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Abstract 

The World Health Organization reported that “an estimated 12.6 million people died as a result of 

living or working in an unhealthy environment in 2012, nearly 1 in 4 of total global deaths”. Air, water 

and soil pollution, were significant risk factors, and there is an urgent need for effective remediation 

strategies. But tackling this problem is not easy; there are many different types of pollutants, often 

widely dispersed, difficult to locate and identify, and in many cases cost-effective clean-up techniques 

are lacking. Biology offers enormous potential as a tool to develop microbial, and plant-based 

solutions to remediate and restore our environment. Advances in synthetic biology are unlocking this 

potential enabling the design of tailor-made organisms for bioremediation. 

In this review, we showcase examples of xenobiotic clean-up to illustrate current achievements 

and discuss the limitations to advancing this promising technology to make real-world improvements 

in the remediation of global pollution. 

  

Manuscript



1. Introduction 

"What I cannot create I do not understand." Nobel Physicist, Richard Feynman’s quote from over 

30 years ago, now encapsulates the burgeoning world of synthetic biology (synbio). The National 

Human Genome Research Institute defines synbio as “a field of science that involves redesigning 

organisms for useful purposes by engineering them to have new abilities”. Synbio achieves its aims by 

using molecular biology tools, along with cell and systems biology knowledge to model, design and 

synthesize a series of components (gene promoters, transcription factors, enzymes etc.) that together 

form metabolic pathways with outputs that can be tested, re-modelled and fine-tuned. At the simpler 

end of the scale, this translates to engineering proteins with the ability to convert substrates to 

desirable products; at the more complex end, the synthesis of complete, artificial genomes. In the 

world of bioremediation, synbio could be used to design biosensors, enzymes with unique activities 

towards persistent organic xenobiotics, organisms that are resistant to challenging environmental 

conditions, robust biopolymers, artificial storage organelles for toxic metals and much more. 

2. Synthetic biology resources 

Numerous molecular biology techniques together provide a practical toolkit for synbio, and key 

among these are massively improved DNA sequencing and synthesis. The wealth of genetic data now 

available has enabled us to investigate how natural biological systems work. In February 2020, the 

National Center for Biotechnology Information database contained almost four hundred billion 

nucelotide bases (www.ncbi.nlm.nih.gov/genbank/statistics/). Advances in Golden Gate cloning and 

synthetic promoter systems, in tandem with the ability to relatively cheaply synthesize DNA sequence 

have enabled a modular approach to assembling genes for multiple enzymes and metabolite 

transporters [1]. Genome-scale engineering is now at the stage where ~4 mega base bacterial 

genomes are routinely re-engineered [2], with research to redesign and synthesize all sixteen 

chromosomes encoding the 11.4 Mb genome of the eukaryote Saccharomyces cerevisiae near 

completion (Synthetic Yeast 2.0; http://syntheticyeast.org/). The Genome Project-Write 

(https://engineeringbiologycenter.org/) is now engineering gigabase genomes of higher-order 



eukaryotes [3]. Systems biology and protein design, which use computational and mathematical 

techniques to model complex biological systems, are also key resources for synbio. In combination 

with gene editing, which allows small, ideally single-base, changes to an organism’s DNA [4] [5], these 

disciplines allow the fine-tuning of biological systems. Into the future, re-programming the genetic 

code to include unnatural amino acid will open up the ability to use biological systems to synthesize a 

near-endless number of different proteins [6].  

For the development of specifically bioremediation technologies, key synbio resources include the 

use of extremophilic microorganisms. These organisms provide a wealth of enzymes adapted to work 

in extreme environments under which other proteins would denature. For example, halophilic 

bacteria with abilities to degrade polycyclic aromatic hydrocarbons, and petroleum from highly saline 

wastewaters [7,8]; thermo-tolerant microalgae Galdieria sulphyraria, in combination with 

heterotrophic bacteria to remediate ammonium and phosphates from waste water systems providing 

a biofuel output, without the energy-intensive need to cool the photobioreactor system [9]. 

Functional metagenomics approaches have enabled the discovery, and characterization, of novel 

enzymes such as dioxygenases [10*] and cytochrome P450 systems [11]; key players in xenobiotic-

degradation.  

3. Environmental pollutants 

While small areas of contamination can be removed using existing methodologies for example 

excavation to land-fill, or ex-situ remediation, a specific problem with many environmental pollutants 

is that they are dispersed, often heterogeneously across relatively large areas. Remediating this 

pollution using current technologies would be too costly, generate huge amounts of waste and be 

environmentally damaging. Bioremediation can be a cost-effective alternative that can work at large-

scale, and as a component of existing ecosystems contribute to the restoration of the environment. 

3.1 Inorganic pollutants 



The main inorganic pollutants are ‘heavy metals’ a group that includes Pb, Cd, Cu, Hg, Sn, and Zn 

(Table 1). Some of these elements are essential micronutrients, but all are toxic at higher levels, with 

As, Cd, Hg, Pb and Se most readily bioaccumulating in tissues and living organisms. Anthropomorphic 

inorganic pollution stems predominantly from the petrochemical and agrochemical industries, coal 

combustion and the mining industry. In addition to heavy metal pollution, global release of N and P 

from fertilizer, sewage and runoff from animal farms, cause eutrophication of waterways and lakes 

and thus significant harm to water quality and aquatic life. 

3.2 Organic pollutants 

Persistent organic pollutants (POPs; Table 2) include some polycyclic aromatic hydrocarbons 

(PAHs), along with halogenated aromatics, such as polychlorinated biphenyls (PCBs), explosives (2,4,6-

trinitrotoluene, TNT; hexahydro-1,3,5-trinitro-1,3,5-triazine, RDX; and pentaerythritol tetranitrate, 

PETN), dioxins (polychlorinated dibenzo-p-dioxins and –furans), dichlorodiphenyltrichloroethane 

(DDT) and its metabolites; and more recently, per- and polyfluorinated alkyl substances (PFAS). 

POPs commonly have very low water solubility and high hydrophobicity, measured by high 

octanol/water partition coefficients (log Kow), which generally increase with additional aromaticity. 

These features reduce bioavailability and uptake, thus hindering natural attenuation by biological 

systems such as microbes and plants. These compounds are therefore retained in air, water, soils, and 

sediments for long periods of time; however, once in the food chain the high log Kow values enhance 

their bioaccumulation in lipid-rich regions of the host organism, with subsequent biomagnification 

along the food chain. Together, these toxic compounds are some of the most persistent in the 

environment, with many of them additionally classified as possibly carcinogenic to humans (the 

International Agency for Research on Cancer ((IARC)) and probable human carcinogens (United States 

Environmental Protection Agency ((US EPA)). The Stockholm Convention, a global treaty for protecting 

humans and the environment against toxic contaminants, has listed more than twenty POPs 

(Stockholm Convention, 2018), with pressure from stakeholders to increase the list to include 

heterocyclic aromatic compounds and alkyl-derivatives [12]. Even though production and use of many 



of these pollutants has significantly decreased since the adoption of the Stockholm Convention, 

extensive environmental contamination still persists. 

Emerging pollutants (Eps; Table 3) are those not yet commonly monitored but have the potential 

to enter and negatively affect the environment and human health. These compounds include 

pharmaceutical and personal care products (PPCPs), many of which are biologically active [13]. PPCPs 

enter urban wastewater streams but are not removed by conventional treatment technologies and 

can recycle back into the food chain via their land application as fertilizers [14]. Furthermore, 

antimicrobial agents in PPCP waste have the potential to promote bacterial resistance in the 

environment [15]. 

Additional emerging pollutants include plasticizers and nanoparticles (NPs). Plasticizers are 

additives used to increase flexibility or plasticity, such as bisphenol A (BPA) and phthalates, and are 

particularly recognized as endocrine disruptors [16]. Manufactured NPs are present in many 

commercial products, including agricultural herbicides and pesticides and while the true effects of NPs 

in the environment is not yet well understood, there is evidence they are taken up by and have 

deleterious effects on crop plants [17]. 

4 Bioremediation using synbio 

In purist terms, synbio techniques are currently used to modify, or artificially create, prokaryotic 

systems; the application of synbio to more complex, multicellular organisms is still in its infancy. 

Ambitious projects such as the C4 Rice project [18], (c4rice.com/the-project-2), and engineering 

nitrogen fixing cereals [19,20] are underway, with astonishing possibilities. But, in the area of 

bioremediation, the application of synbio techniques is still focused on the development of microbial-

based systems. Plants contribute a major role in bioremediation, yet technologies are at the level of 

expressing one, or a few transgenes with true synbio techniques still to be established. In this section, 

we outline examples of current achievements in the application of synbio to bioremediation. 

4.1 Biosensors 



A lack of information on the presence of pollutants in soils, particularly in developing countries, 

[21], compounded by a lack of adequate controls and bad practice, has led to significant pollutant 

dumping sites in some Asian countries [22].  

Bacteria, such as Geobacter sulfurreducens and Shewanella oneidensis have the ability to grow as 

highly conductive biofilms, composed mainly of hair-like structures called pili. These bacteria form the 

basis of microbial fuel cells (MFCs), which can produce electrical current from the degradation of 

organic pollutants [23]. The output voltage from MFCs has been used to demonstrate biosensors for 

p-nitrophenol in industrial wastewater [24], atrazine [25], formaldehyde [26] and continuous 

biomonitoring of copper from mine effluent [27]. New innovative designs are incorporating MFC-

based biosensors onto paper to produce a low-cost, portable and easy-to-use format, that can 

biodegrade after use [26*]. 

4.2 Artificial organelles 

A significant challenge to remediating inorganic pollutants is the inherent toxicity associated with 

accumulating these pollutants within sensitive cellular environments. Artificial organelles could 

enable the concentration of inorganic pollutants away from these areas [28]. Einfalt et al. 

demonstrated that reduction-triggered nanocompartments could be synthesized in vivo in HelA cells 

[29**]. And towards utilization for bioremediation, encapsulation of a polyphosphate kinase in 

Escherichia coli led to the increased uptake, and compartmentalization of phosphate [30*]; a potential 

application for phosphate removal. A recent study has successfully targeted proteins to the luminal 

side of an artificial bacterial microcompartment [31**]. These advances pave the way for the 

incorporation of proteins that can bind specific metals within artificial organelles, enabling the 

hyperaccumulation of specific metals.  

4.3 Bioremediation of mercury 

Mercury is ranked third in the priority list of hazardous substances by the Agency for Toxic 

Substances and Disease Registry (www.atsdr.cdc.gov) with hotspots of pollution coming from mining 



and metal manufacturing. Microbial activities in the environment readily convert Hg to 

methylmercury, which bioaccumulates. Both forms are effective neurotoxins [32]. 

Previously, studies have used MerR transcriptional regulator to develop mercury biosensors. When 

Hg2+ ions bind to MerR, MerR is derepressed and the mer operon genes are expressed. Replacing mer 

genes with reporter genes such as GFP or luciferase produced mercury inducible biosensors; 

important tools, but not directly useful for bioremediation [32]. Subsequent studies have engineered 

bacteria able to sequester Hg2+ [32], but this is limited by the intracellular toxicity of the Hg2+, and 

requires the continual production of cellular biomass to absorb the metal. An exciting study by Tay et 

al. [33], combined MerR and an operon encoding a mercury-absorbing, extracellular protein 

nanofiber, or curli, into E. coli. These curli fibers form a biofilm that is only produced when mercury 

contamination is present, and provide a large surface area for Hg2+ absorption, to negate the toxicity 

of intracellularly accrued Hg2+ ions. Furthermore, this circuit is responsive at environmentally relevant 

concentrations. The nanofiber specifically binds Hg2+, and recovery and recycling not hindered by the 

presence of other metals. This work paves the way for the development of on-demand living biofilm 

materials that can operate autonomously as heavy-metal absorbents. There are, however, still hurdles 

to the advancement of this technology. For example, E. coli exhibits sensitivity towards mercury 

toxicity, and mercury-resistant microbial species are required.  

4.4 Biodegradation of polyethylene terephalate (PET) 

Originally designed to resist degradation, it is this very feature of plastics that is now a huge 

environmental problem. The build-up of plastics in our environment, particularly oceans, is causing 

devastating damage to animals. Accumulation of microplastics in the environment and food chain, is 

also of increasing public concern. 

PET, a plastic used intensively in textile production, and as packaging for food and liquids, 

comprises about 10% of the synthetic plastic polymers produced globally. A number of enzymes with 

activity towards PET, albeit low, have been characterized. To date, the most promising species mined 

for PET-degrading enzymes is Ideonella sakaiensis 201-F6, isolated from sediment at a PET bottle 



recycling site, and able to use PET as its main energy and carbon source. The two enzymes isolated 

from I. sakaiensis were a PET hydrolase, which converts PET to mono(2-hydroxyethyl) terephthalic 

acid (MHET); and MHET hydrolase, a structurally-unique enzyme, which converts MHET to 

terephthalic acid (TPA) and ethylene glycol (EG) [34]. Subsequently MHET was engineered with 

improved activity and additional polyethylene-2,5-furandicarboxylate (PEF)-degrading ability [35**]. 

Towards the use of this system in aquatic environments, extracellular MHET activity has been 

successfully conferred to the marine microalga Phaseodactylum tricornutum [36*]. Enzymes have also 

been found with activity towards the ester-based polyurethane (PUR), but as yet, enzymes with 

activity towards the remaining major plastic polymers (polystyrene, polyamide, polyvinyl chloride, 

polypropylene, ether-based polyurethane and polyethylene), which comprised over 250 million 

tonnes in 2016, have not been discovered [37]. 

4.5 Biodegradation of aliphatic chlorinated compounds 

Bacteria, including Xanthobacter autotrophicus, have been isolated that can break down a broad range 

of halogenated aliphatic compounds [38]. Using 1,2-dichloroethane (1,2-DCA), which is listed as a priority 

pollutant and “probable human carcinogen” by the U.S. Environmental Protection Agency (EPA), as an 

exemplar, dehalogenase genes dhlA and dhlB from X. autotrophicus were incorporated into tobacco 

(Nicotiana tabacum) and together with endogenous alcohol and aldehyde dehydrogenase, used to 

create a synthetic route for the degradation of 1,2-DCA [39]. More recently, a complete, artificial 

pathway for the metabolism of 1,2,3-trichloropropane, a toxic pollutant and listed by the EPA as “likely 

to be carcinogenic to humans”, has been engineered into E. coli [40]. The authors used computational 

models to identify bottlenecks in the five-gene pathway, and employed forward engineering to 

optimize 1,2,3-TCP degradation [41]. Many microbes have activity towards aliphatic chlorinated 

compounds, including microbial communities in the rhizosphere of plants. It has been demonstrated 

that metabolites released by plant roots into this zone can enhance the biodegradation of 1,2-

dichloroethylene (DCE) [42*]. Combining genetically modified -plant and -rhizosphere-dwelling 

bacteria seem to be the next logical step. 



4.6 Phytoremediation of explosive compounds 

Explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) 

are used extensively by the military and are significant environmental pollutants [43]. In the U.S. alone, 

10 million hectares of military land is contaminated with munitions components, of which TNT and 

RDX are major components [44]. Numerous studies have characterized the biochemistry behind 

microbial detoxification pathways for TNT and RDX [43], and bacteria able to degrade RDX have been 

used in bioaugmentation studies in RDX-contaminated aquifers [45,46]. The genes responsible, xplA 

and xplB have been engineered into rhizosphere-colonizing bacteria [47], and Arabidopsis thaliana 

[48,49]. More recently, this technology has been advanced to produce RDX-degrading plant species 

suitable for remediation in-the-field. Both xplA and xplB, along with a bacterial nitroreductase that 

detoxifies the co-contaminant and phytotoxic TNT, have been engineered into switchgrass (Panicum 

virgatum), wheatgrass (Pascopyrum smithii) and creeping bentgrass (Agrostis stolonifera) [50*,51]. 

This advance brings the technology a step closer to using engineered, native species for in situ 

remediation of organic pollutants. 

5. Future directions  

The environment has only been relatively recently exposed to many organic pollutants, with 

anthropomorphically-derived chemicals only in widespread use from the 1900s. However, the 

existence of enzyme systems with degradative abilities towards these xenobiotic compounds 

demonstrates the remarkable speed at which microorganisms have evolved to exploit these 

substrates.  

The slower regeneration times in eukaryotic, plant and algae organisms, compared to prokaryotes, 

means that they have simply not had sufficient time to evolve biochemical activities towards many 

organic xenobiotics. However, plant-based remediation systems offer many advantages, detailed in 

[43]. To maximize in situ bioremediation capacity, Figure 1 outlines where studies could focus on using 

synthetic biology to confer xenobiotic detoxification abilities to plants, in combination with their use 

as hosts for genetically-modified endophytic and rhizospheric microbial populations.  



Many organic pollutants have chemical structures that are extremely challenging for biochemical-

based mineralization. For example, PCBs often comprise of up to 130 different individual compounds; 

with biochemical degradation routes characterized for only a few [52]. Developing synbio techniques 

and mining expanding nucleotide databases will, in time, enable the design of enzyme-based systems 

to mineralize these compounds. 

In contrast to organic pollutants, which have the potential to be mineralized, the bioremediation 

of inorganic pollutants presents a different challenge. There is a significant volume of literature 

demonstrating in situ removal of inorganic pollutants from soil, water and air into biological systems, 

but cost-effective systems to recover toxic metals and metalloids from this biomass is currently 

lacking.  For elements of higher market value such as Ni, the biochemical mechanisms used by plant 

hyperaccumulator species need to be further understood. But, given the sheer quantity of relatively 

low-value metal and metalloid contamination, in situ approaches should perhaps also focus on 

trapping these pollutants into biological chelators such as metallothioneins, and absorbents such as 

nanofibers, which over time can become locked into soils and sediments and monitored with 

biosensors. Towards these goals, synbio approaches will enable the design of synthetic bio-based 

compounds and self-assembling artificial storage organelles to trap inorganic pollutants, or enable 

their cost-effective recovery.  

The use of synbio technologies for bioremediation is still in its infancy, but already offers exciting 

possibilities towards the use of engineered organisms to provide a cleaner, safer environment.  
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Tables 

Table 1. Major inorganic pollutants 

ATSDR 2019 Substance Priority List rankings (www.atsdr.cdc.gov/spl/index.html#2019spl). 
 

Name 
Chemical 

symbol 

ATSDR 

2019 Rank 

Arsenic As 1 

Lead Pb 2 

Mercury Hg 3 

Cadmium Cd 7 

Chromium 
(hexavalent) 

Cr6+ 17 

Phosphorus 
(white) 

P4 19 

Cyanide CN- 35 

Beryllium Be 43 

Colbalt Co 52 

Nickel Ni 58 

Chromium(VI) 
trioxide 

CrO3 66 

Zinc Zn 75 

Chromium Cr 78 

Thiocyanate SCN- 92 

Asbestos 
Silicate 

minerals 
94 

Radium-226 Ra 95 

Uranium U 97 

 
  

http://www.atsdr.cdc.gov/spl/index.html#2019spl


Table 2. Persistent organic pollutants 

All structures and chemical names are from PubChem, National library of Medicine 
(www.pubchem.ncbi.nlm.nih.gov). Numbers in brackets are the ATSDR 2019 Substance Priority List 
rankings (www.atsdr.cdc.gov/spl/index.html#2019spl).  
 

Name Use/Source Chemical structure 

ATSDR 

2019 

Rank 

Polycyclic aromatic hydrocarbons (PAHs) 

Emitted during combustion of organic material. Found in coal tar, oil and gas, and in 
vehicle exhaust fumes, cigarette smoke 

9 

Benzo(a)pyrene 
 

Not commercially 
produced 

 

8 

Benzo(b)fluoranthene 
Not commercially 
produced 

 

10 

Polychlorinated biphenyls (PCBs) 

Historically used as electrical insulators and 
coolants in mixtures such as Arochlor 1260, 
which is composed of 12% penta-, 38% hexa-, 
41% hepta-, 8% octa-, and 1% nona-
chlorobiphenyls  

 
5 

Explosives 

Used globally on military training and conflict, manufacturing and decommissioning 
sites, also used in mining and quarrying industries 

- 

2,4,6-trinitrotoluene 
(TNT) 

Used with RDX, as 
the main 
components of 
military explosives 

 

80 

Hexahydro-1,3,5-
trinitro-1,3,5-
triazine(RDX) 

Used with TNT, as 
the main 
components of 
military explosives  

96 



Pentaerythritol 
tetranitrate (PETN) 

 

Used in plastic 
explosives such as 
Semtex, and also as 
a vasodilator to 
treat specific heart 
conditions 

 

- 

Dioxins (polychlorinated dibenzo-p-dioxins and –furans) 

Produced as unwanted by-products of chemical synthesis, and from the combustion of 
organic materials 

- 

Polychlorinated dibenzo-p-dioxins 

(n and m can range from 0 to 4) 
 

- 

2,3,7,8-
Tetrachlorodibenzo-P-
dioxin 

Infamous as a 
production 
contaminant in 
Agent Orange  

72 

Polychlorinated dibenzofurans 

(n and m can range from 0 to 4) 
 

- 

Heptachlorodibenzo-p-
dioxin 

 

Unwanted industrial 
by-product. No 
known commercial 
applications 

 

156 

DDT 

p,p'-Dichlorodiphenyl-trichloroethane 
Insecticide widely used to control malaria and 
typhus, and on food crops 

 

13 

Per- and polyfluorinated alkyl substances (PFAS) 

Used as fire extinguisher foams, as a stain- and water-resistant coating on fabrics and 
carpeting, and in cleaning products and paints 

- 

Perfluorooctanesulfonic 
acid (PFOS) 

 

Historically, a key 
ingredient in the 
stain resistant 
product Scotchgard  

143 

Perfluorooctanoic acid 
(PFOA) 

 

Previously used in 
Teflon production 

 

155 

 

  



Table 3. Emerging pollutants including pharmaceutical and personal care products (PPCPs) 

All structures and chemical names are from PubChem, National library of Medicine 
(www.pubchem.ncbi.nlm.nih.gov).  
 

Name Use Chemical structure 

Pharmaceuticals 

Ibuprofen 

(2-(4-
Isobutylphenyl)propanoic 
acid) 

Nonsteroidal anti-
inflammatory treatment 

 

Triclosan 

(5-chloro-2-(2,4-
dichlorophenoxy)phenol) 

 

Antimicrobial used in 
products such as 
toothpaste, soaps, 
detergents  

Carbamazepen 

(5H-Dibenzo[b,f]azepine-5-
carboxamide) 
 
 

Anticonvulsant and 
mood-stabilizing drug 
used primarily to treat 
epilepsy and bipolar 
disorder 

 

Gemfibrozil 

(5-(2,5-Dimethylphenoxy)-
2,2-dimethylpentanoic 
acid)  

 

Used to treat abnormal 
blood lipid levels 

 

Naproxen 

((2S)-2-(6-
methoxynaphthalen-2-
yl)propanoic acid) 
 

Primarily used to treat 
pain or inflammation 
caused by arthritis  

Estradiol 

(8R,9S,13S,14S,17S)-13-
methyl-
6,7,8,9,11,12,14,15,16,17-
decahydrocyclopenta[a]ph
enanthrene-3,17-diol) 
 

Synthetic estrogen 
hormone 

 

Personal care products 



DEET 

(N, N-Diethyl-meta-
toluamide) 

 

Common active 
ingredient in insect 
repellents 

 

Oxybenzone  

(2-hydroxy-4-
methoxyphenyl)-
phenylmethanone 

Used as a UV filter in 
sunscreens, and in 
plastics to reduce UV 
degradation  

Additional emerging pollutants 

Bisphenol A 

(4-[2-(4-
hydroxyphenyl)propan-2-
yl]phenol) 

Precursor molecule for 
polycarbonates and epoxy 
resins  

Phthalates 

e.g. Bis(2-ethylhexyl) 
phthalate 

Commonly used as a 
plasticizer 

 

 

  



 

Figure legends 

Figure 1. Schematic demonstrating how synbio techniques could be applied to develop and enhance 

bioremediation with plants and microbes. 
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Dear Joanna Aldred, 

We have made the requested corrections in the chemical structures in the manuscript Tables, 

specifically: 

- Carboxylic acid on ibuprofen structure is missing a 'H'. Corrected. 

- Some methyl groups are labelled 'CH3' (as in ibuprofen) whereas others are not (as in Gemfibrozil), 

please ensure this is consistent across the table. Corrected. 
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checked the bind angles. 

We hope this meets with your approval. 

Yours sincerely 
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