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ABSTRACT: Sediments deposited in the Loch of Stenness (Orkney Islands, Scotland) during the Holocene transgression,
previously dated to between ~5939–5612 BP, were analysed for molecular fossils – lipids and chlorophyll pigments from
primary producers – that complement conventional microfossil and lithological approaches for studying past sea‐level
change. While microfossil and lithological studies identified a transgression between 102 and 81 cm core depth, key
molecular fossils fluctuate in occurrence and concentration between 118 and 85 cm, suggesting an earlier start to the
transgression. Terrestrial lipid concentrations decreased and algal‐derived, short‐chain, n‐alkanoic acid concentrations
increased at 118 cm, indicating a disruption of the freshwater lake conditions associated with the early stages of the marine
transgression. The lipid and pigment analyses provided information that complements and extends that from microfossil
analysis, presenting a more complete record of Holocene sea‐level changes and local vegetation changes in the Loch of
Stenness. The isostatic stability of Stenness during the Holocene points towards other factors to explain the transgression,
such as regional factors and/or melting of the Antarctic ice sheet (which occurred up to 3 ka).
© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction

Changes in sea level have been studied extensively to
understand their causes and impacts on the environment and
human populations (Rollins et al., 1979; Hodgson et al., 2009;
Bates et al., 2016; IPCC, 2019). By understanding the main
drivers and consequences of past sea‐level changes, this
knowledge can be applied to understanding future climate and
sea‐level change scenarios on local and global scales (Church
et al., 2008).
Transgressions and regressions can lead to changes in the

dominance of terrestrial or marine sources of organic matter
(OM) at a particular location. Nutrient availability, degradation
of OM and sedimentation rates can also be affected to different
extents, strongly depending on the basin topography. The
changes in water depth inherent in a transgression may lead to
changes in sedimentation and in the extent of sediment
reworking (Cattaneo and Steel, 2003). During a regression,
nutrient input may decrease, thus reducing productivity and
sedimentation of OM (Cattaneo and Steel, 2003). Localized
fluctuations between terrestrial‐ and marine‐dominated con-
ditions in coastal/near coastal regions can be inferred from
seismic mapping, palaeontological analysis, changes in the
nature and morphology of the sediments, and changes in the
composition and nature of OM (Shennan et al., 2015).
Environmental proxies for tracking transgressions based on
soil and sediment analysis exploit shifts in the populations of
plant macrofossils, insects, pollen and spores, foraminifera,

diatoms, molluscs and ostracods (Horton et al., 1992; Bunt-
ing, 1994; Davis et al., 2003; Bates et al., 2016).
While a major challenge in using macro‐ and microfossil

evidence is their extent of preservation and/or limited number
of specimens, it is often possible to extract organic geochem-

ical molecular fossils incorporated into the sediment matrix.
Through their relationship to the biological molecules from
which they originate, the molecular fossils can reflect specific
OM inputs (Fig. 1) and thereby reveal characteristics of, and
changes in, the environment inhabited by the source organ-
isms (Poynter and Eglinton, 1990; Meyers and Ishiwatari, 1993;
Castañeda and Schouten, 2011). Molecular fossils can be
analysed within milligram to gram quantities of sediment, a
much smaller scale than the few grams needed for traditional
macro‐ and microfossil analyses (Shennan et al., 2015).
Hence, sampling resolution can be reduced, even to milli-
metre scale where justifiable, enabling analyses at higher
temporal resolution (Airs and Keely, 2002). Robust lithological
and morphological studies are key to identifying the areas of
undisturbed sediments that are ideal for palaeoenvironmental
and molecular fossil analyses, avoiding compromised areas
(e.g. where bioturbation or burrowing has occurred).

Molecular fossils inferring sea‐level changes

The widespread occurrence of molecular fossils in sediments
and their derivation from both aquatic and terrestrial sources
allows the recognition of allochthonous and autochthonous
sources of OM in sediments (Eglinton and Hamilton, 1967;
Cranwell, 1982; Keely, 2006). Extensive research on the
diagenetic transformation of various biomarkers enables
reconstructions based on the principal molecular fossils of

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

*Correspondence: B. Keely or M. Conti, as above.
E‐mails: brendan.keely@york.ac.uk; martina.conti@alumni.york.ac.uk



primary producers, such as chlorophyll pigments, n‐alkanes,
alcohols, fatty acids and tetraether lipids (Eglinton and
Hamilton, 1967; Harradine et al., 1996; Airs et al., 2001;
Volkman, 2005; Schouten et al., 2013). However, the use of
molecular fossils to identify and study sea‐level fluctuations
has been largely overlooked with only a few studies reported
in the literature (e.g. Ficken and Farrimond, 1995; Squier
et al., 2002; Bendle et al., 2009; van Soelen et al., 2010; Carr
et al., 2015; De Jonge et al., 2016; Li et al., 2017). The combined
use of several molecular fossils is key to identifying sea‐level
changes (Fig. 1). It can be expected that a transgression will result
in a shift in the molecular fossil assemblage from mostly terrestrial
OM (from either land runoff or in situ production) to a more
significant marine contribution (Fig. 1).
Terrestrial OM reflects the vegetation in the hinterland through

the distributions of: sterols that occur widely in higher plants
(Volkman, 1986), long odd‐chain n‐alkanes (n‐C25−35) and long
even‐chain n‐alkanols and n‐alkanoic acids (n‐C22−30) prominent
in higher plant waxes (Cranwell, 1973, 1982). Furthermore,
branched glycerol dialkyl glycerol tetraether lipids (brGDGTs),
structural cores of the polar membrane lipids of eubacteria,
represent soil microbial communities (Fig. 1; Schouten
et al., 2013). By contrast, aquatic conditions are represented by
isoprenoid GDGTs (iGDGTs), derivatives of the structural
membrane lipids of commonly occurring Archaea (Schouten
et al., 2013). Among these, crenarchaeol is a specific marker for
marine Archaea (Damsté et al., 2002). Although low level
production of iGDGTs in soil and some brGDGTs in aquatic
environments has been noted (DeLong, 1992; DeLong
et al., 1994; Hershberger et al., 1996; Tierney and Russell, 2009;
Fietz et al., 2012; Li et al., 2016), the general source distinction
between the two groups is employed widely for tracing the origin
and transport patterns of soil OM (Sun et al., 2011; Doğrul Selver
et al., 2012; Zhu et al., 2013). Other markers of aquatic conditions
include short‐chain‐length n‐alkanes (n‐C17−24), common in
bacteria and algae (Cranwell, 1973), and predominance of short
even‐chain n‐alkanols and n‐alkanoic acids (n‐C16, n‐C18),
although these also occur in some plants (Meyers and Ishiwatari,
1993). Long‐chain unsaturated alkenones (n‐C37−39) are common
markers of haptophyte algae in marine sediments, especially C37:3

and C37:2 (Marlowe et al., 1984). In coastal as well as freshwater
and saline lake systems, C37:4 occurs alongside C37:3 and C37:2

(Cranwell, 1985; Bendle et al., 2009; Table 1).
Changes in molecular fossil distribution correlate with changes

in environmental conditions, giving rise to proxies that reflect the
origins of OM, water temperature and soil pH. Specific proxies,
indicators of palaeoenvironmental conditions, have been sug-

gested to distinguish inputs of plant OM (average chain length,
ACL; Poynter and Eglinton, 1990), terrestrial from marine OM
based on brGDGTs and crenarchaeol (branched and isoprenoid
tetraether index, BIT; Hopmans et al., 2004), and terrestrial from
freshwater OM based on n‐alkane carbon chain lengths (proxy of
aquatic macrophytes, Paq; Ficken et al., 2000; Table 1). In
immature sediments, the carbon preference index (CPI; Bray and
Evans, 1961) can reflect predominance of either terrestrial or
algal OM (Clark and Blumer, 1967; Ortiz et al., 2004; Table 1).
The tetraether index of 86 carbons (TEX86; Schouten et al., 2002;
Table 1), based on iGDGTs, is a proxy for sea‐surface water
temperature (SST), and mean annual air temperature (MAAT) can
be reconstructed from the methylation of branched tetraethers
(MBT; Weijers et al., 2007). A proxy proposed to reconstruct soil
pH is based on brGDGTs (cyclization of branched tetraethers,
CBT; Weijers et al., 2007; Table 1). Other proxies for temperature
estimations exist but are not applied in this work; for example,
Uk

37 is based on long‐chain alkenones (Brassell et al., 1986;
Prahl and Wakeham, 1987) and RAN13, RAN15 and RAN17 on
3‐OH fatty acids (Wang et al., 2016; Yang et al., 2020).
Changes in the availability of nutrients in aquatic environments

can be reflected by fluctuations in the concentrations of particular
chlorophyll pigments (broadly described as chlorins) produced
by the photosynthetic organisms inhabiting the water column
(Fig. 1; Keely, 2006). The physicochemical conditions in the
water column are reflected by particular pigment structures.
Photoautotrophs that live in oxygen‐rich waters, including
aquatic plants, photosynthetic algae and cyanobacteria, produce
chlorophyll pigments (chls; Scheer, 1991). By contrast, bacterio-
chlorophylls (bchls) are the photoreceptors in the purple and
green bacteria, which are restricted to anoxic waters (Fig. 1;
Pfennig, 1977). Covariance in organic carbon and chlorin
accumulation provides evidence that pigment concentrations
reflect changes in productivity, for example, during glacial/
interglacial cycles (Harris et al., 1996). Short‐term transgressions
can be evident in changes in the nature and distribution of
chlorophyll pigments (Squier et al., 2002; Hodgson et al., 2009).

Aims

There is considerable potential for routinely using molecular
fossils for sea‐level studies. In the UK, Holocene transgressive
sequences have been extensively studied in many of the larger
estuaries and coastal environments in England (Devoy, 1977;
Long et al., 2000; Sidell, 2003; Bates and Stafford, 2013) and
Scotland (Long et al., 2016; Palamakumbura, 2018). In most
cases, however, the precise nature and duration of the flooding

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)

Figure 1. Summary of key biological markers
used in this study and their association with
particular organic matter sources. Abbreviations:
OM=organic matter; iGDGTs = isoprenoid
glycerol dialkyl glycerol tetraethers; Chl =
chlorophyll pigments; Bchl = bacteriochlorophyll
pigments; brGDGTs = branched glycerol dialkyl
glycerol tetraethers. [Color figure can be viewed at
wileyonlinelibrary.com]
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event remains difficult to determine. Sea‐level index points
from Scottish sites show sea‐level fluctuations (~12–3 ka)
resulting from glacio‐eustasy and isostasy, subsequently
approaching present‐day levels (~3 ka to present; Shen-
nan, 1989; Shennan and Horton, 2002; Selby and
Smith, 2007). The timing of the fluctuations in the Mid–Late
Holocene varies regionally; for example, Orkney sea‐level
approached present values ~5–4 ka BP (Shennan and Horton,
2002). Seismic and palaeoenvironmental analyses of a series
of LateGlacial to Holocene sediment cores from the Loch of
Stenness, Orkney, demonstrated the impact of the transgres-
sion on the local geography and how it might have impacted
human settlement (Bates et al., 2016).
Building on the existing research on sea‐level change at the

Loch of Stenness, the overall aim of this study was to use this
well‐constrained transgression record to develop a comple-
mentary method to study sea‐level change using molecular
fossils, largely overlooked in sea‐level studies. Analysis of a
combination of molecular fossils could provide a valuable
record of marine and terrestrial OM inputs and changes
associated with the transgression. This approach has the
potential to provide more detailed and explicit environmental
records of the impact of the transgression on sedimentary OM,
allowing better constraints on the timing of events.

Materials and methods

Site description

The Loch of Stenness is an ~4‐km‐long brackish lake situated in
the main island of the Orkney archipelago, Scotland (Fig. 2a), and
connected to the sea at the Brig O'Waithe (Fig. 2b). The area has
been inhabited since at least 3500 BC (~5.5 ka); the extensive
archaeological evidence forms part of the Heart of Neolithic
Orkney World Heritage Site (Farrell et al., 2014).

Previous studies of the Loch of Stenness Core
2014‐1

The core lithology (Core 2014‐1; Fig. 2c) consists of a
grey–brown organic silt with mollusc shells between 200
and 141 cm core depth, overlain by a pale grey silt with
occasional shell fragments (141–81.5 cm). The uppermost
sediments (81.5–0 cm) comprise soft, dark grey silt with
occasional shell fragments of brackish species. The loss‐on‐
ignition profile (Fig. 3) indicates that the organic component
was >20% below 140 cm depth and between 10 and 17%
above 140 cm depth; higher values are associated with the
coarsest sediments of the core. Carbonate‐rich sediments
below 85.5 cm (10–26%) and seismic layering are associated
with slower sedimentation and controlled deposition in a
freshwater environment (Bates et al., 2016).
Palaeoenvironmental reconstruction, inferred from foraminifera,

mollusc and ostracod assemblages, suggests two main environ-
mental settings: a freshwater coastal lake (200 and 104 cm) and a
brackish loch (102 and 20 cm). The brackish environment was
further subdivided on the basis of the microfossil fauna:
102–81 cm shows onset of tidal access under very low brackish
conditions (mix of brackish and freshwater ostracods) and 80–0 cm
represents a brackish environment in which decalcification
occurred and a restricted foraminiferal assemblage existed
(Supporting Information, Table S1; Bates et al., 2016).
Radiocarbon dating of Lymnaeid sp. shells at 92–94 cm and

at 82–84 cm showed that the incursion began between ~5939
and 5753 BP and was fully established between ~5862 and
5612 BP (Table S2; Bates et al., 2016).

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)
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Separation of mollusc shells

The freeze‐dried sediment was inspected for intact gastropod
shells before grinding and sieving. Any shells found were
removed with a spatula and/or forceps and sonicated in
deionized water to remove sediment residues. The species
were identified after air‐drying in a fumehood overnight.

Extraction and analysis of molecular fossils

For complete methods, see Table S3. The core was sub-
sampled at 10 depths (Fig. 3). The freeze‐dried sediment was
homogenized and sieved (Saesaengseerung, 2013). Extraction
of OM from this fraction was carried out using accelerated
solvent extraction (Schouten et al., 2007; Saesaengseer-

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)

Figure 2. (a) Map of the British Isles showing the Orkney archipelago (white square) and the Loch of Stenness (green square; adapted from Google
Maps); (b) map of the Loch of Stenness showing the Brig O'Waithe and the connection to the sea (adapted from Google Maps); (c) map of the Loch of
Stenness showing the location of Core 2014‐1 in the red rectangle. Bathymetry only shown for the Loch of Stenness (adapted from Bates et al., 2016).
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Stenness Core 2014‐1 showing the main lithological zones, the loss‐on‐ignition results (sampled every 5 cm) and the dates of the
beginning and end of transgression according to Bates et al. (2016); sampling depths analysed in this study are marked with arrows. [Color figure can
be viewed at wileyonlinelibrary.com]
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ung, 2013). The lipids were separated into four distinct polarity
fractions using flash column chromatography (Green, 2013).
These fractions were analysed by high‐performance liquid
chromatography with mass spectrometry (HPLC‐MS of
GDGTs; Schouten et al., 2007) and by gas chromatography‐
flame ionization detection (GC‐FID) and selected samples by
GC with mass spectrometry (GC‐MS; Green, 2013). Following
extraction, chlorophyll pigments were analysed by ultra‐high
performance liquid chromatography with diode array detector
(UHPLC‐DAD) and UHPLC‐MS (Saesaengseerung, 2013).

Results and discussion

Shells of the freshwater gastropods Gyraulus crista, Gyraulus
laevis and Radix balthica were identified between 197 and
85 cm depth, supporting the findings of Bates et al. (2016) who
identified predominantly freshwater ostracods with some
brackish species between 200 and 81 cm (Table S1). The
following sections build on the interpretation of Bates et al.
(2016), that the core sequence represents a freshwater lake
(200–104 cm), the onset of brackish conditions (102–81 cm)
and the formation of a brackish loch (80–0 cm), reporting
molecular fossil data from these critical horizons (Table 2).

The freshwater lake (200–104 cm)

The predominance of brGDGTs and absence of marine marker
crenarchaeol confirmed a freshwater lake environment in the
lowest part of the core (Figs 4 and 5a; Table 3), with a
prevalence of terrestrial OM input from runoff. The input of
terrestrial OM was revealed by the occurrence of long odd‐
chain n‐alkanes (Fig. 6a) and high CPI values (Fig. 5b; Table 3).
The prevalence of terrestrial OM was further indicated by a
dominance of long even‐chain n‐alkanols and n‐alkanoic
acids (Fig. 6b; Cranwell, 1982; Meyers and Ishiwatari, 1993),
long odd‐chain n‐alkanes (Fig. 6a; Bray and Evans, 1961;
Cranwell, 1973) together with stigmasterol and β‐sitosterol, the
major sterols of higher plants (the latter also an abundant
component in emergent water plants; Fig. 6c; Meyers and
Ishiwatari, 1993). Further evidence of terrestrial input comes
from the presence of the sterol obtusifoliol of Sphagnum moss
and vascular plant origins (Fig. 6c; Ronkainen et al., 2013).
Although brGDGTs can have terrestrial and minor aquatic
sources, the dominance of other plant/terrestrial markers
suggests input from soils. Mixed terrestrial and emergent
macrophyte origins for the n‐alkanes, consistent with a
permanent body of water during the freshwater stage, was
evident by the occurrence of markers both for higher plant
waxes and for freshwater macrophytes, reflected in the Paq
index values (Fig. 5c; Table 3; Ficken et al., 2000). Evidence
for an aquatic OM contribution from Archaea, algae and/or
bacteria comes from small amounts of iGDGTs (Fig. 4; Powers
et al., 2010; Bischoff et al., 2016; De Jonge et al., 2016) and
from short‐chain n‐alkanoic acids occurring above 182 cm
(Fig. 6b; Cranwell, 1982).

Notably, at 118 cm there is a change in the OM: algal
markers become the dominant components, reflecting a
relative reduction in terrestrial deposition and increase in
algal OM production, possibly enhanced by increased
preservation resulting from water column anoxia (Fig. 6a,b,d).
This observation probably indicates the disruption of the
freshwater lake conditions associated with the early stages of
the marine transgression identified from the microfossil
assemblage at 102 cm (Bates et al., 2016).
Detail on the water column conditions was provided by

the chl and bchl pigments. As is commonly observed, intact
and early diagenetic transformation products (formed via
enzymatic, herbivore grazing and oxidative processes) were
incorporated into the sediment (Fig. S1; Shuman and
Lorenzen, 1975; Hendry et al., 1987; Harradine et al., 1996;
Ma and Dolphin, 1996; Walker et al., 2002; Keely, 2006).
The fluctuations in the summed concentrations of chl and
bchl pigments implies short‐term changes in primary
production (Fig. 6d). At 197 cm the predominance of chl
pigments indicates a fully oxidized water column. The
presence of bacterioviridin a (bvir a), an oxidation product
of bchl a (Wilson et al., 2004), suggests either a shallow‐

water environment with significant fluctuations in oxygena-
tion or that desiccation occurred at this time. Core depths
between 182 and 118 cm record a mixed primary producer
community with the dominant oxygenic population sepa-
rated from a deeper anoxygenic population by a chemocline
(Pfennig, 1977; Gervais, 1998). Chemoclines form in zones
of oxygen depletion and reducing environments (Pfennig,
1977). The presence of a fully developed chemocline and
absence of bvir a from 182 to 118 cm indicates that the OM
was not affected by fluctuations in oxygenation, suggesting
that the water column was deeper than at 197 cm.

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)

Table 2. Depth ranges (cm) of key environmental transitions
identified by Bates et al. (2016) in the core from the Loch of Stenness,
and the depths subsampled here for molecular fossil analysis.

Identified zone Bates et al. (2016) This study

Brackish loch 80–0 77, 38, 14
Onset tidal access 102–81 92, 85
Freshwater coastal lake 200–104 197, 182, 165,

155, 118

Figure 4. HPLC‐MS chromatograms m/z 950–1500 of GDGTs from
the Loch of Stenness from depths of 38 cm (top) and 155 cm (bottom).
The boxes indicate iGDGTs (solid line), brGDGTs (dashed line) and
crenarchaeol (dotted line). Note presence of the marine marker
crenarchaeol at 38 cm.

MOLECULAR FOSSILS AS A TOOL FOR TRACKING HOLOCENE SEALEVEL CHANGE 5
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Figure 5. Lithology and radiocarbon dating from Bates et al. (2016), and proxies applied to the Loch of Stenness sediments: (a) BIT (branched and
isoprenoid tetraether lipids); (b) CPI (carbon preference index based on n‐alkanes); (c) Paq (proxy of aquatic macrophytes based on n‐alkanes); (d)
ACL (average chain length based on n‐alkanes); (e) pH calculated from CBT (cyclization of branched tetraether lipids); (f) TEX86

L values (tetraether
index of 86 carbons – low) for sea‐surface temperature calculations. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. CPI, Paq, ACL and BIT indices, pigment and sterol evidence, TEX86
L values and sea surface temperatures (SST) calculated from TEX86

L, and
mean summer lake temperature for the Loch of Stenness sediments.
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The marine transgression (102–81 cm)

At 92 cm core depth (94–92 cm, 5939–5753 14C a BP; Bates
et al., 2016) signatures of n‐alkanes were absent/below the
detection limit. An increasing dominance of aquatic OM (algal
n‐alkanols) at the expense of terrestrial OM reflects the
continuation of the marine transgression (Fig. 6a–c). A much
reduced population of anaerobic photosynthetic organisms
probably reflects disruption of the chemocline (Fig. 6d).
At 85 cm (84–82 cm, 5862–5612 14C a BP; Bates et al., 2016),

a low CPI value of 4.39 (Fig. 5b; Table 3) was recorded. This
can indicate a dilution in the terrestrial OM by algal n‐alkanes,
even though concentrations are low, as shown by the n‐alkane
profile (Fig. 6a; Clark and Blumer, 1967; Ortiz et al., 2004).
The presence of algal OM is also confirmed by short‐chain n‐
alkanoic acids and pigments. The low Paq proxy indicates
enhanced terrestrial OM input and a decrease in freshwater
macrophytes compared with the samples in earlier horizons
(Fig. 5c; Table 3; Ficken et al., 2000).
While microfossil evidence indicates brackish conditions

being established from 102 cm, the detection of crenarchaeol
at 85 cm depth indicates the onset of production by a small
population of marine Thaumarchaeota (Figs 4 and 5a; Table 3).
The contrast with other lipid analyses that suggest that the
freshwater lake was disrupted from as early as 118 cm could
reflect a lag in the production of Thaurmarchaeota with them
only becoming prominent once stable brackish conditions
became established towards the end of the transgression.
The absence of bchls at 85 cm reveals the disappearance of

the chemocline with establishment of a fully oxic water
column (Fig. 6d). Such a shift in the primary producer
community can result from turbulence in the water column
(Squier et al., 2002). It is evident that the sample at 85 cm
represents a switch between a turbulent environment (from the
pigments) and a stable environment (from the GDGTs)
representing the ongoing transgressive event.

The established brackish loch (80–0 cm)

Established marine production with terrestrial OM input is
indicated by the presence of crenarchaeol and soil brGDGTs
(77–14 cm; Fig. 4). The range of BIT values observed is
comparable to open coastal environments (Fig. 5a; Table 3;
Hopmans et al., 2004; Doğrul Selver et al., 2012). The
n‐alkanol and n‐alkanoic acid distributions and concentrations
indicate a dominance of terrestrial over aquatic OM (Fig. 6b).

The similarity of the lipid concentrations to those preserved in
the freshwater lake environment is consistent with cessation
of the disruption associated with the transgression (Figs 5
and 6). The high CPI values throughout the brackish loch
section confirm the predominance of terrestrial OM and lower
contribution from algal OM (Fig. 5b; Table 3). The absence of
chl pigments in this section of the core is consistent with
strongly oxidative conditions leading to total destruction of
pigments (Fig. 6d; Hendry et al., 1987).

Signatures of terrestrial vegetation as markers of
changing environment

The higher plant‐derived n‐alkanes show a shift in chain length
with depth, the maximum changing from n‐C27 (197–155 cm)
to n‐C31 (from 85 cm; Fig. 6a), reflected in the lower ACL
values between 197 and 155 cm and higher values above
85 cm (Fig. 5d; Table 3; Poynter and Eglinton, 1990). Such a
shift in the predominance of n‐alkane chain lengths has been
suggested to reflect a change in the surrounding vegetation
from mainly forest vegetation (dominant n‐C27) to mainly
grasses (dominant n‐C31; Cranwell, 1973; Ortiz et al., 2004).
This would imply that the Stenness catchment area experi-
enced gradual deforestation from the freshwater period (before
~5939–5753 BP) with grassland dominating after inundation
(~5862–5612 BP). This observation provides a tantalizing view
of the changing environment and should be a stimulus for
further work that could involve identification of more specific
grass/forest biomarkers, palynological studies and modelling to
gain further insights into the palaeoclimatic conditions (Fisher
et al., 2003; Zech et al., 2013; Li et al., 2018).
Palynological analysis of a core from Crudale Meadow,

located ~5 km north‐west of the Loch of Stenness, suggests a
predominance of arboreal pollen (AP) mainly Betula and Pinus
sylvestris with <15% herbs, between 8.1 and 5.7 ka BP

(Bunting, 1994). A decline in AP to 40% and increase in
herbs and Filicales (ferns) are apparent from 5.7 to 4.7 ka BP,
and a predominance of herbaceous taxa (Cyperaceae and
Poacecae >75%) between 4.7 ka BP and today (Bunting, 1994).
Similar results were obtained from Blows Moss, ~40 km south
of the Loch of Stenness site (Farrell et al., 2014).
The vegetation change is thought to have resulted from a

cooling climate and human activity in the surrounding area
(Keatinge and Dickson, 1979; Bunting, 1994; Farrell
et al., 2014; Bates et al., 2016). The decrease in AP at Crudale
Meadow by 5.7–4.7 ka BP coincides with the end of the Loch of

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)

Figure 6. Lithology and radiocarbon dating from Bates et al. (2016), and: (a) concentrations of n‐alkanes n‐C23−35; (b) concentrations of n‐C16,
n‐C18 and n‐C22−30 n‐alkanols, and n‐C16, n‐C18 and n‐C22−28 n‐alkanoic acids; (c) concentrations of sterols; (d) total concentrations of chlorophyll
a+ b, bacteriochlorophyll a pigments and bacterioviridin a in the Loch of Stenness sediments. Arrows indicate sample depths where lipids or
pigments were not detected. [Color figure can be viewed at wileyonlinelibrary.com]
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Stenness transgression and the observed shift towards longer
chain n‐alkanes indicative of grassland dominance
(~5862–5612 BP). Thus, the combination of these two inde-
pendent sources of evidence provides a compelling indication
of a local change in vegetation from forest to grassland cover.

Water temperature and pH from GDGT‐based
indices

The pollen data from Crudale Meadow suggested that climate
cooling coinciding with the transgression was partly respon-
sible for the shift from arboreal to grass vegetation (Bunting,
1994). SST estimates could not be inferred from the TEX86

index (Schouten et al., 2002; Table S4) or lake temperature
index (Powers et al., 2010) due to lack of the crenarchaeol
stereoisomer, a component that is essential to the index (note:
the former assignment as regioisomer has been superseded;
Damsté et al., 2018). Lack of all components precluded the
estimation of MAAT via the MBT index (Weijers et al, 2007).
The alternative TEX86

L proxy for SST (Table S4) does not
include the crenarchaeol stereoisomer and performs best in
subpolar marine settings (below 15 °C, such as northern
Scotland; Kim et al., 2010). Therefore, the TEX86

L calibration
was applied to the brackish samples (77–14 cm) and showed
low TEX86

L values (Fig. 5f), indicating low SST ranging from
10.5 to 13.1 °C,± 4 °C (Table 3). Notably, in this setting where
the proxy should be most accurate, SSTs are remarkably
similar to the present‐day average SST of Orkney, ranging from
7.1 °C in March to 13.2 °C in August, giving an average yearly
temperature of 10.1 °C (https://www.seatemperature.org/
europe/united-kingdom/orkney.htm).
A proxy developed for freshwater lake sediments based on

brGDGTs (Pearson et al., 2011; Table S4) was applied to the
freshwater samples (from 197 to 118 cm). The results show a
reconstructed summer lake temperature of 18.6–21.4 °C. The
calculated temperatures in the Loch of Stenness, however,
should not be considered as absolute values, in recognition
that BIT> 0.5 and the use of two GDGT palaeothermometers.
A shift in the archaeal and bacterial populations and/or a

possible contribution of archaeal GDGTs produced in sedi-
ments could also account for the observed temperature
change. The general trends, however, are likely to indicate
changing environmental conditions. The two methods of
reconstructing temperatures imply a general cooling of the
lake water during and after the seawater incursion. This trend
is reflected in the Mid–Late Holocene inundation by cool
marine waters that coincided with a period of reduced summer
insolation (Wanner et al., 2008). A temperature decline was
identified for this period in the North Atlantic (Wanner
et al., 2008) using the Uk’

37 proxy. Mean summer air
temperatures estimated from analysis of chironomids from
Scotland were consistent with declining summer insolation
during the Mid–Late Holocene (1.5–2 °C; Dalton et al., 2005).
Structural variations in brGDGTs have been correlated with

soil pH, via the CBT index (Weijers et al., 2007). The
applicability to lake sediments was established via a modifica-
tion of the calibration (Tierney et al., 2010; Table S4). The
CBT‐calculated pH values show a narrow range of mildly
alkaline sediments between 7.34 and 8.02± 0.66 (Fig. 5e),
values consistent with the geology of the area (Kellock, 1969).

Contextualizing the transgression

North‐eastern Scotland experienced a positive isostatic re-
bound of +0.53mm a–1 over the last 6000years BP (Shennan,
1989) and Orkney experienced a rebound of <0.0 mm a–1 over
the last 4000years BP (Shennan and Horton, 2002; de la
Vega‐Leinert et al., 2007).
The transgression at the Loch of Stenness cannot be

attributed to melting of the Orkney island ice sheet, which
occurred much earlier, between 16.0 and 14.8 ka (Ballantyne,
2010). By contrast, modelling shows that the Antarctic Ice
Sheet continued to thin until at least 6 ka (Mauz et al., 2015),
and in some cases until 3 ka (Hein et al., 2016; Small
et al., 2019), and has been invoked to explain the Mid–Late
Holocene sea‐level increase in sites across the globe (Mauz
et al., 2015). Notably, however, during the Mid–Late
Holocene, sea‐level fluctuations at Scottish sites have shown

© 2020 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., 1–11 (2020)

Figure 7. Scheme summarizing the main findings from the core from the Loch of Stenness, Orkney: lithology, microscopy, n‐alkanes, polar lipids,
pigments, BIT index and interpretation. [Color figure can be viewed at wileyonlinelibrary.com]
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both transgressions and regressions, indicating that regional
factors, such as crustal movements and tidal dynamics (Smith
et al., 2019) cannot be excluded. Indeed, local factors such as
the natural creation and destruction/modification of bay mouth
barriers (lying − 5m OD in the Loch of Stenness) are likely to
have played an important role in the timing and nature of
transgressions in the Loch of Stenness (Bates et al., 2016).
Shennan and Horton (2002) suggested that Orkney sea levels
reached present values 5–4 ka, in agreement with the radio-
carbon dates for this core (Bates et al., 2016) and the present
study on the Loch of Stenness.

Conclusions

The analysis of microfossils from the Loch of Stenness (Orkney)
core reveals initial freshwater conditions (200–104 cm depth),
followed by a transgression (102–81 cm) leading to brackish
conditions (80–0 cm; Bates et al., 2016). The molecular fossil
record indicates greater complexity during the transgression
than had been apparent from palaeoecological records alone.
The initial freshwater lake was a productive environment with
input both from in situ aquatic production and from terrestrial
runoff (197–155 cm). The first indication of a disruption of the
OM balance was recorded at 118 cm, where terrestrial OM
decreased and algal OM increased in concentration, possibly
indicating an earlier initiation of the transgression than is
evident from microfossil analysis (Bates et al., 2016). An
increase in aquatic OM production was observed at 92 cm
with the marine marker crenarchaeol being detected above
85 cm, consistent with the establishment of stable marine
conditions (Fig. 7). In the brackish zone (77–14 cm)
marine OM was detected and the extent of terrestrial runoff
was similar to that of the freshwater stage, indicating the end of
the transgression.
The change in n‐alkane chain lengths and ACL values suggest

a shift in vegetation from forest to grasses towards the top of the
core, supported by pollen data, probably in response to cooling
conditions associated with reduced summer insolation as well as
human activity. The proxy‐calculated SST suggests a cooling
trend towards values close to present‐day water temperatures at
77, 38 and 14 cm (13.1–10.5 °C,± 4 °C).
Piloted on a well‐constrained Holocene transgression, this

study has shown that molecular fossils can add valuable
environmental evidence to the information garnered from more
conventional estimates of palaeoclimate change frommicrofossil,
palynological and lithological studies. The nature and specific
origins of molecular fossils enable a more insightful and refined
study of the impact of the transgression on the primary producers
inhabiting the basin and the surrounding environment. The
widespread nature, greater frequency of occurrence and
excellent preservation potential of molecular fossils broadens
the scope of palaeoenvironmental studies and unlocks a far wider
set of sediments that can be used in the study of sea‐level change
across the world, including sediments where macro‐ and
microfossils are lacking.
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