors) are likely to be similar. Hence, a chromosome

describing a solution to a certain single-objective subproblem can be crossed-560

over only with the chromosomes of the neighbouring subproblems, where the

neighbourhood size is a parameter. Each population comprises the best solu-

tions found so far to all N subproblems. In MOEA/D, the one-point crossover

operator and the standard mutation operator are applied. Thanks to defining

the weight vector set a priori, the diversity in the population is maintained with-565

out the need for computing crowding distances, which is one of the major costs

in other multiobjective optimisation evolutionary algorithms, such as NSGA-II

[13].

MOEA/D has attracted much attention in the field of evolutionary multiob-

jective optimisation, and several modifications have been proposed, as surveyed570

in [15]. Some of the suggested improvements, for example, integration with the

opposition-based learning [16], Baldwinian learning [17], or end-user preference

incorporation [18] can be applied to the method proposed in this paper. The

addition of these features is considered as future work.
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2.8. Multi-objective GAs for manufacturing scheduling575

One of the pioneering research related to industrial production planning

using a multi-objective GA was described in [56]. In that paper, a set of non-

dominated solutions was determined for a classic flowshop scheduling problem

with three objectives, namely, the minimal makespan, the maximum tardiness

and the total flowtime. A weighted sum of these three criteria was treated as a580

fitness value of each individual, but the weight values were randomly specified

whenever a pair of the parent solutions was selected. Consequently, each point

of the solution space was generated using a different weight vector. A local

search was then applied for further improvement of those solutions. However,

the considered problem was rather abstract and the considered plant and taskset585

sizes were limited [56].

A number of real-world industrial scheduling problems were attempted to

be solved with customised multi-objective GAs as well. In [57], for example,

a real-world manufacturing problem of a steel tube production was described

as an extension of a classic Job-Shop Scheduling Problem with compatible re-590

sources (aka Flexible Job-Shop Scheduling Problem). A multi-objective GA was

applied with two objectives: minimisation of the resources’ idleness and waiting

time of orders. In that paper, it stated explicitly that the prior research related

to Job-Shop Scheduling Problems was impractical as being based on oversim-

plified models and assumptions. Nevertheless, that model is still inappropriate595

for the batch production problem considered in this paper. In particular, it is

unable to select recipes or minimise the commodity surplus. Another interest-

ing real-world manufacturing problem of textile batch dyeing scheduling was

presented in [58]. In that problem, a batch is comprised of clothes of the same

colour whose total weight does not exceed the capacity of the manufacturing600

resource. Again, that problem is different of the one analysed in this paper, as

in the considered case the resources can produce only an exact weight of a given

commodity. The total amount of manufactured commodities depends only on

the recipes multisubset (i.e., a combination with repetitions) selected for man-

ufacturing. Hence, a batching heuristics, as proposed in [58], is not applicable,605
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but a technique for optimisation of recipe multisubset selection is needed. GA

was applied to such a problem in [8], yet the optimisation was performed with

typical multi-objective GAs (NSGA-II and MOEA/D). In particular, no linkage

learning was performed in that approach. Note that in the research presented

in this paper, we compare to both methods considered in [8] and both of these610

methods are outperformed by linkage learning GAs (namely MO-GOMEA and

MO-P3) for the considered practical problem and for a wide set of benchmark

problems.

More examples of applying multi-objective GAs to solve manufacture schedul-

ing problems were surveyed in [59], including Job-Shop Scheduling Problems,615

Flexible Job-Shop Scheduling Problems, dispatching in flexible manufacturing

systems and integrated process planning and scheduling. However, none of the

papers reviewed there dealt with recipe multisubsets nor minimising the sur-

plus of the manufactured commodities. Similarly, none of the reviewed papers

used linkage learning to improve the performance of the applied GAs, as it is620

proposed in this paper.

3. Real-World Multi-Objective Bulk Commodity Production Prob-

lem Formulation

In this section, the considered practical problem is firstly described and

then formalised as a typical covering problem (CP) instance and its extension625

to multi-objectiveness.

3.1. Real-World Scenario Description

The considered scenario is based on a process of manufacturing, in which a

certain amount of commodities is produced by combining supplies, ingredients

or raw substances following a stored recipe. The main optimisation objective630

of this case study is to decrease the makespan of batch production. Depending

on the selected multisubset (i.e., a combination with repetitions) of recipes,

the time to produce a commodity may vary significantly, which influences the
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percentage of manufacturing time that is truly productive, known as Overall

Equipment Effectiveness (OEE).635

In the considered multi-objective bulk commodity production problem (MOB

CPP), the recipes for each batch produce a certain amount of commodity. Con-

sequently, to satisfy an order for a certain commodity, one or more recipes for

producing such commodity have to be selected and allocated to resources. How-

ever, the sum of the commodity amount produced by any selection of recipes640

may be different from the order amount for that commodity. If a certain com-

modity cannot be produced in the required amount, some commodity surplus

is expected. As the surplus storage can be expensive and larger surplus usually

implies a higher cost of raw substances used in the production, additional opti-

misation objectives can be defined: not only the makespan but also the surpluses645

of each produced commodities have to be minimised. This observation leads to

the conclusion that multi-objective optimisation techniques, as described earlier

in this paper, can be applied. In particular, this problem can be viewed as a

variant of the classic covering problem, as shown in the following subsection.

3.2. Problem Formulation650

The considered factory manufactures bulk commodities cj , j = 1, . . . ,m.

These commodities can be produced by executing xi, i = 1, . . . , n, times some

pre-defined manufacturing recipes γi on the only resource π. The objective is

to minimise the makespan
n
∑

i=1

tixi, (10)

where ti denotes the pre-defined execution time of recipe γi subject to

n
∑

i=1

δi,jxi ≥ oj , (11)

where oj denotes the ordered amount of commodity cj , δi,j is the amount of

commodity cj produced by recipe δi. The problem defined in this way is a

typical example of CP and, as such, is an instance of ILP and belongs to the

NP-hard class [9].
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The first extension of the above problem is the possibility of multiple re-

sources πi in the factory, each being capable of executing recipe γi. Hence the

makespan minimisation objective can be rewritten as minimising

max
∀i∈{1,...,n}

(tixi) (12)

subject to the same constraints as provided in (11).655

The next modification is caused by the surplus storage cost in the factory

and the cost of raw substances needed to produce the commodities, which force

the factory to minimise not only the makespan, but also the surpluses of each

commodity, i.e. to produce as little commodities as possible to satisfy the

ordered amounts. Hence, the following m objectives need to be added to the

optimisation problem: ∀j ∈ {1, . . . ,m} minimise

n
∑

i=1

δi,jxi, (13)

subject to the same constraints (11) as above.

The number of instances of each recipe γi can be viewed as being bounded

by the ordered amount of commodities produced by this recipe, computed with

equation

µi = max
∀j∈{1,...,m}

⌈

oj
δi,j

⌉

. (14)

This upper-bound facilitates the binary encoding of the solutions for GA as de-

scribed in the next section. The considered problem is a discrete combinatorial

problem. As pointed in [60], if such problems are solved by conventional meth-

ods, the time required to solve them may increase exponentially. Therefore, the660

use of Multi-Objective Evolutionary Algorithms is justified.

4. Multi-Objective Parameter-less Population Pyramid for Solving

MOBCPP

In this section, we describe the details, motivations and intuitions of the

proposed Multi-Objective Parameter-less Population Pyramid (MOP3). In the665

first subsection, we discuss the solution encoding, while in the second one, we

describe the proposed method.
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4.1. Solution Encoding

As presented in the previous section, in the MOBCPP problem, the size of

ordered amounts is known. However, the number of production tasks (jobs)670

is not specified because each recipe may produce a different amount of paint.

Let us consider an example with a single commodity. The ordered amount is

o1 = 10 units. There are two available recipes, γ1 and γ2, that produce δ1,1 = 3

and δ2,1 = 5 units of commodity c1, respectively. Thus, based on equation (14),

to satisfy order o1, it is sufficient to execute µ1 = 4 jobs using γ1 recipe or675

µ2 = 2 jobs that use recipe γ2. Note that the solution to the problem instance

considered in this example may be encoded as a 6-bit long binary string, where

the first four bits refer to jobs executing recipe γ1 and the last two bits refer to

jobs that execute recipe γ2.

Based on the above example, we may state that a solution to MOBCPP680

can be encoded as a binary string where a particular bit refers to a single job

executing a particular recipe. In this paper, we order the bits in the following

manner. First, we consider all bits that refer to the jobs producing the first

commodity, then the bits that refer to the jobs producing the second commodity

and so on. The jobs producing more than one commodity are located at the685

position suitable for the produced commodity with the lowest index. Among

the bits that consider the production of a particular commodity, we first encode

the bits referring to the minimum number of jobs using a recipe with the lowest

index in the recipe list, then we encode the bits referring to the jobs using the

recipe with the second-lowest index in the list and so on. The minimum number690

of jobs to satisfy the ordered amount of oi, using recipe γi that produces δi,j

resource units is computed with equation (14).

Let us consider the following example. Two commodities with orders o1 = 10

and o2 = 8 units are considered. The first commodity may be produced with

the use of γ1 and γ2 recipes that produce δ1,1 = 3 and δ2,1 = 5 of commodity695

units, respectively. The second commodity may be produced with the use of

three recipes (γ3, γ4 and γ5) that produce δ3,2 = 5, δ4,2 = 2 and δ5,2 = 3 units

of this commodity. The encoding and the solution to this problem instance
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Figure 7: Solution encoding example

are presented in Fig. 7. First, the jobs that consider the order for the first

commodity are considered. Among them, the first four bits refer to jobs using700

recipe γ1, the next two refer to jobs using recipe γ2. Respectively, for the order

referring to the second commodity, the first two bits refer to recipe γ3, the next

four to recipe γ4 and the last three to recipe γ5.

Note that Fig. 7 presents a feasible solution, i.e., the one that produces

enough commodities. However, the solution encoded in the manner proposed705

above may be infeasible. Moreover, it may exceed the order size. Therefore,

to fix the above issues, we propose a genotype repair algorithm presented in

Pseudocode 1. Any genotype that has been updated by the proposed algorithm

is feasible and it does not use more jobs for a particular recipe than necessary

(i.e., all jobs that may be abandoned without violating the order constraint710

will be removed). The proposed solution encoding is not unique as two or

more different genotypes can encode the same solution. The genotype repair

algorithm works as follows. For each gene (that corresponds to a particular

recipe), the list of orders produced by the corresponding recipe is gathered. If,

for at least one order, we need to increase the production amount, then we715

set the gene value on 1. If, for all orders, we can resign from using the recipe

without violating the order size, then we set the gene value on 0. Otherwise,

31



the gene value remains unmodified.

4.2. Multi-Objective Parameter-less Population Pyramid

In this section, we present the motivations behind the proposed Multi-720

Objective Parameter-less Population Pyramid (MO-P3) and its description.

The main reason for using P3 as a research starting point for proposing a method

dedicated to solving a practical multi-objective problem considered in this paper

are enumerated below.

Motivation 1. P3 is effective in solving problems with overlapping building725

blocks (see Section 2.3). The relations between building blocks (overlapping)

are typical for real-life problems [32, 47]. P3 has also been found more effective

than LTGA and DSMGA-II when applied to a single-objective practical problem

[46] (to the best of our knowledge, the results presented in [46] are the only

comparison between P3, LTGA and DSMGA-II based on practical problem730

instances). Thus, it is reasonable to assume that a P3-based method dedicated

to solving a practical multi-objective problem may be found more effective than

MO-GOMEA (that is LTGA-based).

Motivation 2. As explained in Section 2.6, MO-GOMEA clusters its popu-

lation concerning the objective space. MO-GOMEA maintains separate linkages735

for each Pareto front cluster. This kind of multi-objective problem decompo-

sition is the key feature of MO-GOMEA and one of the reasons for its high

effectiveness. MO-GOMEA is based on the idea of LTGA, which maintains a

single linkage at a time. On the other hand, P3 maintains many linkages (one

per pyramid level). As explained in Section 2.2.2, this linkage diversity is likely740

to be the reason for the high effectiveness of P3 in solving the heavily over-

lapping problems. Maintaining many different linkages facilitates identifying

different blocks (groups of gene indexes). The same feature is required when

solving multi-objective problems. Thus, a P3-based method may be highly ef-

fective in solving multi-objective problems even without problem decomposition745

performed by MO-GOMEA.
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Pseudocode 1 Genotype repair algorithm

1: procedure Repair(Genotype)

2: ResGenotype = Genotype

3: for Gene← 1 to length(ResGenotype) do

4: OrdersIndexes← GetOrdersForGene(ResGenotype,Gene)

5: decision = −1

6: for i← 1 to length(OrdersIndexes) do

7: Order ← OrdersIndexes[i]

8: OrderToDo← GetOrderSize(Order)

9: OrderP lanProd← GetPlanProd(Order,ResGenotype)

10: RecipeAmount← GetRecipeAmountForGene(Order,Gene)

11: if OrderToDo > OrderP lanProd then

12: decision = 1

13: end if

14: if OrderToDo > OrderP lanProd − RecipeAmount and

decision = −1 then

15: decision = 0

16: end if

17: end for

18: if decision = 1 then

19: ResGenotype[Gene] = 1

20: end if

21: if decision = −1 then

22: ResGenotype[Gene] = 0

23: end if

24: end for

25: return ResGenotype

26: end procedure
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Considering the above motivations, we propose a Multi-Objective Parameter-

less Population Pyramid (MO-P3) that includes the following mechanisms. MO-

P3 uses the elitist archive in the same way as MO-GOMEA (see Section 2.6). In

the original P3, each individual that climbs up the pyramid optimises a single-750

objective problem. Therefore, to adjust MO-P3 to multi-objective optimisation,

when a new iteration of MO-P3 starts, a normalised weight vector is chosen to

transform a multi-objective problem into a single-objective one. Thus, during

its climbing, each individual optimises a single-objective problem. However, due

to different weights, it shall climb to reach a different part of the Pareto front.755

The general overview of MO-P3 work is presented in Pseudocode 2. For each

new individual, the weight vector is chosen to direct the search in one of the

parts of the Pareto front (lines 4 and 5). The new individual is improved by

FIHC and added to the pyramid (lines 6-9). Then, the new individual climbs

up the pyramid. Note that the chosen weight vector is used during the whole760

iteration. The new individual may cross with any other individual that was

added to the pyramid. However, any time the new individual is mixed with

individuals on the given pyramid level (line 11), the linkage gathered for this

level is employed, and the search is directed by the weight vector selected at the

beginning of the iteration (line 4).765

The way of choosing the weight vector at the beginning of each MO-P3

iteration is crucial. It shall push the search to focus on different parts of the

Pareto front. However, if the search is too heavily biased towards some parts

of the Pareto front, the linkage diversity offered by the pyramid-like population

structure may not be sufficient. In consequence, the linkage gathered by MO-P3770

may become useful to optimise only some parts of the Pareto front. If so, the

quality of solutions referring to other Pareto front parts (those for which the

linkage stored by MO-P3 is not useful) may be low. In this paper, we consider

two different strategies of choosing the weight vector. In the first one, the weight

vector is chosen randomly. MO-P3 using this technique will be denoted as MO-775

P3-Random. The second strategy of choosing the weight vector is presented in

Pseudocode 3 and denoted as MO-P3-Smart.
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Pseudocode 2 The general MO-P3 overview

1: procedure MO-P3

2: levels← { CreateNewEmptyPop()} ⊲ initialization

3: while ¬stopCondition do

4: weightV ec← GetWeightVector();

5: newInd← GetRandomIndividual();

6: newInd← FIHC(newInd,weightV ec);

7: if newInd ¬ exist in levels then

8: InsertIndividualOnLevel(levels[0],newInd);

9: end if

10: for each level ∈ levels do

11: IndImpr ← ImproveIndWithLevel(level, newInd, weightV ec);

12: if IndImpr 6= newInd then

13: newInd← IndImpr

14: if newInd ¬ exist in levels then

15: nextLevel← GetNextLevel(level);

16: if nextLevel = empty then

17: nextLevel← { CreateNewEmptyPop()}

18: AddNewTopLevel(levels, nextLevel);

19: end if

20: InsertIndividualOnLevel(nextLevel,newInd);

21: end if

22: end if

23: end for

24: end while

25: end procedure
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Pseudocode 3 Smart strategy of choosing the two-dimensional weight vector

1: procedure GetWeightVector(ElitistArchive)

2: EApoints← empty

3: for each sol in ElitistArchive do

4: sum = sol.F irstObjNormalised+ sol.SecondObjNormalised

5: newPoint.F irstWeight = sol.F irstObjNormalised/sum

6: newPoint.SecondWeight = sol.SecondObjNormalised/sum

7: EApoints← newPoint

8: end for each

9: EApoints← Sort(EApoints)

10: interv1 ← GetRandomInt(1, SizeOf(EApoints)−1)

11: interv2 ← GetRandomInt(1, SizeOf(EApoints)−1)

12: length1 ← GetEuclDist(EApoints.At(inter1), EApoints.At(inter1+1))

13: length2 ← GetEuclDist(EApoints.At(inter2), EApoints.At(inter2+1))

14: if length1 > length1 then

15: intervChosen← interv1

16: else

17: intervChosen← interv2

18: end if

19: IntervalStart = EApoints.At(intervChosen).F irstObj

20: IntervalEnd = EApoints.At(intervChosen).SecondObj

21: weightV ec.F irst = GetRandomReal(IntervalStart, IntervalEnd)

22: weightV ec.Second = 1− weightV ec.F irst

23: return weightVec

24: end procedure
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In the smart strategy of choosing the weight vector, each solution in the

elitist archive is transformed into a weight vector. Such an array of weight

vectors is then sorted concerning the weight corresponding to the first objective.780

After sorting an array of weights, the vectors may be interpreted as an array of

the crowding distances [13]. Then, the tournament of size two is used to choose

the interval that refers to the higher value of the crowding distance. The weight

vector is randomly chosen from the interval returned by the tournament.

The motivation behind the smart strategy of choosing the weight vector is785

as follows. MO-P3-Smart is expected to push the search towards these regions

of the Pareto front that are poorly represented. On the other hand, such a bias

may cause the linkage to be useful to optimise only some parts of the Pareto

front. In this case, the overall Pareto front quality may decrease significantly.

In this section, we have proposed a multi-objective method dedicated to790

solving the MOBCPP problem. We propose both: the problem-dedicated solu-

tion encoding and the new method. MO-P3 is based on the P3 method. The

key modification is the choice of weight vector for further optimisation of a

new individual during the climb. We propose two strategies for choosing the

weight vector: Random and Smart. In the subsequent sections, we show that795

our proposition is more effective than the competing methods in solving both:

the MOBCPP problem and the typical benchmarks employed in multi-objective

discrete optimisation.

5. Experiments on MOBCPP

In this section, we present the results obtained for the MOBCPP problem.800

The objective of the experiments was to compare the effectiveness of the pro-

posed MO-P3 with other methods dedicated to multi-objective optimisation on

the base of the MOBCPP problem. The rest of this section is organised as

follows. In the first subsection, we present the experiment setup. In Section 5.2,

the two considered MO-P3 versions are compared. In the third subsection, we805

analyse the fitness evaluation number (FFE) and computation time ratio. Fi-
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Table 4: The parameters of the single-hall test cases

Parameter Min Max

Production halls 1

Resources 2 3

Commodities 6 20

Recipes 12 60

Genotype length 46 746

Encodable solutions 7.03 · 1013 3.70 · 10224

nally, in the last subsection, we compare MO-P3 with MO-GOMEA, MOEA/D

and NSGA-II.

5.1. Experiments Setup

In this paper, we consider 27 different MOBCPP problem instances. Each810

instance is related to a real-life configuration that takes place or may take place

in practice. We consider two groups of test cases. In the first group (16 test

cases), we consider one production hall, with multiple machines. In these sce-

narios, each job can be executed on any machine (more information about these

scenarios is given in Table 4). In the second group of test cases (11 test cases),815

we consider scenarios with multiple production halls. In each hall, we can pro-

duce only a subgroup of paints (more information is given in Table 5). Note that

even for a relatively low number of resources, the number of available encodings

is large. Since MOBCPP is NP-hard (see Section 3), the considered test cases

may be found difficult to solve. Each experiment has been repeated 50 times.820

We consider two MO-P3 versions that employ two different strategies for

weight vector initialisation (see Section 4.2). Depending on the employed strat-

egy, they will be denoted as MO-P3-Random and MO-P3-Smart, respectively.

We use three competing methods: Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II) [13], Multi-Objective Evolutionary Algorithm based on De-825

composition (MOEA/D) [14] and Multi-objective Gene-pool Optimal Mixing
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Table 5: The parameters of the multi-hall test cases

Parameter Min Max

Production halls 2 12

Resources 2 24

Commodities 6 72

Recipes 12 144

Genotype length 92 552

Encodable solutions 1027 10162

Evolutionary Algorithm (MO-GOMEA) [19]. NSGA-II has been selected as

it is commonly employed as a baseline in the multi-objective optimisation do-

main. Similarly to [10], we use bit-flipping mutation with probability 1/l, where

l is the genotype length, the probability of crossover is 0.9. To make NSGA-830

II independent of the gene order, we use the uniform crossover. Finally, we

consider the population sizes of 25, 50, 100, 200, 400 individuals, the same as

in [10, 19]. MOEA/D is frequently used as a research starting point and as

a baseline [19, 15]. Similarly to NSGA-II, MOEA/D requires specification of

the population size. We consider the same population sizes as in the NSGA-II835

case. MO-GOMEA is a state-of-the-art method in the multi-objective opti-

misation domain that has been reported to significantly outperform NSGA-II

[10, 19] and MOEA/D [19]. Note that MO-GOMEA and the proposed MO-P3

are parameter-less methods. Thus, no tuning is necessary. This feature makes

these methods particularly useful for practical implementations. We have aban-840

doned the comparison with the Multi-objective Hierarchical Bayesian Optimiza-

tion Algorithm [25] because it was significantly outperformed by MO-GOMEA

[10, 19].

For the considered methods, we use the source codes published by their

authors1. All sources have been merged on the problem definition level in one845

1http://www.iitk.ac.in/kangal/codes.shtml for NSGA-II, the source code used in [19]
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project that is available at https://github.com/przewooz/moP3. Additionally,

with the source code, all settings files and the detailed results of all experiments

are provided.

As the stop condition, we use the fitness function evaluation number (FFE).

This choice is motivated by the significant amount of computation time con-850

sumed by the fitness value computation. The computation budget has been set

to 25 million fitness evaluations.

As a quality measure, we use the Inverted Generational Distance (IGD).

IGD is defined as

DPF→S(S) =
1

|PF |

∑

f0∈PF

min
x∈S
{d(f(x), f0)}, (15)

where PF is the Pareto-optimal front, S is the final front proposed by the

optimiser and d(·, ·) is the Euclidean distance. IGD is an average distance from

each point in PF to the nearest point in S. The quality of the proposed front S855

is inversely proportional to the IGD value. The optimal IGD value is 0, which

means that S covers PF . We can also compute the average distance from each

point in S to the nearest point in PF . Such a measure is called the Generational

Distance (GD) [19]. The advantage of IGD over GD is that IGD value is optimal

if and only if S covers the whole PF . Oppositely, GD value is optimal if S is a860

subset of PF [10]. Therefore, we favour IGD over GD.

The optimal Pareto front must be known to compute IGD. Unfortunately,

the considered test cases are based on practice and the optimal Pareto front

is not known. To overcome this issue, we construct a pseudo-optimal Pareto

front in the following way. For each test case, we consider all S fronts proposed865

by every method in every run. From this set of points, we choose only non-

dominated ones. The pseudo-optimal Pareto front obtained this way may not

be optimal. Nevertheless, all considered S fronts only contain points that are

the part of pseudo-optimal Pareto front or that are dominated by points from

for MO-GOMEA, the source code given in [27] for P3 and https://github.com/ZhenkunWang

for MOEA/D
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Table 6: The effectiveness comparison between MO-P3 employing Random and Smart strate-

gies

Test-case type Random equal Smart

Single-hall
IGD 7 9 0

Median FFE until final solution 8 7 1

Multi-hall
IGD 0 11 0

Median FFE until final solution 0 11 0

pseudo-optimal Pareto front. The same procedure of pseudo-optimal Pareto870

front creation has been applied in [10].

5.2. The Comparison between MO-P3 with Random and Smart Strategies

To compare the performance of MO-P3-Random and MO-P3-Smart, we con-

sider the median IGD value that describes the quality of the proposed Pareto

front and the median FFE number necessary to obtain the final solution. To875

check the statistical significance of the differences, we use the Wilcoxon signed-

rank test with a typical 5% significance level. The summarised results are

presented in Table 6.

For test cases with a single production hall, MO-P3 with the random strat-

egy has outperformed MO-P3-Smart for 7 test cases (out of 16) and has never880

been found inferior. Moreover, MO-P3-Random has also been faster to find the

solution in 50% of the cases and found slower for only one test case.

The smart strategy chooses the weight vector at each MO-P3 iteration in a

way that shall force the method to obtain a more diverse Pareto front. Thus,

it may be found surprising that MO-P3-Smart has been outperformed by MO-885

P3-Random. However, as stressed in Section 4.2, the smart strategy may bias

the method towards some solution space regions. If this happens, the linkage

gathered and utilised by MO-P3 may become useful only for improving some

parts of the Pareto front. As a consequence, the overall Pareto front quality

will drop. Note that the drop or lack of linkage diversity may cause a method890

to become ineffective [21].
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For the test cases considering many production halls, both strategies report

results of equal quality. The differences in median FFE necessary for reach-

ing the best result are not statistically significant. Such results may be found

surprising when compared to those obtained for a single production hall. The895

reasonable explanation of this fact is as follows. When we consider multiple

halls and each hall produces only a subgroup of paints, then the key issue is to

successfully find the appropriate linkage that divides a genotype into subparts

responsible for production on each of the halls. For DSM-using methods (like

P3, or MO-GOMEA), such a task may be easy for some problem types [29],900

and hard for the other. If for these test cases, the key to finding a high-quality

Pareto front is to find a high-quality linkage that divides a genotype into the

appropriate parts, then the multi-level population structure of MO-P3 is the

key to solve these problem instances. The other MO-P3 features that cause

the domination of MO-P3-Random over the MO-P3-Smart in the case of single-905

hall test cases do not seem to significantly influence the results for test cases

considering many production halls.

In Figure 8, we show the FFERandom/FFESmart ratio for test cases with

a single production hall. The FFEStrategy is the median FFE necessary for

finding the final solution. The figure shows which method has been faster de-910

pending on the number of genes necessary to encode the problem solution. We

abandon such a comparison for the multi-hall test cases because there are no

statistically significant differences in the FFE number necessary to find the final

solution between MO-P3-Random and MO-P3-Smart. If the value of the ratio

is below 1, then MO-P3-Random is faster, if it is higher, then the situation is915

the opposite. Note that the longer is the genotype, the faster is MO-P3-Random

when compared to MO-P3-Smart. Such observation is coherent with the con-

clusion that the likely reason for the low effectiveness of MO-P3-Smart is the

loss of linkage diversity. The lower is the number of genes, the less important is

the quality of linkage [29]. In other words, the chance for successful crossing is920

inversely proportional to the genotype length (see Section 6). That is why MO-

P3-Smart is almost equally fast to find the final solution for the genotypes of
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Figure 8: The FFERandom/FFESmart ratio of FFE spent on reaching the final result by

MO-P3-Random and MO-P3-Smart for test cases with a single production hall

. Horizontal axis: problem size

the length not exceeding 200 genes (for two test cases, it is even faster than MO-

P3-Random). However, for longer genotypes, MO-P3-Random is up to twenty

times faster (with equal or better results quality). The reasonable explanation925

of this observation is that MO-P3-Random posses linkage that is good enough

to optimise any part of the Pareto front, while MO-P3-Smart does not due to

the bias caused by the smart strategy. The situation in which precisely con-

structed algorithms (or their parts) are outperformed by their random-based

competitors is rather rare and may be found as a phenomenon. However, in the930

literature of the field, we may point the similar cases [61].

Since MO-P3-Random outperforms MO-P3-Smart, in the latter parts of this

paper, we will consider only MO-P3 that employs the random strategy only.

Thus, whenever we refer to MO-P3, we mean MO-P3-Random.
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Figure 9: Median FFE/ComputationT ime ratio per method for all considered test cases

5.3. FFE and Computation Time Ratio Comparison935

Figure 9 presents the median fitness function evaluation number per second

ratio. All MOBCPP test cases have been considered. The values have been

measured for short 10-minute runs performed on PowerEdge R430 Dell server

Intel Xeon E5-2670 2.3 GHz 64GB RAM with Windows 2012 Server 64-bit

installed. To assure the precision of computation time measurement, the number940

of computation processes has always been one fewer than a number of available

CPU nodes. All experiments have been executed in a single thread without any

other resource-consuming processes running. Such an experiment setup seems

reliable for experiments using a time-based stop condition. Similar experiment

setup may be found in [20, 21, 38]945

As stated in Subsection 5.1, for the considered test problem, the significant

amount of computation resources is spent only on fitness value computation.

Nevertheless, the FFE/ComputationT ime ratio comparison is important as it

shows which method is faster.

As presented in Figure 9, MO-P3 is significantly faster than any other con-950
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sidered method. The statistical significance of median differences has been con-

firmed by the Wilcoxon signed-rank test. For the null hypothesis that the me-

dian FFE/ComputationT ime ratio is equal to the median of any other method,

the p-value has not been higher than 10−56. NSGA-II and MOEA/D results

are dependent on the population size. Such an observation is expected since955

the smaller the population size is, the more likely the population is to stuck.

When the population is stuck, the method frequently requires fitness computa-

tion for the same genotypes. If this happens, the fitness may be recomputed or

recovered from the caching buffer that stores the fitness values for some of the

already considered genotypes. In the considered experiments, all methods have960

been joined on the problem definition level and the fitness is not recomputed

if an individual remains unchanged. Therefore, the FFE/ComputationT ime

ratio for NSGA-II and MOEA/D with low population size values is low. Note

that fitness caching may lead to the following consequences. If the method is

stuck and tends to consider the same and small subset of encodable genotypes,965

the FFE/ComputationT ime ratio may become so low, that the computation

resources spent on other method activities than the fitness computation will

become so significant that FFE will not be a fair and reliable measure. A more

detailed analysis of this phenomenon may be found in [62, 63, 64]. Due to

the very low FFE/ComputationT ime ratio values obtained for NSGA-II and970

MOEA/D, the considered population size for these methods is 400 individuals

hereafter.

5.4. The Comparison between MO-P3 and the Competing Methods

The IGD comparison between MO-P3 and the rest of the considered methods

is presented in figures 10 and 11. MO-P3 outperforms NSGA-II and MOEA/D975

for both types of test cases. Such a result is expected since neither NSGA-

II nor MOEA/D uses linkage information. Therefore, these methods are not

capable of recognising the nature of the problem and do not use this knowledge

to improve the effectiveness of the optimisation process. Thus, in the latter part

of this subsection, we compare MO-P3 with MO-GOMEA that employs linkage980
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Figure 10: The IGD-based comparison of considered methods for test cases using a single hall

Figure 11: The IGD-based comparison of considered methods for multi-hall test cases
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Figure 12: The ratio of FFE spent on reaching the final result by MO-P3 and MO-GOMEA

for test cases with a single production hall

learning, the same as MO-P3 is parameter-less and has been proposed recently

to solve multi-objective problems effectively.

For all the test cases considering a single production hall, the median IGD

values obtained by MO-P3 and MO-GOMEA have been equal. However, MO-

P3 has been significantly faster in finding the solution in most of the runs. The985

Wilcoxon signed-rank test with the 5% significance level has confirmed that

these differences are statistically significant for 7 test cases. For another 7 test

cases, the differences have not been meaningful and MO-GOMEA has been

faster for two test cases. Figure 12 shows the FFEMOP3/FFEMO−GOMEA

ratio (similarly to the ratio shown in Figure 8). For most of the considered test990

cases, MO-P3 is about two times faster than MO-GOMEA. However, the FFE

ratio presented in Figure 12 does not seem related to the genotype length. Such

an observation has been expected as both the compared methods gather linkage

and try to make it diverse. MO-GOMEA supports different linkages necessary

to optimise different Pareto front parts by individuals clustering, while MO-P3995
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uses a pyramid-like population structure.

The situation is different for multi-hall test cases. For most of the test cases,

both methods report similar IGD, but MO-P3 outperforms MO-GOMEA for

four test cases and is outperformed only in one of them. The difference between

single- and multi-hall test cases is that to successfully solve them, a method has1000

to precisely decompose the problem into parts referring to different production

halls. MO-P3 maintains a larger number of linkage sets. Thus it is more likely

that some of these linkages will be precise enough to allow for successful ex-

change for some of the halls (see Section 2.4). Therefore, for a relatively low

number of halls, both methods report results of equal quality (for one of them1005

MO-GOMEA even outperforms MO-P3). However, when the number of halls

increases, MO-P3 outperforms MO-GOMEA. These differences are statistically

significant. Moreover, MO-P3 has been faster than MO-GOMEA in finding the

final result (in terms of FFEs) for 7 test cases of 11. For other test cases, the

differences have been not statistically significant.1010

For the MOBCPP problem, MO-P3 and MO-GOMEA yield results of similar

quality. However, MO-P3 has outperformed MO-GOMEA for four test cases

when many production halls are considered and has been outperformed by MO-

GOMEA for one test case only. Since these results are statistically significant,

we may state that MO-P3 outperforms MO-GOMEA for the MOBCPP problem.1015

An important advantage of MO-P3 over MO-GOMEA is that MO-P3 requires

fewer FFEs to reach the final result. This situation takes place for 11 out of

27 considered test cases, and only for two test cases, MO-GOMEA is better.

If we consider the fact that MO-P3 performs about two times more FFEs per

second than MO-GOMEA (see Figure 9), we can state that MO-P3 is better in1020

solving MOBCPP because it reports the results of slightly higher quality and is

significantly faster in reaching these results in terms of FFEs and computation

time.

In this section, we have shown that the proposed MO-P3 outperforms NSGA-

II and MOEA/D for the considered practical problem. It has been also demon-1025

strated that it performs better and significantly faster than MO-GOMEA. The
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intuition that in multi-objective optimisation the P3-based methods may be sig-

nificantly faster than LTGA-based (GOMEA-based) in solving practical prob-

lem instances has been confirmed. To get the full view on MO-P3 effectiveness,

we report the comparison based on popular theoretical benchmarks in the next1030

section.

6. Experiments on Benchmark Problems

In this section, we compare MO-P3 with MO-GOMEA, MOEA/D, and

NSGA-II using various theoretical benchmarks. The objective of this compar-

ison is to evaluate the overall MO-P3 effectiveness in solving assorted multi-1035

objective problems. As a baseline, we use NSGA-II and MOEA/D. Similarly to

the results presented in [10, 19], MOEA/D and NSGA-II were outperformed by

MO-GOMEA. In this section, we show that except for one benchmark problem

(multi-objective knapsack), MO-P3 performs even better than MO-GOMEA.

6.1. Benchmark Problems1040

In this section, we present the considered benchmark problems. We use the

same benchmarks as in [10, 19]. For Multi-objective weighted MAXCUT and

Multi-objective knapsack, we have adopted the implementation from [19] and

developed our implementations for Zeromax-Onemax, Trap5-Inverse Trap5 and

Leading Ones Trailing Zeros (LOTZ).1045

6.1.1. Zeromax-onemax

The objectives for Zeromax-onemax problem are defined as

fOnemax(u) = u; fZeromax(u) = l − u, (16)

where l is the genotype length and u is the unitation (see Section 2.3). Thus,

fOnemax maximises the number of ones in the genotype, while fZeromax max-

imises the number of zeros. The optimal Pareto front PF contains l+ 1 points.

Many solutions can refer to a single point on PF except for the two extreme1050

points that contain only ones and only zeros. Thus, it is potentially harder
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to find extreme parts of PF than the extreme regions [25]. Note that every

encodable solution lies on PF .

6.1.2. Trap5-Inverse Trap5

Deceptive function of unitation [48] has been introduced in Section 2.3 in

formula (8). The inverse deceptive function of unitation is defined as

decinverse(u) =











u− 1 if u > 0

k if u = 0

, (17)

where u is a sum of gene values (so called unitation) and k is a deceptive function1055

size.

In this paper, we use k = 5, which is the same setting as used in [10, 19].

The Trap5-Inverse Trap5 problem is a concatenation of order-5 deceptive blocks.

The first objective refers to the trap-5 function and maximises the blocks built

from ones, while the second objective maximises the number of blocks built1060

from zeroes. The number of points in PF is l/5 + 1. Similarly to the case of

the Zeromax-onemax problem, there is only one solution that refers to each

extreme PF point, but there may be more solutions that refer to other parts

of PF . Similarly to the single-objective optimisation, it is difficult to solve a

problem built from deceptive blocks if a method is unable to obtain a linkage1065

of appropriately high-quality [19, 22].

6.1.3. Leading Ones Trailing Zeros (LOTZ)

Leading ones trailing zeroes is a classic benchmark in multi-objective opti-

misation. The first objective is the Leading Ones function, while the second is

Trailing Zeroes function. They are defined as1070

fLO(x ) =

l−1
∑

i=1

i
∏

j=1

xj ; fTZ (x ) =

l−1
∑

i=1

l−1
∏

j=i

(1− xj). (18)

The leading ones function (fLO) optimises the number of subsequent ones

at the beginning of a genotype. The trailing zeroes optimises the number of

subsequent zeroes at the end of it. The number of points in the Pareto-optimal
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front is l + 1. In the case of LOTZ, each point in PF refers to exactly one

genotype.1075

6.1.4. Multi-objective Weighted MAXCUT

We employ the same multi-objective MAXCUT problem version as in [19, 10]

and use the same source code implementing the MAXCUT problem as in [19].

The problem instances have been generated using the approach proposed in [65].

The problem is defined as follows.1080

Let G = (V,E) be a weighted undirected graph, where V = (v0, v1, . . . , vl) is

a set of l vertices and E is the set of edges (vi, vj). Each edge has an associated

weight wi,j . In the weighted MAXCUT problem, the objective is to find a

maximum cut which is a partition of l vertices into two disjoint subsets A and

B (A = V B) such that the total weight of edges (vi, vj) having vi ∈ A and1085

vj ∈ B is maximised. We solve each MAXCUT instance for two different weight

sets, making this problem bi-objective.

The solution is encoded as a string of l bits, where each variable xi corre-

sponds to each vertex. If xi = 0 then vi ∈ A and vi ∈ B otherwise. The same

solution encoding has been used in [19, 10]. In the experiments, we consider1090

problem instances for l ∈ {12, 25, 50, 100}. The Pareto-optimal front PF is nec-

essary to compute IGD. For l ∈ {12, 25}, the optimal Pareto front has been

obtained by the enumeration method. For l = 50 and larger PF , we use the

reference sets proposed in [10]. The instances and the reference Pareto front

sets are the same as in [19, 10].1095

6.1.5. Multi-Objective Knapsack

In the multi-objective knapsack problem, we consider l items and m knap-

sacks. Each knapsack k has capacity ck and each item i is characterised by

weight wi,k and profit pi,k corresponding to each knapsack k. Each item i may

be either selected and placed in every knapsack or not selected at all. Thus, the

problem solution may be encoded as an l-bit binary string. If the total weight

of the selected items does not violate the capacity constraint of any knapsacks,
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Figure 13: Scalability of MO-P3 and the competing methods for benchmark problems.

the solution is feasible. The objective is to maximise the profits of all knapsacks

at the same time. The problem may be defined as

max
x

(f0(x), f1(x), . . . , fm−1(x)), (19)

where fk(x) =
∑l−1

i=0 pi,kxi for k = 0, 1, . . . ,m and subject to
∑l−1

i=0 wi,kxi ≤ ck.

We use the same problem implementation as in [19]. Therefore, we also use

the same mechanism to repair a solution that violates the constraints [66]. The

repair algorithm removes selected items one by one until all the constraints are1100

satisfied. The items with the lowest profit/weight ratio are removed first.

We employ the same bi-objective knapsack instances as in [19, 66]. The

considered number of items is l ∈ {100, 250, 500, 750}. For the instance of 750

items, we use pseudo-optimal PF created by the combination of many Pareto

fronts and employed in [19]. For the remaining instances, we use the optimal1105

Pareto fronts reported in [66].

6.2. Main Results for Benchmarks

In Figure 13, we show MO-P3, MO-GOMEA, and MOEA/D scalability on

the Zeromax-Onemax, Trap5-Inverse Trap5, and LOTZ problems. We present

the median FFE necessary to find the optimal Pareto front. NSGA-II is ex-1110

cluded from the comparison because it has not found the optimal Pareto front

in most of the runs for each problem. For these benchmarks, MO-P3 outper-

forms MO-GOMEA. This supremacy is caused by the following reason. For
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Figure 14: Scalability of MO-P3 and the competing methods for the Maxcut problem

all three benchmarks, the linkage is the same for all Pareto front parts. For

instance, for the Trap5-Inverse Trap5 problem, the corresponding bits always1115

occupy the same blocks. This situation may favour MO-P3 because popula-

tion clusterisation employed by MO-GOMEA does not guarantee any benefits.

However, thanks to using linkage learning, MO-GOMEA is the only competing

method that can successfully solve the Trap5-Inverse Trap5. MOEA/D and

NSGA-II were unable to find the optimal Pareto front even for a 25-bit prob-1120

lem version. Note that for the problems based on deceptive trap functions, the

DSM-using methods (e.g., MO-GOMEA and MO-P3) are capable of finding

the perfect problem decomposition in the early stages of the run [29]. This

capability allows them to solve the problem.

In Figure 14, we present the scalability on the MAXCUT problems. MO-1125

P3 performs better than all the remaining considered methods including MO-

GOMEA. It is the only method that can solve all the MAXCUT instances

for l ≤ 50. On the other hand, MO-GOMEA outperforms MO-P3 for the

bi-objective Knapsack problem (Figure 15). For this problem, MO-P3 is also
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Figure 15: Scalability of MO-P3 and the competing methods for the Knapsack problem

slightly outperformed by MOEA/D. Note that bi-objective knapsack problem1130

is the only problem considered in this paper for which MO-P3 has been outper-

formed by any other method.

7. Results Discussion

In this paper, we have proposed a new multi-objective optimisation method

based on the proposition of the Parameter-less Population Pyramid. MO-P31135

uses a weighted vector to optimise new solutions added to the pyramid. Two

different strategies have been considered: random and smart. The comparison

based on a practical MOBCPP problem has shown that MO-P3-Random per-

forms better. Such an observation may be surprising but is well explainable

as the random strategy does not bias MO-P3 towards any part of the Pareto1140

front. The lack of bias allows MO-P3 to maintain a diverse linkage that seems

to be the key to solve the considered practical problem. The importance of

linkage is also supported by the comparison between MO-P3 and NSGA-II. For

all the considered test cases except the smallest one, MO-P3 has outperformed
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NSGA-II as the IGD values for MO-P3 have been equal to 0 in all the runs.1145

It means that at least some of the points from the Pareto fronts proposed by

NSGA-II have been dominated by the points from the Pareto fronts proposed

by MO-P3.

The comparison with MO-GOMEA on the base of MOBCPP instances shows

that both the methods yield results of the same quality. However, for most1150

of the test cases, MO-P3 requires significantly fewer FFEs to reach the best

result. These results confirm the intuition presented in Section 4 that a P3-

based method may be more suitable to solve practical problems than the LTGA-

based ones. The high potential of MO-P3 application to practical problems

is also confirmed by the analysis of the FFE/ComputationT ime ratio. It is1155

significantly higher for MO-P3 than for MO-GOMEA and NSGA-II since MO-

P3 does not spend the computation resources on the population clusterisation

performed by MO-GOMEA and the computation of the crowding distance done

by NSGA-II.

The comparison made on the multi-objective benchmarks also indicates1160

high effectiveness and high efficiency of MO-P3. For Zeromax-Onemax, Trap5-

Inverse Trap5 and LOTZ problems, MO-P3 has found the optimal Pareto front

in all runs, outperforming MO-GOMEA and NSGA-II. MO-GOMEA has been

unable to find the optimal Pareto front for l > 25. Moreover, for these three

problems, MO-P3 has found the optimal Pareto fronts up to 100 times faster1165

than MO-GOMEA. For the MAXCUT problem, MO-P3 has also outperformed

the competing methods. Bi-objective Knapsack problem has been the only

problem for which MO-GOMEA yielded Pareto fronts of better quality. The

detailed analysis of MO-GOMEA and MO-P3 behavior for the Knapsack prob-

lem instances requires further investigation and is out of this paper’s scope.1170

However, it is possible that for the considered problem instances, MO-GOMEA

can divide its population into such clusters that it obtains the linkage of high

quality (the linkage that shows the true gene dependencies for the considered

Pareto front parts).
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8. Conclusions1175

In this paper, we have proposed MO-P3, a new method designed to solve a

practical industrial multi-objective problem related to the process of production

planning. The proposed method is adjusted to the problem with the appropriate

solution encoding-decoding algorithm. Since solutions are represented by binary

strings, MO-P3 has been compared with NSGA-II that is a typical baseline in1180

multi-objective optimisation and MO-GOMEA that is an up-to-date method

in solving multi-objective problems in discrete domains. Our proposition out-

performs all competing methods for the set of considered practical problem

instances.

The experiments conducted on a set of typical benchmarks have confirmed1185

both high-effectiveness and high-efficiency of MO-P3. The proposed method is

not only capable of finding optimal or near-optimal Pareto fronts, but it is also

the fastest in most of the cases. Additionally, it significantly outperforms both

of the competing methods when the FFE/ComputationT ime ratio is taken into

account. This positive feature is obtained thanks to the fact that MO-P3 does1190

not require computationally costly operations like population clusterisation or

crowding distance calculation.

The main future work directions are as follows. The behaviour of MO-P3 for

the Knapsack problem must be analysed to investigate the reason it performs

worse than MO-GOMEA for this problem. The other future work objective1195

is the development of MO-P3 itself to further improve its effectiveness and

efficiency.
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[54] N. H. Luong, H. La Poutré, P. A. Bosman, Multi-objective gene-pool op-

timal mixing evolutionary algorithms, in: Proceedings of the 2014 Annual

Conference on Genetic and Evolutionary Computation, GECCO ’14, ACM,1440

New York, NY, USA, 2014, pp. 357–364. doi:10.1145/2576768.2598261.

URL http://doi.acm.org/10.1145/2576768.2598261

[55] X. Ma, Y. Qi, L. Li, F. Liu, L. Jiao, J. Wu, Moea/d with uniform de-

composition measurement for many-objective problems, Soft Computing

18 (2014) 2541–2564. doi:10.1007/s00500-014-1234-8.1445

[56] H. Ishibuchi, T. Murata, A multi-objective genetic local search algorithm

and its application to flowshop scheduling, Trans. Sys. Man Cyber Part C

28 (3) (1998) 392–403.

[57] L. Li, J.-Z. Huo, Multi-objective flexible job-shop scheduling problem in

steel tubes production, Systems Engineering - Theory & Practice 29 (8)1450

(2009) 117–126.

[58] N.-T. Huynh, C.-F. Chien, A hybrid multi-subpopulation genetic algorithm

65



for textile batch dyeing scheduling and an empirical study, Computers &

Industrial Engineering 125 (2018) 615–627.

[59] M. Gen, L. Lin, Multiobjective evolutionary algorithm for manufacturing1455

scheduling problems: state-of-the-art survey, Journal of Intelligent Manu-

facturing 25 (5) (2014) 849–866.

[60] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, Q. Zhang,

Multiobjective evolutionary algorithms: A survey of the state of the

art, Swarm and Evolutionary Computation 1 (1) (2011) 32 – 49.1460

doi:https://doi.org/10.1016/j.swevo.2011.03.001.

URL http://www.sciencedirect.com/science/article/pii/

S2210650211000058

[61] J. P. Martins, A. C. Delbem, Reproductive bias, linkage learning

and diversity preservation in bi-objective evolutionary optimiza-1465

tion, Swarm and Evolutionary Computation 48 (2019) 145 – 155.

doi:https://doi.org/10.1016/j.swevo.2019.04.005.

URL http://www.sciencedirect.com/science/article/pii/

S2210650218300269

[62] M. W. Przewozniczek, M. M. Komarnicki, The influence of fitness caching1470

on modern evolutionary methods and fair computation load measurement,

in: Proceedings of the Genetic and Evolutionary Computation Conference

Companion, GECCO ’18, ACM, 2018, pp. 241–242.
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