
This is a repository copy of Bi-Directional Timing-Power Optimisation on Heterogeneous
Multi-Core Architectures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164757/

Version: Accepted Version

Article:

Huang, Jing, Li, Renfa, Wei, Yehua et al. (2 more authors) (Accepted: 2020) Bi-Directional
Timing-Power Optimisation on Heterogeneous Multi-Core Architectures. IEEE
Transactions on Sustainable Computing. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Bi-Directional Timing-Power Optimisation on
Heterogeneous Multi-Core Architectures

Jing Huang, Renfa Li, Yehua Wei, Jiyao An, Wanli Chang

Abstract—Optimisation of timing performance and power consumption on heterogeneous multi-core architectures is gaining

increasing attention. Systems and devices may have varying demands on timing and power, which motivates more flexible

optimisation. Along this line, we consider a heterogeneous computing architecture with multiple cores, where each core runs a mixed

stream of general and dedicated tasks with a certain scheduling strategy. Employing the queuing model, we first propose a load

balancing algorithm, which minimises the average response time of the general tasks whilst guaranteeing the timing requirements of

the dedicated tasks. Built upon the above, we propose a bi-directional optimisation algorithm that is able to improve the timing

performance under the constraint of power consumption, and reduces the power consumption for the given timing requirement.

Extensive numerical experiments illustrate the significance of the proposed algorithms. Implementation on a real platform validates the

consistency between the theoretical analysis and the practical results.

Index Terms—Heterogeneous multi-core architectures, timing performance, power consumption, load balancing, bi-directional

optimisation, queuing model.

✦

1 INTRODUCTION

Majority of the contemporary computing systems em-
ploy heterogeneous multi-core architectures, composed of
different cores or identical cores with different settings.
There are varying demands on timing performance and
power consumption, which are often the main design objec-
tives to optimise. For example, a smart phone is expected to
push harder towards low-power operation when the battery
is close to depletion. An automobile needs to guarantee the
timing of certain tasks and minimise the response time of
other ones, the extent of the latter depending on the energy
storage status. This motivates more flexible optimisation,
where there have been very few studies.

In this paper, we consider a heterogeneous multi-core
computing architecture. Each core runs a mixed stream of
general and dedicated tasks according to its own scheduling
strategy. The dedicated tasks are often critical and bounded
to one core for affinity. The allocation of the general tasks
to cores is a design decision to be explored. Employing the
queuing model, our main contributions are as follows:

• We propose a load balancing algorithm under the
assumption that the frequencies (speeds) of the cores
are known, which minimises the average response
time (waiting time plus execution time) of the general

• Jing Huang, Renfa Li, and Jiyao An are with the College of Com-
puter Science and Electronic Engineering, and the Key Laboratory for
Embedded and Network Computing of Hunan Province, Hunan Uni-
versity, China, 410081. (email: jingh@hnu.edu.cn, lirenfa@hnu.edu.cn,
anbobcn@aliyun.com)

• Yehua Wei is with the College of Information Science and
Engineering, Hunan Normal University, China, 410082. (email:
yehuahn@hunnu.edu.cn)

• Wanli Chang is with the Department of Computer Science, University of
York, UK, YO10 5GH. (email: wanli.chang@york.ac.uk)

Manuscript received 11 September 2019; revised 07 April 2020, 14 July 2020;
accepted 4 August 2020. W. Chang is the corresponding author.

tasks whilst ensuring that each type of the dedicated
tasks meets its timing requirement.

• Built upon the above, we propose a bi-directional
optimisation algorithm to determine the frequencies
of the cores. It is able to in one way improve the tim-
ing performance under the constraint of power con-
sumption, and in the other way reduces the power
consumption for the given timing requirement.

Evaluation is conducted on extensive numerical examples
and a real platform.

The rest of this paper is organised as follows. Section 2
reviews the related research. Section 3 describes the models
and presents the problem statement. Section 4 introduces the
load balancing algorithm (Section 4.1) and the bi-directional
optimisation algorithm (Section 4.2). Evaluation is reported
in Section 5 and 6. Section 7 makes a conclusion.

2 RELATED WORK

In this section, we review the related research in three ar-
eas of performance optimization, power optimization tech-
niques, and joint optimization of performance and power.

Performance Optimization. There is a significantly large
body of literature on performance optimization in dis-
tributed systems, in which [1] is an excellent collection.
Performance can be optimized by load balancing [2]. Many
related approaches have been proposed, such as game
theory [3], [4] and queuing theory [5]. Here, we focus
on queuing-based approaches. When researchers employ
queuing theory, the considered system usually has two
characteristics, i.e., (1) the number of tasks is large; (2) the
arrival times and sizes of tasks are random. There are many
studies on queuing-based load balancing, which model the
system as a different queueing model, such as M/M/1 [6],
M/G/1 [7], M/M/K [2], [8], [9], G/G/K [10], etc. The main
target of these studies is minimizing the average response

2

time of tasks. Some studies focus on one type of task [2],
[9], while others focus on multiple types of tasks [8], [11],
[12], [13]. When a system performs multiple types of tasks,
it needs to set priority for each type of tasks so as to
distinct the importance from different types of tasks. Such
a consideration has been investigated in [7], [8], [11], [12].
However, these studies have more or less not considered
the following factors, i.e., system heterogeneity, task priority
diversity, and importance of dedicated tasks. For examples,
in [7], [8] the system heterogeneity was not fully considered;
in [11] the task priority diversity and the importance of
dedicated tasks were not mentioned; in [12] the importance
of dedicated tasks was ignored. It is clear that although there
are many excellent studies on performance optimization,
there are some rooms for in-depth research.

Power Optimization Techniques. Power optimization,
which is also called energy efficiency in some studies, is
a primary concern in the fields of cloud computing and
embedded computing [14], and the optimization techniques
used in these fields could learn from each other. The goal
of power optimization is to reasonably allocate power to
a system in a manner that reduces unnecessary energy
loss while ensuring performance requirements [15]. Energy-
saving techniques of hardware can be applied at different
design levels: the complementary metal-oxide semiconductor
(CMOS) level, processor-level, and interconnection network-level
[14]. For instance, [16] [17] considered the energy efficiency
problem at the CMOS level, while [18] and [19] did so at the
processor-level and interconnection network-level, respec-
tively. At present, the hardware-assisted software approach
is a major strategy for achieving energy efficiency, where
dynamic voltage and frequency scaling (DVFS) is one of the
most utilized technologies. DVFS has been widely applied
both in cloud systems in which performance is the major
goal [20], [21], [22], [23] and in embedded systems with
strict power constraints [14], [24], [25], [26]. DVFS is often
implemented at operating system level and obtains the
energy-delay trade-off by adjusting the processor frequency
and supply voltage [27] [28].

Joint Optimization of Performance and Power. As energy
efficiency has become a primary concern, joint optimization
of performance and power is inevitable. Many researchers
have focused on this topic from a variety of perspectives.
Some researchers study the problem according to the num-
ber of executable instructions per watt (IPW). For instance,
[29] proposed a runtime optimization approach for dynamic
workload to achieve maximized power normalized per-
formance; [30] proposed an adaptive energy minimization
approach using regression learning. Fundamental to the
approaches of [29] and [30] is that the IPW will be maximum
when a system delivers the most energy efficiency, and
the advantage of them is that the most energy-efficient
frequencies can be found quickly for familiar applications.
Some researchers use queueing theory to investigate this
topic, and recent studies include [2], [9], [31], [32], and so
on. In these studies, the problem of concern usually was
treated as a multi-variable and multi-constraint optimiza-
tion problem. In [2], the application scenario is to assign a
stream of tasks onto a multi-processor system, where each
processor was modeled as an M/M/K queuing system;
and the purpose is to obtain the optimal load balancing

Fig. 1. System structure

and power allocation. Similar problem and queuing model
were studied in [32] and [9]. Although, the above studies all
considered the performance and power optimization, none
of them took into account the mixed-priority. In [31], both
the joint optimization and mixed-priority were investigated.
However the performance constraints of dedicated tasks
were not included. Moreover, as mentioned in [33], both
maximum performance and minimizing energy use are of
great importance, while only the minimizing of energy use
was discussed in [31].

3 SYSTEM MODEL AND PROBLEM STATEMENT

The concerned system model is addressed in this section,
which contains three system sub-models, that is, queuing
model, energy model, and scheduling model, and then the
present optimization problem is stated as two sub-problems.

3.1 Queuing Model

Since the arrival time and size of tasks are random, we use
queueing theory to model the system, similar to the studies
[2], [6], [7], [34]. The details of our model are described
below.

The system is assumed to be consisting of n heteroge-
neous processors, each processor accepts an independent
Poisson stream of dedicated tasks with average arrival rate

λ̃i (1 ≤ i ≤ n), i.e., the inter-arrival times are independent
and identically distributed (i.i.d.) exponential random vari-

ables with mean 1/λ̃i. There is a Poisson stream of general

tasks with arrival rate λ̂ that requires being split into n sub-

streams, λ̂1, λ̂2, . . . , λ̂n, assigned onto processors 1, 2, . . . , n.
Consequently, a processor deals with a combined Poisson
stream of dedicated and general tasks with arrival rate

λ̃i + λ̂i. The average task size (the number of instructions)
of dedicated tasks and that of general tasks are exponential
random variables with mean r̃i and r̂, respectively, which
means that the service time of tasks also follows the ex-
ponential distribution. According to the above description,
each processor is modeled as an M/M/1 queuing system.
Mathematical notations that will be used in this paper are
presented in Table 1, and the system structure is shown in
Fig. 1.

3

TABLE 1
Mathematical notations in this paper

Symbol Definition

Inputs
vi Processor i, 1 ≤ i ≤ n.
si1, si2, ..., siMi

Adjustable speeds of vi.
P ∗

i Static power of vi.
αi Power consumption exponent of vi.

T̂ Given performance.
P Given power.

T̃i Performance constraint on dedicated tasks on vi.

λ̃i Arrival rate of dedicated tasks to vi.
r̂ Average task size of general tasks.
r̃i Average task size of dedicated tasks on vi.

Variables
si sigi Speed of processor i.

λ̂i Arrival rate of general tasks to vi.
Intermediate variables

T̃i Average response time of dedicated tasks on vi.

T̂i Average response time of general tasks on vi.

T̂ =
λ̂1

λ̂
T̂1 +

λ̂2

λ̂
T̂2 + · · ·+

λ̂n

λ̂
T̂n.

P System power.
x̃i = r̃i/si Average execution time of dedicated tasks on vi.
ũi = 1/x̃i Average service rate of dedicated tasks on vi.
m̃i = 2/ũ2

i Second moment of dedicated tasks on vi.
x̂i = r̂/si Average execution time of general tasks on vi.
ûi = 1/x̂i Average service rate of general tasks on vi.
m̂i = 2/û2

i Second moment of general tasks on vi.

λi = λ̃i + λ̂i.

λ̂ = λ̂1 + λ̂2 + · · ·+ λ̂n.

mi =
(
λ̃i

/
λi

)
· m̃i +

(
λ̂i

/
λi

)
· m̂i.

ρ̂i = λ̂i · x̂i = λ̂ir̂
/
si.

ρ̃i = λ̃i · x̃i = λ̃ir̃i

/
si.

ρi = ρ̂i + ρ̃i Average percentage of time that vi is busy.

3.2 Energy Model

The operating frequency f of a processor matches a speed
s that can be measured by the number of executed instruc-
tions per second. Therefore, the set of available frequencies
{fi1, fi2, ..., fiMi

} of processor i can be mapped to a set
of speeds {si1, si2, ..., siMi

}. For convenience, we specify
si1 < si2 < · · · < siMi

.
The power dissipation of a processor mainly consists

dynamic and static consumption, where dynamic power
consumption is the dominant component. The dynamic
power consumption can be expressed by P = kCV 2f ,
where k is an activity factor, C the loading capacitance, V
the supply voltage, and f the clock frequency. Given that
s ∝ f and f ∝ V , then P ∝ sα, where α is approximately 3
[35]. For ease of discussion, we model the dynamic power of
processor i with speed si as βisi

αi , where βi is a coefficient
factor, and the static power as P ∗i . Therefore, the power
model of a processor with speed si can be formulated as
βisi

ai + Pi
∗. In this paper, two types of energy models

are considered, namely, frequency-conversion model and
frequency-constant model.

In the frequency-conversion model, processor speed will
be set to 0 if there is no task to perform, i.e., the processor
only consumes basic power Pi

∗ when it is idle. In one unit
time, if ρi represents the average percentage of time that
a processor is busy, then (1 − ρi) represents the average

percentage of time that a processor is idle. Consequently,
the average power consumption of a processor in one unit
time can be modeled as

Pi = ρi(βis
αi
i + Pi

∗) + (1− ρi)P
∗

i

=
(
λ̂ir̂+λ̃ir̃i

)
βisi

αi−1 + P
∗

i .
(1)

In the frequency-constant model, processor speed is a
constant, whether there are tasks being executing on the
processor. Therefore, the average power consumption of a
processor in one unit time can be modeled as

Pi = ρi(βis
αi
i + Pi

∗) + (1− ρi)(βis
αi
i + Pi

∗)
= βisi

ai + Pi
∗.

(2)

The above two models have also been used in some stud-
ies such as [2], [9], [36]. The frequency-conversion model might
save more energy than frequency-constant model in theory.
However, the later is more popular than the former in practi-
cal, because frequent changes in voltage and clock frequency
will introduce additional consumption and transient errors
[37]. Generally, frequency-conversion and frequency-constant
models respectively suit for systems with long and short
task arrival intervals.

3.3 Scheduling Model

Scheduling strategies directly affect the response time of
tasks, where the response time of a task is the sum of
waiting time and execution time. In this paper, three priority
strategies are taken into account, the details of which are as
follows:

Scheduling strategy 1 (PS 1): all general tasks and dedi-
cated tasks on this processor are scheduled on a FCFS basis,
without priority. We identify this discipline as ”dedicated
tasks without priority.” If a processor’s scheduling strategy
is set to this mode, the average response time of dedicated

tasks assigned on this processor, T̃i [38, p. 700], is

T̃i = x̃i +
λimi

2 (1− ρi)

=
r̃i

si
+

λ̂ir̂
2 + λ̃ir̃

2

i

si

(
si − λ̂ir̂ − λ̃ir̃i

) ,
(3)

and the average response time of general tasks, T̂i [38,
p. 700], is

T̂i = x̂i +
λimi

2 (1− ρi)

=
r̂

si
+

λ̂ir̂
2 + λ̃ir̃

2

i

si

(
si − λ̂ir̂ − λ̃ir̃i

) .
(4)

Scheduling strategy 2 (PS 2): dedicated tasks are always
scheduled before general tasks, and all tasks are executed
without interruption. We identify this discipline as ”priori-
tized dedicated tasks without pre-emption.” If a processor’s
scheduling strategy is set to this mode, the average response

time of dedicated tasks, T̃i [38, p. 702], is

T̃i = x̃i +
λimi

2 (1− ρ̃i)

=
r̃i

si
+

(
λ̃ir̃

2

i+λ̂ir̂
2

)

si

(
si − λ̃ir̃i

) ,
(5)

4

and the average response time of general tasks, T̂i [38,
p. 702], is

T̂i = x̂i +
λimi

2 (1− ρ̃i) (1− ρi)

=
r̂

si
+

λ̂ir̂
2 + λ̃ir̃

2

i(
si − λ̃ir̃i

)(
si − λ̃ir̃i − λ̂ir̂

) .
(6)

Scheduling strategy 3 (PS 3): dedicated tasks are always
scheduled before general tasks on this processor, with pre-
emption. We term this discipline as ”prioritized dedicated
tasks with pre-emption.” If a processor takes this mode as
its scheduling strategy, the corresponding average response

time of dedicated tasks, T̃i [38, p. 704], is

T̃i = x̃i +
λ̃im̃i

2 (1− ρ̃i)

=
r̃i

si
+

λ̃ir̃
2

i

si

(
si − λ̃ir̃i

) ,
(7)

and the average response time of general tasks, T̂i [38,
p. 704], is

T̂i =
1

(1− ρ̃i)

(
x̂i +

λimi

2 (1− ρi)

)

=
1

si − λ̃ir̃i

(
r̂ +

λ̂ir̂
2 + λ̃ir̃

2

i

si − λ̂ir̂ − λ̃ir̃i

)
.

(8)

The scheduling strategy on each processor can be any
of the above three (PS 1, PS 2, PS 3). For the convenience,
we mark processor i as vi (1 ≤ i ≤ n), and classify all
processors into three groups G1, G2, and G3, where G1,
G2, and G3 include all of the processors whose scheduling
strategy is PS 1, PS 2, and PS 3, respectively. The formulas
Eqs. (3-8) are variants of Pollaczek-Khinchine formula that
can be find in any reference book of queueing theory.

3.4 Problem Statement

Conditions: Given n processors, the available speeds of each
processor {s11, s12, ..., s1M1

} , · · · , {sn1, sn2, ..., snMn
}, the

average arrival rates λ̃1, λ̃2, ..., λ̃n and task sizes r̃1, r̃2, ..., r̃n

and performance requirements T̃1, T̃2, ..., T̃n of dedicated
tasks, the scheduling strategy for each processor, the average

arrival rate λ̂ and task size r̂ of general tasks.

Problem 1: Optimizing performance under given power. The
available system power is assumed to be P . Under the
limited power P and above conditions, find the task arrival

rates λ̂1, λ̂2, ..., λ̂n and processors speeds s1, s2, ..., sn, such
that the average response time of general tasks on the
system is minimized while satisfying that the average re-

sponse times of dedicated tasks T̃1, T̃2, ..., T̃n do not exceed

T̃1, T̃2, ..., T̃n. The mathematical formulation is,

minimize T̂ (λ̂1, . . . , λ̂n, s1, . . . , sn) =
λ̂1

λ̂
T̂1+

λ̂2

λ̂
T̂2+· · ·+

λ̂n

λ̂
T̂n,

(9)

subject to 



λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂;

T̃i ≤ T̃i, 1 ≤ i ≤ n;
P1 + P2 + · · ·+ Pn ≤ P .

Problem 2: Optimizing power under given performance.
Given the above conditions and an acceptable average re-

sponse time T̂ of general tasks, find the task arrival rates

λ̂1, λ̂2, ..., λ̂n and processors speeds s1, s2, ..., sn, such that
the system power is minimized while satisfying that the

average response times of dedicated tasks T̃1, T̃2, ..., T̃n do

not exceed T̃1, T̃2, ..., T̃n. The mathematical formulation is,

minimize P (λ̂1, . . . , λ̂n, s1, . . . , sn) = P1 +P2 + · · ·+Pn, (10)

subject to




λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂;

T̃i ≤ T̃i, 1 ≤ i ≤ n;
1

λ̂

(
λ̂1T̂1 + λ̂2T̂2 + · · ·+ λ̂nT̂n

)
≤ T̂ .

Problem 1 focuses on performance optimisation, while
Problem 2 pays attention to power optimisation. Both they
are of importance, but the emphasis of optimisation should
shift between them as the system state changes. To our
knowledge, there is no existing solution that can completely
solve the Problems 1 and 2, and takes into account the
transfer of optimisation objectives.

4 PERFORMANCE AND POWER OPTIMIZATION

We aim to design an approach that can not only solve
Problem 1 but also solve Problem 2. Since the two prob-
lems are symmetrical, we take Problem 1 to describe the
corresponding mathematical derivations and algorithms.

Our approach consists of two parts. In the first part,
the performance is optimized by load balancing under the
assumption that speeds s1, s2, ..., sn have been given. The
details will be elaborated in Section 4.1. In the second part,
the power is optimized on the basis of the first part, which
will be briefly introduced in Section 4.2.

4.1 Performance Optimization

Due to the exclusion of power optimization, the problem of
performance optimization is to minimize:

T̂ (λ̂1, λ̂2, . . . , λ̂n) =
λ̂1

λ̂
T̂1 +

λ̂2

λ̂
T̂2 + · · ·+

λ̂n

λ̂
T̂n, (11)

subject to {
λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂;

T̃i ≤ T̃i, 1 ≤ i ≤ n.

Eq. (11) has output parameters λ̂i, and input parameters

si, T̃i, and λ̂, (1 ≤ i ≤ n). Minimizing Eq. (11) is a
multi-variable and multi-constraint optimization problem,
and it could be solved by using KKT method [39]. The

constraints T̃i ≤ T̃i corresponding to Eqs. (3), (5) and (7)

are nonlinear equations of λ̂i, which is not convenient to
solve the problem. We will transform them to another form.

If the scheduling strategy for processor i is PS 1, we have

T̃i =
r̃i

si
+

λ̂ir̂
2 + λ̃ir̃

2

si

(
si − λ̂ir̂ − λ̃ir̃

) ≤ T̃i. (12)

5

Based on Eq. (12), we can obtain

λ̂i ≤
si

(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)

r̂
(
T̃isi − r̃i + r̂

) . (13)

Similarly, if the scheduling strategy is PS 2, we have

T̃i =
r̃i

si
+

(
λ̃ir̃

2

i+λ̂ir̂
2

)

si

(
si − λ̃ir̃i

) ≤ T̃i. (14)

Based on Eq. (14), we can obtain

λ̂i ≤
si

(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)

r̂2
. (15)

Finally, if the scheduling strategy is PS 3, we obtain

T̃i =
r̃i

si
+

λ̃ir̃
2

i

si

(
si − λ̃ir̃i

) ≤ T̃i. (16)

Eqs. (13) and (15) define the ranges of λ̂i, which are

transformed from T̃i ≤ T̃i. Eq. (16) indicates that such

a range cannot be derived if we use PS 3, because T̃i is

independent of λ̂i. In this case, we employ the stability of a

queue ρi =
λ̂ir̂+λ̃ir̃i

si
< 1 [38, p. 263] to limit the range of λ̂i,

and get

λ̂i <
si − λ̃ir̃i

r̂
. (17)

Since the variables we want to solve are λ̂1, λ̂2, . . . , λ̂n,

transforming the constraints T̃i ≤ T̃i (1 ≤ i ≤ n) to a

function of λ̂i,

fi

(
λ̂i

)
=





λ̂i −
si

(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)

r̂
(
T̃isi − r̃i + r̂

) , vi ∈ G1;

λ̂i −
si

(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)

r̂2
, vi ∈ G2;

λ̂i −
si − λ̃ir̃i

r̂
, vi ∈ G3;

(18)

is helpful to reduce the difficulty of solving the problem,
and dose not affect the solution of the problem. Next, we
construct a Lagrange function,

L(λ̂1, ..., λ̂n, φ, τ1, ..., τn) = T̂+φ

(
n∑

i=1

λ̂i − λ̂

)
+τi

n∑

i=1

fi(λ̂i).

Here, φ and τ1, τ2, ..., τn are Lagrange multipliers. Accord-
ing to the KKT method, we have





−
∂T̂

∂λ̂i

= φ+ τi
∂fi

(
λ̂i

)

∂λ̂i

, 1 ≤ i ≤ n;

λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂;
φ 6= 0;

τi ≥ 0, λ̂i ≥ 0, 1 ≤ i ≤ n;

fi

(
λ̂i

)
≤ 0, 1 ≤ i ≤ n;

τifi

(
λ̂i

)
= 0, 1 ≤ i ≤ n.

(19)

Since
∂T̂

∂λ̂i

=
1

λ̂

(
T̂i + λ̂i

∂T̂i

∂λ̂i

)

and

∂fi
(
λ̂i

)

∂λ̂i

= 1,

based on the first equation of Eq. (19), we can obtain

−
1

λ̂

(
T̂i + λ̂i

∂T̂i

∂λ̂i

)
= φ+ τi. (20)

The T̂i in Eq. (20) is different for scheduling strategies PS 1,
PS 2, and PS 3. Therefore, it is necessary to separately solve

the ∂T̂i

/
∂λ̂i according to different scheduling strategies,

namely,

∂T̂i

∂λ̂i

=





r̂2
(
si − λ̃ir̃i

)
+ λ̃ir̃

2

i r̂

si

(
si − λ̂ir̂ − λ̃ir̃i

)
2
, vi ∈ G1;

r̂2
(
si − λ̃ir̃i

)
+ λ̃ir̃

2

i r̂
(
si − λ̃ir̃i

)(
si − λ̃ir̃i − λ̂ir̂

)
2
, vi ∈ G2;

r̂2
(
si − λ̃ir̃i

)
+ λ̃ir̃

2

i r̂
(
si − λ̃ir̃i

)(
si − λ̂ir̂ − λ̃ir̃i

)
2
, vi ∈ G3.

(21)

Combining Equations (4), (6), (8), (20), (21) and ρi < 1, we
can obtain

λ̂i =





ti

r̂
−

1

r̂

√√√√ ti

(
tir̂+λ̃ir̃2i

)

(φ+ τi) λ̂si
, vi ∈ G1;

ti

r̂
−

1

r̂

√√√√√√
ti

(
r̂ti + λ̃ir̃2i

)

(φ+ τi) λ̂ti +
r̂

si
λ̃ir̃i

, vi ∈ G2;

ti

r̂
−

1

r̂

√
tir̂ + λ̃ir̃2i

φλ̂
, vi ∈ G3;

(22)

where ti = si − λ̃ir̃i.
Now, we have obtained the closed-form solution of λ̂i,

i.e., Eq. (22). The next task is to resolve the values of
Lagrange multipliers φ, τ1, τ2, ..., τn.

Eq. (19) has the constraints τi ≥ 0, fi(λ̂i) ≤ 0 and

τifi(λ̂i) = 0. Here, τi = 0 and f(λ̂i) = 0 can not hold at

the same time, else the constraint f(λ̂i) = 0 is meaningless.
Therefore, we have the following relationship between τi
and fi(λ̂i): {

τi = 0, fi(λ̂i) < 0;

τi > 0, fi(λ̂i) = 0.
(23)

It is easy to observe that λ̂i can be viewed as an in-

creasing function of φ, namely λ̂i(φ). Therefore, if we have

τ1 = τ2 = · · · = τn = 0, λ̂1, λ̂2, ..., λ̂n can be resolved,
because φ can be determined with binary search based

on
n∑

i=1
λ̂i(φ) = λ̂. Of course, the assumption τ1 = τ2 =

· · · = τn = 0 maybe not true, due to the possibility of

fi(λ̂i(φ)) ≥ 0. However, we have specified fi(λ̂i) ≤ 0.

Therefore, once the case fi(λ̂i(φ)) ≥ 0 exists, we set fi(λ̂i)
to 0, while in this case λ̂i can be directly obtained by Eq. (18).

Inspired by the above analyses, our algorithm is de-
signed in terms of the following steps:

6

(i) We let τ1 = τ2 = · · · = τn = 0, and employ binary

search to solve λ̂i based on
n∑

i=1
λ̂i(φ) = λ̂.

(ii) For those cores with f(λ̂i(φ)) ≥ 0, we directly resolve

λ̂i by f(λ̂i) = 0, and do not consider this core no
longer.

(iii) Repeat the steps (i) and (ii), until all fi(λ̂i) ≤ 0 are met

and λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂.

When employing binary search to solve λ̂i based on∑n
i=1 λ̂i(φ) = λ̂, we can use the constraints λ̂i ≥ 0 and

f(λ̂i(φ)) ≤ 0 to get the search scope of φ, i.e.,
For case vi ∈ G1, we have

φ ∈ φi =



tir̂ + λ̃ir̃

2
i

tiλ̂si
,
ti
(
T̃isi − r̃i + r̂

)2

λ̂si
(
r̂ti + λ̃ir̃2i

)


 .

For case vi ∈ G2, we have

φ ∈ φi =


1

λ̂ti

(
r̂ + λ̃ir̃i

(
r̃i

ti
−

r̂

si

))
,

ti

(
tir̂ + λ̃ir̃

2

i

)
r̂2

(
tir̂ − si

(
T̃iti − r̃i

))2 −
r̂

si
λ̃ir̃i


 .

For case vi ∈ G3, we have

φ ∈ φi =

[
tir̂ + λ̃ir̃

2
i

λ̂
,+∞

]
.

The parameter φ is a Lagrange multiplier, which is common

for all λ̃i. Thus, the range of φ is

φ ∈ φ1

⋂
φ2

⋂
· · ·
⋂

φn. (24)

The details of resolving the load balancing λ̂1, λ̂2, ..., λ̂n are
described in Algorithm 1.

TABLE 2
A motivating example.

The first iteration The second iteration

i T̃ i λ̂i T̂i T̃i λ̂i T̂i T̃i

1 0.700 2.406 0.946 0.846 2.225 0.800 0.700
2 0.900 2.310 0.957 0.857 2.348 0.996 0.896
3 0.910 2.214 0.969 0.869 2.252 1.008 0.908
4 0.930 2.119 0.981 0.881 2.155 1.021 0.921
5 0.940 2.023 0.994 0.894 2.058 1.035 0.935
6 0.960 1.928 1.009 0.909 1.962 1.050 0.950

T̂ = 0.97434 T̂ = 0.98315

A Motivating Example. This example is help for un-
derstanding Algorithm 1. We consider a system with 6
processors, and the following parameters:

• λ̂ is 13; r̂ is 0.25;
• (r̃i, αi, Pi, si, PSi) is (0.15, 2.7, 0.1, 1.0, PS1) for 1 ≤

i ≤ 6;
• λ̃1, ..., λ̃6 are 1.0, 1.2, ..., 2.0 with step 0.2;

• T̃ 1, ..., T̃ 6 are 0.70, 0.90, 0.91, 0.93, 0.94, 0.96.

We first calculate λ̂1, λ̂2, ..., λ̂6 based on λ̂1(φ)+· · ·+λ̂6(φ) =

13, and get T̃1 = 0.846. Due to T̃1 > T̃1 (0.846 > 0.7), λ̂1 is

set to its upper limit 2.225 that is calculated from T̃1 = T̃1.

Let λ̂ = 13 − 2.225 = 10.775, and proceed to solve the

Algorithm 1 loadBalance.

Input: si, gi, λ̃i, r̃i, T̃i, PSi, for all 1 ≤ i ≤ n, λ̂, r̂.
Output: λ̂1, λ̂2, ..., λ̂n.
1: Calculate the low bound lb and up bound ub of φ based on Eq. (24);
2: flag1 = · · · = flagn = 1;
3: while (ub− lb > ε) do
4: φ← (ub + lb)/2;
5: for (i← 1; i ≤ n; i← i + 1) do
6: if PSi = 1&flagi then

7: λ̂i ←
ti

r̂
−

1

r̂

√
ti

(
tir̂+λ̃ir̃2i

)/
φλ̂si;

8: if f(λi) ≥ 0 then

9: λ̂i ← si
(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)/
r̂
(
T̃isi − r̃i + r̂

)
;

10: flagi = 0;
11: end if
12: end if
13: if PSi = 2&flagi then

14: λ̂i ←
ti

r̂
−

1

r̂

√
ti

(
tir̂ + λ̃ir̃2i

)/(
φλ̂ti +

r̂

si
λ̃ir̃i

)
;

15: if f(λi ≥ 0) then

16: λ̂i ← si
(
T̃i

(
si − λ̃ir̃i

)
− r̃i

)/
r̂
2 ; flagi = 0;

17: end if
18: end if
19: if PSi = 3&flagi then

20: λ̂i ←
ti

r̂
−

1

r̂

√(
tir̂ + λ̃ir̃2i

)/
φλ̂;

21: if f(λi ≥ 0) then

22: λi ←
(
si − λ̃ir̃i

)/
r̂ ; flagi = 0;

23: end if
24: end if
25: end for
26: if λ̂1 + λ̂2 + ... + λ̂n < λ̂ then
27: lb← φ;
28: else
29: ub← φ;
30: end if
31: end while
32: return λ̂1, λ̂2, ..., λ̂n.

sub-problem based on λ̂2(φ) + λ̂3(φ) + λ̂4(φ) + λ̂5(φ) +
λ̂6(φ) = 10.775. After the conditions

∑6
i=1 λ̂i = 13 and

T̃i ≤ T̃i hold for all 1 ≤ i ≤ 6, the problem is solved. The

final result is T̂ = 0.98315, and the details are reported in

Table 2. To verify the quality of solution λ̂1 = 2.225, we

can set λ̂1 to 2.224, 2.223, and 2.222, and get T̂ = 0.98325,

T̂ = 0.98334, and T̂ = 0.98343 respectively, which are large

than T̂ = 0.98315 corresponding to λ̂1 = 2.225. Due to the
limited space, the information of other parameters is not
listed.

4.2 Power Optimization

4.2.1 Algorithm Analysis and Design

Energy efficiency is related to speeds of all processors. One
of the troubles in pursuing the energy efficiency of heteroge-
neous systems is determining the speeds for all processors.
Let Mi represent the available speeds of processor i. There

are
n∏

i=1
Mi options to find the speeds s1, s2, ..., sn from

sets {s11, ..., s1M1
} , {s21, ..., s2M2

} , ..., {sn1, ..., snMn
}.

Therefore, the power optimization problem is a complex
combinatorial optimization problem, and it is also difficult
to obtain the best solution.

Energy efficiency makes trade off between performance
and power. Usually, there are two typical considerations,
which are maximization of performance under given power
and minimization of power under given performance. These
two considerations have a common attribute, namely, the
ratio between the performance and power will be optimal

7

when the best energy efficiency is obtained [29]. Mapping to
our model, we have

• T̂ /P is minimum when the problem is to optimize
performance with given power.

• T̂ /P is maximal when the problem is to optimize
power with given performance.

Before introducing T̂ /P , an important conclusion is de-
scribed as follows.

Theorem 1: If [
˙̂
λ ṡ] is the optimal solution of prob-

lem minimizing T̂ (λ̂, s) and satisfies P (
˙̂
λ, ṡ) = P , it is

also the optimal solution of problem minimizing P (λ̂, s)

under the constraint T̂ ≤ T̂ (
˙̂
λ, ṡ), and has property

P ≤ P (λ̂, s). Here, λ̂ and s respectively represent any

vector (λ̂1, λ̂2, . . . , λ̂n) and vector (s1, s2, . . . , sn), where
n∑

i=1
λ̂i = λ̂.

Proof: Since the solution [
˙̂
λ ṡ] is the optimal solution of

problem minimizing T̂ (λ̂, s), and satisfies P (
˙̂
λ, ṡ) = P ,

we have

T̂ (
˙̂
λ, ṡ) ≤ T (λ̂, s). (25)

We assume that [λ̂′ s′] ([λ̂′ s′] 6= [
˙̂
λ ṡ]) is the optimal so-

lution of problem minimizing P (λ̂, s) under the constraint

T̂ ≤ T̂ (
˙̂
λ, ṡ), namely,

P (λ̂′, s′) ≤ P (λ̂, s), (26)

and

T (λ̂′, s′) ≤ T (
˙̂
λ, ṡ). (27)

From Eq. (25), we get that Eq. (27) dose not hold. Therefore,

the optimal solution of minimizing P (λ̂, s) with constraint

T̂ ≤ T̂ (
˙̂
λ, ṡ) is [

˙̂
λ ṡ], and the theorem is proven. �

Theorem 1 implies that Problems 1 and 2 (defined in

Section 3.4) are equivalent to a certain degree. The ratio T̂ /P
is unique when a system achieves best energy efficiency,
and it is independent on the type of problem. This conclu-
sion indicates that the joint optimization for performance

and power could be improved based on T̂ /P , because the

extreme of T̂ /P corresponds to the optimal solution of
problem.

Problem 1 (or 2) includes 2n variables that are
λ̂1, λ̂2, ..., λ̂n and s1, s2, ..., sn. From Section 4.1 we know
that λ̂1, λ̂2, ..., λ̂n can be solved immediately if speeds
s1, s2, ..., sn are given. Therefore, we can adjust the speeds
of the processors to optimize performance and power. Here,
an iteration approach is employed. In each iteration, a
processor is picked to adjust its speed. How to pick the
processor is described as follows:

(1) Processor i offers Mi optional speeds {si1, si2, ..., siMi
}

(si1 < si2 < ... < siMi
). Let s1g1 , s2g2 , ..., sngn rep-

resent the current speeds of the processors 1 ∼ n,
respectively (si1 < sigi < siMi

, 1 ≤ gi ≤ Mi). Based
on s1g1 , s2g2 , ..., sngn , we calculate the average response

time T̂ and system power P using the load-balancing
algorithm (Algorithm 1).

(2) Assume that changing the speed of processor i from

sigi to sigi−1 will lead to the average response time T̂

becoming T̂ ′, as well as the system power P becoming
P ′. We define a operator ∆Ri as shown below:

∆Ri =
∆T

∆P
=

T − T ′

P ′ − P
. (28)

(3) Traversing all of processors, a set {∆R1,∆R2, ...,∆Rn}
can be obtained. Then, we select a processor whose ∆Ri

is maximal/minimal, and adjust its speed into the next-
neighboring speed.

The speeds-adjustment-direction can be from high to low
(sgi → sgi−1), also be from low to high (sgi−1 → sgi).
If using the former, we will select the processor with
min {∆R1,∆R2, ...,∆Rn} to change its speed. The philos-
ophy is that more power reduction and less performance
degradation is the best choice when decreasing the speeds
of processors. If using the later, we will select the pro-
cessor with max {∆R1,∆R2, ...,∆Rn}, because less power
increase and more performance improvement is the best
choice when increasing the speeds of processors. No matter
which direction we choose, the final results will be the same.
Please see the experiments in Section 5.2.

We always pick the processor with min/max ∆Ri to
adjust its speed in every iteration, and iterate this process
until the power or performance meets the given constraint.
The pseudocode is described in Algorithm 2.

Algorithm 2 PerformancePowerOptimization.

Input:
{
si1, si2, ..., siMi

}
, gi, λ̃i, r̃i, T̃i, PSi for all 1 ≤ i ≤ n, λ̂, r̂, P .

Output: λ̂1, λ̂2, ..., λ̂n, s1, s2, ..., sn.
1: for (i← 1; i ≤ n; i← i + 1) do
2: gi ←Mi;
3: end for
4: λ̂1, λ̂2, ..., λ̂n ← loadBalance; //Call the Algorithm 1.

5: T̂ =
λ̂1

λ̂
T̂1 +

λ̂2

λ̂
T̂2 + · · ·+

λ̂n

λ̂
T̂n, P ← P1 + P2 + · · ·+ Pn;

6: optT ← T̂ , optP ← P ;
7: while (P ≥ P) do
8: minRate← +∞, j ← −1;
9: for (i← 1; i ≤ n; i← i + 1) do

10: gi ← gi − 1;
11: λ̂1, λ̂2, ..., λ̂n ← loadBalance; //Call the Algorithm 1.

12: T ′ ←
λ̂1

λ̂
T̂1 +

λ̂2

λ̂
T̂2 + · · ·+

λ̂n

λ̂
T̂n;

13: P ′ ← P1 + P2 + · · ·+ Pn;

14: ∆Ri =
T − T ′

P ′ − P
;

15: if ∆Ri < minRate then
16: j ← i; //The index of the candidate.
17: optT ← T ′, optP ← P ′;
18: end if
19: gi ← gi + 1;
20: end for
21: T̂ ← optT , P ← optP ;
22: gj ← gj − 1 //Processor j is selected.
23: end while
24: return λ̂1, λ̂2, ..., λ̂n, s1, s2, ..., sn.

Algorithm 2 can be used to solve Problem 1, and can
also be used to solve Problem 2 if the judgment condition

P ≥ P is replaced by T̂ ≤ T̂ (line 7 of Algorithm 2). The
initial speed for each processor is set to the maximum speed
that the processor can get (lines 1 and 2 of Algorithm 2).
In each iteration, a processor is selected to change its speed
(lines 9-22 of Algorithm 2). By iterating the steps (lines 7-
23 of Algorithm 2), the optimization problem will be solved
once the judgment condition is met (line 7 of Algorithm 2).

8

4.2.2 Convergence Analysis

In this subsection, we will analyze the convergence of the
proposed algorithm. The number of iterations is dictated by
the judgment condition. The power constraint P ≤ P will
be taken as the judgment condition when solving Problem 1.

The performance constraint T̂ ≤ T̂ , in turn, will be taken as
the judgment condition when solving Problem 2. Regardless
of the type of problem, the speeds of all processors are
always adjusted from high speed to low speed or from low
speed to high speed. In short, in the iteration process, the
adjustment direction of speed for each processor is consis-
tent, i.e., it either keeps increasing or keeps decreasing.

Obviously, power P =
n∑

i=1
Pi is a monotonically increas-

ing function of si. This means that there must be a set

{s1, s2, ..., sn} that can make the power P =
n∑

i=1
Pi less than

the constraint P . Consequently, the algorithm is convergent
when power P ≤ P is employed as the judgment condition.

4.2.3 Time Complexity Analysis

In this section, we will analyze the time complexity. Since
our algorithm combines load balancing and speed adjust-
ment, the analysis will be done step by step according to
these two parts. The details of the analysis of time complex-
ity are as follows.

(1) The time complexity of load balancing (Algorithm 1).
The Algorithm 1 contains one While loop and one For loop,
where the For loop is inside the WHILE loop. The number
of iterations of the For loop is n, and that of the While loop
is log

(
ub−lb

ε

)
, where ub and lb are respectively the up bound

and low bound of φ, ε is the accuracy which is the dominant
component. Therefore, the time cost of Algorithm 1 is about
n log

(
ub−lb

ε

)
.

(2) The time complexity of a single iteration for speed
adjustment. In order to improve load balancing and power
allocation, the speeds of processors need to be adjusted
iteratively. In an iteration, the set {∆R1,∆R2, ...,∆Rn}
will be calculated. Thus, Algorithm 1 will be executed n
times in a single iteration. The time complexity is less than
n2log

(
ub−lb

ε

)
.

(3) The time complexity of joint optimization for perfor-
mance and power(Algorithm 2). Mi represents the number
of the adjustable speeds of processor i. The total number

of adjustment times don’t exceed
n∑

i=1
Mi, even if the speeds

of all processors are adjusted from the highest speed to the
lowest speed. Consequently, the time cost of Algorithm 2 is
less than

n∑

i=1

Min
2log

(
ub− lb

ε

)
. (29)

As n continues to increase, the value of Eq. (29) will
get very large. In order to reduce calculation time, we can
calculate {∆R1,∆R2, ...,∆Rn} in parallel when n is very
large. For instance, if {∆R1,∆R2, ...,∆Rn} is calculated
simultaneously by n machines, the time cost of Algorithm 2
can reduce to

n∑

i=1

Minlog

(
ub− lb

ε

)
.

In a real world application, the whole scheduling also re-
quires other times such as the delay, communication and
frequency switching times. These times may depend on real
environments and platforms, we don’t discuss here.

5 NUMERICAL EXPERIMENTS

In this section, we illustrate a number of numerical exam-
ples. Note that all of the parameters used in our experiments
are for illustrative purposes only; they could be changed to
any other real values.

Experimental parameters. We consider a system with
9 processors (n = 9). Each processor has a set of discrete
speeds ranging from 0 to 2.5 with a step 0.01. The average
task size and arrival rate of general tasks are r̂ = 0.25
and λ̂ = 14, respectively. To emphasize the heterogeneity
between processors, each processor’s parameters, such as

the preloaded workload λ̃i, r̃i, task scheduling strategy and
power consumption exponent αi, are designed to be differ-
ent, as shown in Table 3.

TABLE 3
Experiment parameters

i 1 2 3 4 5 6 7 8 9

λ̃i 1.0 0.8 0.6 1.0 0.8 0.6 1.0 0.8 0.6
r̃i 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1
αi 2.4 2.5 2.6 2.4 2.5 2.6 2.4 2.5 2.6
Pi

∗ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PSi 1 1 1 2 2 2 3 3 3

5.1 Performance Comparison

This section will evaluate the effectiveness of the proposed
algorithm. Because the problem of power-constrained per-
formance optimization and the problem of performance-
constrained power optimization are symmetrical, we shall
conduct the experiment only for the previous problem to
avoid repeating similar experiments.

Our problem is a nonlinear problem, which needs to
consider both task assignment and power allocation. Some
effective ways to deal with this problem are using intelligent
search algorithms or distributing tasks and power pro-
portionally. We will introduce several representative ones,
which will be used to compare with our algorithm.

Task assignment. Here, the target of task assignment is
to distribute the stream of general tasks onto n processors.
There are two common approaches for task assignment,
namely uniform distribution (UD) and proportional distri-
bution (PD), the details of which are as follows.

• UD means that the stream of general tasks will
be split into n sub-streams equally. Thus, the task
assignment on processor i is

λ̂i =
1

n
λ̂, 1 ≤ i ≤ n.

• The target of PD is to make the workload across over
all processors equally. So, we assume

λ̂1 + λ̃1 = λ̂2 + λ̃2 = · · · = λ̂n + λ̃n,

where
λ̂1 + λ̂2 + · · ·+ λ̂n = λ̂.

9

Then, the task assignment is

λ̂i =
λ̂+ λ̃1 + λ̃2 + · · ·+ λ̃n

n
− λ̃i, 1 ≤ i ≤ n.

Note that λ̂i must subject to λ̂i ≥ 0. Thus, if λ̂i < 0,

we will let λ̂i = 0 and n = n− 1; this represents that
processor i will not be assigned general tasks.

Power allocation. In actual applications, the common and
effective approaches for power allocation are equal-speed
and equal-power, the details of which are as follows.

• Equal-speed, ES for short, refers to that all processors
run at the same speed. Therefore, for frequency-
conversion model, we have

n∑

i=1

(
(λ̂ir̂i + λ̃ir̃i)s

αi−1 + P ∗i

)
= P ;

for frequency-constant model, we have

n∑

i=1

(sαi + P ∗i) = P .

The definitions of frequency-conversion model and
frequency-constant model please see Section 3.2. To
solve s, we can treat P as a function of s, and view
s as a continuous variable on region [0, b] where b
could be any reasonable value such as 4 and 5. Due
to αi ≈ 3, P (s) is a continuous and strictly increasing
function of s. Therefore, s can be solved by binary
search under condition P (s) = P .

• Equal-power, EP for short, refers to that the system
power is allocated to each processor equably. For
frequency-conversion model, the power of processor
i is

(λ̂ir̂i + λ̃ir̂i)s
αi−1 + P ∗i =

P

n
, i ≤ 1 ≤ n.

Thus, the speed si is

si =
αi−1

√√√√ P
n − P ∗i

λ̂ir̂i + λ̃ir̂i
.

Similarly, for frequency-constant model, the speed si
is

si =
αi

√
P

n
− P ∗

i .

Based on the above approaches for task assignment and
power allocation, we obtain following algorithms, UD&ES,
UD&EP, PD&ES and PD&EP.

We also use a genetic algorithm (GA) to solve the con-
sidered problem. There are several versions of the GA, and
the version we are using is provided by matlab2018. As we
know, the result of GA is affected by many parameters,
where the initial population and the iteration number are
dominant. In our experiments, the initial population is set
to

λ̂1 = λ̂2 = · · · = λ̂n =
1

n
λ̂, si =

αi

√
P

n
− P ∗i , 1 ≤ i ≤ n;

the maximum generations is set to 50; and the remaining
parameters use the default values provided by matlab2018.

In addition, the stat-of-art OPL [12] will also be com-
pared with our approach. OPL algorithm can solve the prob-
lem of optimising performance under pow constraints, it can
obtain good and even the optimal solutions in the cases of
low system heterogeneity. Similar to other algorithms, OPL
fails to consider the response time of dedicated tasks. To
conduct a fair comparison, we take into account only the
response time of general task in our experiments.

We implement these algorithms with C++ on a laptop
equipped an Inter i7 CPU, and compare the response time

T̂ calculated by them under the given power P . To obtain a
full comparison, the power P is gradually adjusted from 13
to 26 with a step size of 1, and the corresponding results are
plotted in Figs. 2 and 3 with the tool OriginPro 9.0. Fig. 2
corresponds to the results for frequency-constant model,
and Fig. 3 to the results for frequency-conversion model.
From Figs. 2 and 3, the following observations are drawn.

• Our algorithm can achieve better performance than
other algorithms in the frequency-constant model,
and the second performance in the frequency-
conversion model.

• For task assignment, the PD approach is better than
the UP approach. For power allocation, the ES ap-
proach is superior to the EP approach.

• GA can provide a good solution under the frequency-
constant model; however, its performance is poor
under the frequency-conversion model.

The above observations report that our approach out-
performs other heuristic algorithms and is similar to the
state-of-art OPL, in the aspect of workload and power
allocation. The running time of UD&EP, UD&ES, PD&EP,
and PD&ES is about 15 ms, that of OPL is 100 ms, and
that of our approach is about 20 ∼ 80 ms. We have several
reasons to support the value of the proposed algorithm. (1)
Our approach gets the best performance in the frequency-
constant model, while the frequency-constant model is a
very common way of setting frequencies in practical. (2) Our
approach can flexibility adjust optimisation objectives ac-
cording to dynamic requirements. (3) Our approach has the
property of easy implementation compared with state-of-art
approaches, which is valuable in the field of engineering.

5.2 Convergence Stability

Here, the stability refers to the uniqueness of the result. As
mentioned in Section 4.2.1, the speeds of processors can
be adjusted from high to low, also from low to high. For
many heuristics algorithms, their final results are closely
related to initial parameters. This section will show that
our results are not only affected by initial speeds, but also
not affected by the direction of the speed adjustment. Due
to the same conclusion to the frequency-conversion and
frequency-constant models, we list only the experiments
for frequency-conversion model. The experiment are carried
out with the following steps.

Step 1: We consider a heterogeneous system with 9

processors, and assume λ̂ = 25; r̂ = 0.2, P = 30. The initial
parameters of processors are the same with Table 3.

Step 2: Set the initial speeds of processors to
(s1, s2, . . . , s9)=(1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8).

10

TABLE 4
Adjusting speeds from high to low

(s1, s2, . . . , s9) = (1.81, 1.81, ..., 1.81)

Core λ̃i λ̂i T̂i si Pi

1 0.3 2.25 0.273 1.81 5.154
2 0.227 2.737 0.254 1.81 5.408
3 0.164 3.026 0.247 1.81 5.677
4 0.245 2.016 0.28 1.81 5.154
5 0.176 2.615 0.257 1.81 5.408
6 0.117 2.981 0.25 1.8 5.61
7 0.199 1.891 0.298 1.81 5.154
8 0.121 2.554 0.266 1.81 5.408
9 0.057 2.93 0.249 1.81 5.677∑
λi = 23.0006, T̂ = 0.26142, P = 48.6476

.

Core λ̃i λ̂i T̂i si Pi

1 0.579 2.316 0.543 1.36 3.092
2 0.47 2.757 0.508 1.33 3.04
3 0.37 2.92 0.486 1.29 2.939
4 0.383 2.011 0.585 1.33 2.983
5 0.278 2.587 0.515 1.32 3.002
6 0.195 2.88 0.49 1.29 2.939
7 0.286 2.028 0.618 1.35 3.055
8 0.169 2.628 0.53 1.34 3.079

9 0.081 2.872 0.488 1.3 2.978∑
λi = 23.0000, T̂ = 0.52371, P = 27.1054

Core λ̃i λ̂i T̂i si Pi

1 0.58 2.319 0.544 1.36 3.092
2 0.463 2.729 0.5 1.33 3.04
3 0.371 2.924 0.487 1.29 2.939
4 0.383 2.015 0.586 1.33 2.983
5 0.278 2.59 0.516 1.32 3.002
6 0.195 2.884 0.491 1.29 2.939
7 0.288 2.032 0.633 1.34 3.019

8 0.169 2.632 0.531 1.34 3.079
9 0.081 2.876 0.489 1.3 2.978∑
λi = 23.0001, T̂ = 0.52485, P = 27.0691

Core λ̃i λ̂i T̂i si Pi

1 0.581 2.323 0.545 1.36 3.092
2 0.464 2.733 0.501 1.33 3.04
3 0.372 2.927 0.488 1.29 2.939
4 0.383 2.019 0.587 1.33 2.983
5 0.278 2.594 0.516 1.32 3.002
6 0.195 2.887 0.492 1.29 2.939
7 0.288 2.004 0.624 1.34 3.019
8 0.169 2.636 0.532 1.34 3.079
9 0.081 2.879 0.5 1.29 2.939∑
λi = 22.9999, T̂ = 0.52602, P = 27.0297

Core λ̃i λ̂i T̂i si Pi

1 0.582 2.326 0.546 1.36 3.092
2 0.464 2.736 0.502 1.33 3.04
3 0.372 2.931 0.489 1.29 2.939
4 0.384 2.022 0.589 1.33 2.983
5 0.278 2.597 0.517 1.32 3.002
6 0.195 2.891 0.493 1.29 2.939
7 0.288 2.007 0.625 1.34 3.019
8 0.171 2.639 0.544 1.33 3.04
9 0.081 2.851 0.493 1.29 2.939∑
λi = 23.0001, T̂ = 0.52730, P = 26.9912

TABLE 5
Adjusting speeds from high to low

(s1, s2, . . . , s9) = (1.57, 1.51, ..., 1.46)

Core λ̃i λ̂i T̂i si Pi

1 0.44 2.537 0.408 1.57 3.952
2 0.351 2.855 0.385 1.51 3.802
3 0.285 2.529 0.4 1.3 2.978
4 0.327 2.042 0.444 1.48 3.562
5 0.231 2.77 0.39 1.52 3.848
6 0.163 3 0.384 1.46 3.675
7 0.259 1.91 0.48 1.46 3.48
8 0.159 2.431 0.422 1.42 3.403
9 0.071 2.927 0.381 1.46 3.675∑
λi = 23.0001, T̂ = 0.40618, P = 32.3757

.

Core λ̃i λ̂i T̂i si Pi

1 0.579 2.316 0.543 1.36 3.092
2 0.47 2.757 0.508 1.33 3.04
3 0.37 2.92 0.486 1.29 2.939
4 0.383 2.011 0.585 1.33 2.983
5 0.278 2.587 0.515 1.32 3.002
6 0.195 2.88 0.49 1.29 2.939
7 0.286 2.028 0.618 1.35 3.055
8 0.169 2.628 0.53 1.34 3.079

9 0.081 2.872 0.488 1.3 2.978∑
λi = 23.0000, T̂ = 0.52371, P = 27.1054

Core λ̃i λ̂i T̂i si Pi

1 0.58 2.319 0.544 1.36 3.092
2 0.463 2.729 0.5 1.33 3.04
3 0.371 2.924 0.487 1.29 2.939
4 0.383 2.015 0.586 1.33 2.983
5 0.278 2.59 0.516 1.32 3.002
6 0.195 2.884 0.491 1.29 2.939
7 0.288 2.032 0.633 1.34 3.019

8 0.169 2.632 0.531 1.34 3.079
9 0.081 2.876 0.489 1.3 2.978∑
λi = 23.0001, T̂ = 0.52485, P = 27.0691

Core λ̃i λ̂i T̂i si Pi

1 0.581 2.323 0.545 1.36 3.092
2 0.464 2.733 0.501 1.33 3.04
3 0.372 2.927 0.488 1.29 2.939
4 0.383 2.019 0.587 1.33 2.983
5 0.278 2.594 0.516 1.32 3.002
6 0.195 2.887 0.492 1.29 2.939
7 0.288 2.004 0.624 1.34 3.019
8 0.169 2.636 0.532 1.34 3.079
9 0.081 2.879 0.5 1.29 2.939∑
λi = 22.9999, T̂ = 0.52602, P = 27.0297

Core λ̃i λ̂i T̂i si Pi

1 0.582 2.326 0.546 1.36 3.092
2 0.464 2.736 0.502 1.33 3.04
3 0.372 2.931 0.489 1.29 2.939
4 0.384 2.022 0.589 1.33 2.983
5 0.278 2.597 0.517 1.32 3.002
6 0.195 2.891 0.493 1.29 2.939
7 0.288 2.007 0.625 1.34 3.019
8 0.171 2.639 0.544 1.33 3.04
9 0.081 2.851 0.493 1.29 2.939∑
λi = 23.0001, T̂ = 0.52730, P = 26.9912

TABLE 6
Adjusting speeds from low to high
(s1, s2, . . . , s9) = (0.9, 0.9, ..., 0.9)

Core λ̃i λ̂i T̂i si Pi

1 3.483 2.089 3.428 0.9 1.777
2 2.879 2.631 2.935 0.9 1.768
3 2.581 3.011 2.748 0.9 1.76
4 0.734 2.02 4.07 0.9 1.777
5 0.514 2.598 3.18 0.9 1.768
6 0.367 2.999 2.826 0.9 1.76
7 0.492 2.019 3.776 0.91 1.797
8 0.27 2.598 3.236 0.9 1.768
9 0.119 3.036 3.178 0.9 1.76∑
λi = 23.0000, T̂ = 3.20829, P = 15.9370

.

Core λ̃i λ̂i T̂i si Pi

1 0.588 2.305 0.551 1.35 3.055
2 0.469 2.715 0.507 1.32 3.002
3 0.367 2.909 0.483 1.29 2.939
4 0.384 2.033 0.592 1.33 2.983
5 0.279 2.608 0.52 1.32 3.002
6 0.197 2.869 0.498 1.28 2.9
7 0.288 2.019 0.629 1.34 3.019
8 0.171 2.618 0.538 1.33 3.04

9 0.081 2.925 0.511 1.29 2.939∑
λi = 23.0001, T̂ = 0.53095, P = 26.8775

Core λ̃i λ̂i T̂i si Pi

1 0.587 2.301 0.55 1.35 3.055
2 0.458 2.711 0.496 1.33 3.04
3 0.374 2.938 0.49 1.29 2.939
4 0.384 2.029 0.591 1.33 2.983
5 0.279 2.604 0.519 1.32 3.002
6 0.197 2.866 0.497 1.28 2.9
7 0.288 2.015 0.628 1.34 3.019

8 0.171 2.614 0.537 1.33 3.04
9 0.081 2.922 0.51 1.29 2.939∑
λi = 23.0001, T̂ = 0.52972, P = 26.9156

Core λ̃i λ̂i T̂i si Pi

1 0.574 2.298 0.538 1.36 3.092
2 0.465 2.739 0.503 1.33 3.04
3 0.373 2.934 0.489 1.29 2.939
4 0.384 2.026 0.59 1.33 2.983
5 0.279 2.601 0.518 1.32 3.002
6 0.197 2.862 0.496 1.28 2.9
7 0.288 2.011 0.626 1.34 3.019
8 0.171 2.611 0.536 1.33 3.04
9 0.081 2.918 0.509 1.29 2.939∑
λi = 23.0000, T̂ = 0.52854, P = 26.9523

Core λ̃i λ̂i T̂i si Pi

1 0.582 2.326 0.546 1.36 3.092
2 0.464 2.736 0.502 1.33 3.04
3 0.372 2.931 0.489 1.29 2.939
4 0.384 2.022 0.589 1.33 2.983
5 0.278 2.597 0.517 1.32 3.002
6 0.194 2.859 0.485 1.29 2.939
7 0.288 2.007 0.625 1.34 3.019
8 0.171 2.607 0.535 1.33 3.04
9 0.081 2.915 0.508 1.29 2.939∑
λi = 23.0000, T̂ = 0.52730, P = 26.9912

Step 3: Based on the above parameters, we can get the
result of each iteration by using Algorithm 2. For easy
observation, we show the results of the last 4 iterations in
Table 4.

Step 4: Set the initial speeds to (s1, s2, . . . , s9)=(1.57, 1.51,
1.3, 1.48, 1.52, 1.47, 1.46, 1.42, 1.46), and run the Algorithm
2 again. The results of the last 4 iterations are shown in
Table 5.

Step 5: Set the initial speeds of processors to
(s1, s2, . . . , s9)=(0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9), and
the other parameters are unchanged. In each iteration, we
select a processor with max{∆Ri|1 ≤ i ≤ 9} and increase

its speed. The definition of ∆Ri please see Eq. (28). The
results of the last 4 iterations are shown in Table 5.

Step 6: From the Tables 4, 5 and 6, we find that the final
result are the same, despite of the different initial speeds
and even the opposite direction of speeds adjustment.

6 REAL PLATFORM VALIDATION

In this section, a real system platform is designed to verify
and investigate the difference between theoretical analysis
and practical results. The experiment consists of three parts,
that is, building the platform, testing performance, and
comparing results.

11

15 20 25

0.5

1.0

1.5

2.0
Av

er
ag

e
re

sp
on

se
 ti

m
e

Power

 UD&EP
 UD&ES
 PD&EP
 PD&ES
 Our results
 GA
 OPT

Fig. 2. Comparison of performance under frequency-constant model.

15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

re
sp

on
se

 ti
m

e

Power

 UD&EP
 UD&ES
 PD&EP
 PD&ES
 Our results
 GA
 OPT

Fig. 3. Comparison of performance under frequency-conversion model.

Part (1) Build a real distributed system. We builded
a small-scale distributed system, which includes 6 comput-
ing nodes, a switch and a power supply. Each computing
node equips with 1GB of physical RAM, a Debian 4.7.2-5
operating system, a Coreter-A20 processor with adjustable
frequencies 0.336, 0.360, 0.384, 0.408, 0.528, 0.600, 0.648,
0.672, 0.696, 0.720, 0.744, 0.768, 0.816, 0.864, 0.912, 0.960,
1.01GHz, and a DVFS tool called cpufreq. The switch is
used for communication between nodes. The power supply
is used to provide the voltage and current of the nodes.

Part (2) Test the system’s performance. The speed and
power of a processor vary with frequency, therefore we need
to test them under different running-frequencies.

(1) A task commonly consists of many assembly instruc-
tions, such as JUMP, MOV, CMP, ADD and MUL; its exe-
cution time on a processor can be calculated by subtracting
its start time from its finish time. By recording the number
of instructions and execution time for many tasks, we can
calculate the speeds of processors approximately.

(2) The power of a node is the product of voltage and
current, and includes the power of both processor and other

components. Due to the difficulty for separating the proces-
sor’s static power and other component’s power, we treat
them as a whole, denoted as P ∗, which can be obtained by
placing processor’s frequency to 0 GHz. In this experiment,
the supply voltage is 5 volts, and the current is 0.27 amperes
when f = 0 GHz. Thus, P ∗ = 5V × 0.27A = 1.35W .

Table 7 shows the tested speeds and powers under dif-
ferent frequencies. Based on the obtained speed and power,

we can use α ≈ logs

(
P−P∗

2

)
to calculate parameter α, and

show the results in the last row of Table 7. Here, we use
P−P∗

2 because Cortex A20 is a dual core processor. In fact,
the parameter α should be the same even if the processor
runs at different frequencies. The reasons for obtaining
different α might have several aspects. For instance, speed
and power tests are not very accurate; the parameter β may
not be 1. But overall, α ≈ 3 is reasonable and accords with
objective facts. Since α = 3.12 appears 3 times in Table 7,
we employ 3.12 as the value of α.

TABLE 7
Speed and power under different frequency

f 1.01 0.960 0.912 0.864 0.816 0.768 0.744 0.720 0.696 0.336 0 GHz

s 0.660 0.640 0.620 0.597 0.572 0.545 0.515 0.479 0.438 0.225 - Giga IPS
P 1.9 1.85 1.8 1.75 1.7 1.65 1.6 1.55 1.50 1.40 1.35 watt
α 3.107 3.106 3.120 3.120 3.120 3.126 3.133 3.128 3.137 2.473

Part (3) Compare theoretical and actual experimental
results. Corresponding to the above real platform, we con-
sider a system with 6 processors, and each processor has a
set of discrete speeds {0.660, 0.640, 0.620, 0.597, 0.572, 0.545,
0.515, 0.479, 0.438, 0.225} (giga instructions per second).
According to the processing capacity of processors, we let

r̂ = 0.1 giga instructions, λ̂ = 12 tasks per second, P = 8.8
Watts, αi = 3.12, r̃i = 0.12 giga instructions, P ∗i = 1.35
Watts, PSi = 1 for all 1 ≤ i ≤ 6, λ̃1, λ̃2, ..., λ̃6 are

1.0, 1.2, 1.4, 1.6, 1.8, 2.0 tasks per second and T̃ 1, T̃ 2, ..., T̃ 6

are 0.3, 0.4, 0.8, 1.5, 1.5, 1.5 seconds. Based on these pa-
rameters, we can obtain the theoretical results shown in
Table 8(a).

TABLE 8
The results of Section 6

(a) Theoretical results.

i T̃i T̂i λ̂i si Pi

1 0.300 0.270 1.557 0.660 1.464
2 0.400 0.369 2.126 0.640 1.488
3 0.800 0.763 2.379 0.545 1.462
4 0.880 0.843 2.260 0.545 1.465
5 0.914 0.877 2.059 0.545 1.467
6 1.004 0.965 1.618 0.515 1.448

(b) Real results.

i T̃i ∇T̃i T̂i ∇T̂i Pi ∇Pi

1 0.301 0.001 0.272 0.002 1.484 0.020
2 0.401 0.001 0.368 0.001 1.504 0.016
3 0.801 0.001 0.756 0.007 1.471 0.009
4 0.878 0.002 0.833 0.010 1.474 0.009
5 0.905 0.009 0.872 0.005 1.474 0.007
6 0.981 0.023 0.945 0.020 1.455 0.007

Next, we will generate lots of tasks according to the
above parameters, and assign these tasks onto the real

12

platform. Our purpose is to observe the gap between the
theoretical results and practical results. The whole process
includes generating tasks, assigning and executing tasks,
analysing results, the details of which are introduced as
follows.

Generate tasks. We stochastically generate one batch of
general tasks and six batches of dedicated tasks, denoted as
SG = {t̂1, t̂2, ..., t̂|SG|}, SD1 = {t̃1,1, t̃1,2, ..., t̃1,|SD1|}, SD2 =
{t̃2,1, t̃2,2, ..., t̃2,|SD2|}, . . . , and SD6 = {t̃6,1, t̃6,2, ..., t̃6,|SD6|}
respectively. For convenience, we uniformly use the sign
|S| to indicate the size of set S. Each task in the sets
SG, S|D1|, ..., S|D6| consists of many assembly instructions
including JUMP, MOV, CMP, ADD and MUL etc. The num-
ber of instructions of tasks in the sets SG, SD1, SD2, . . . , SD6

obeys exponential distributions with mean r̂, r̃1, r̃2, ..., r̃6
giga instructions, respectively.

Assign and execute tasks. First, we assign tasks to the

processors. Since the arrival rate of dedicated tasks is λ̃i per
second, the interval time sending tasks {t̃i,1, t̃i,2, ..., t̃i,|SDi|}
to processor i follows exponential distribution with mean

1/λ̃i seconds (1 ≤ i ≤ 6). Similarly, the interval time send-
ing tasks {t̂1, t̂2, ..., t̂|SG|} to the system follows exponential

distribution with mean 1/λ̂i seconds. When a general task
t̂i ∈ SG arrives at the system, it will be assigned onto

processor i with a probability of λ̂i/λ̂. Next, we adjust
the frequency of the processors. The theoretical speeds for
processors 1-6 are shown in Table 8(b), which are 0.66,
0.64, 0.545, 0.545, 0.545, 0.515, respectively. From Table 7,
we can find the corresponding processor frequencies to
these theoretical speeds. Therefore, we set the frequencies of
processors 1-6 at 1.01GHz, 0.96GHz, 0.778GHz, 0.778GHz,
0.778GHz, 0.744GHz, respectively.

Analyze the results. We start the system at time 0, and
record the arrival time atj , start time stj and finish time
ftj of task tj during the test. Therefore, we can get the
waiting time wtj via stj − atj , the execution time etj via
ftj − stj , and the response time rtj via ftj − atj . Here, we
mark SGi

(SGi
⊆ SG) and SDi

as the set of general and
dedicated tasks executed on processor i respectively, and let
|SGi

| and |SDi
| represent the number of tasks of set SGi

and set SGi
respectively. Then the average response time of

general tasks T̂i and that of dedicated tasks T̃i are

T̂i =
∑

tj∈SGi

rtj
|SGi

|
=

∑

tj∈SGi

ftj − atj
|SGi

|
, 1 ≤ i ≤ 6

and

T̃i =
∑

tj∈SDi

ftj − atj
|SDi

|
, 1 ≤ i ≤ 6.

The utilization of node i is,

ρi =

∑
tj∈SGi

etj +
∑

tj∈SDi
etj

ftexit
, 1 ≤ i ≤ 6,

where ftexit is the finish time of the last task on processor i.
The power is

Pi = ρi ×

(
P − P ∗

2
+ P ∗

)
+ (1− ρi)× P ∗, 1 ≤ i ≤ 6,

where P is 1.9, 1.85, 1.65, 1.65, 1.65, 1.5 when i is 1, 2,
3, 4, 5, 6, respectively. The T̂i, T̃i, and Pi tested on real

platform are shown in Table 8(b). The term ∇Pi in Table 8
represents the absolute error between theoretical power and

real power, similar usages are the terms ∇T̃i and ∇T̂i. From

Table 8(b), we observe that ∇T̃i, ∇T̃i, and ∇Pi are less than
0.023 (0.023/1.004 ≈ 2.2%), 0.02 (0.02/0.965 ≈ 2%), and
0.09 (0.09/1.465 ≈ 6.1%), respectively. The errors may be
caused by several reasons, such as ignored power, ambient
noise, the test accuracy and so on. Overall, the theoretical
results are basically consistent with real results.

7 CONCLUSION

We have highlighted that the focus of system optimiza-
tion should be flexibly adjusted between performance and
power according to the dynamic variation of environments.
We have investigated the optimization by assigning a stream
of general tasks to a heterogeneous system with multiple
processors, wherein each processor has been preloaded with
dedicated tasks and employs a different scheduling strategy.
Our investigation is based on a multi-queuing model of
multi-processors. We have optimized the system perfor-
mance and system power by load balancing and energy
efficiency. We have proposed a load-balancing algorithm,
which can achieve the optimal load distribution while
satisfying the performance constraints on dedicated tasks,
based on a set of given processor frequencies. Based on
this algorithm, we have further proposed a performance-
satisfied power optimization algorithm that can not only
improve performance under given power but also reduce
power under given performance. Finally, we have analyzed
and verified our approach based on numerical experiments
and a real platform. The proposed method can provide
reference and guidance for the design of heterogeneous
multi-processor systems.

There are still some issues worth of further investiga-
tion. First, in our model, it is assumed that the scheduling
strategy for each processor has been given in advance. In
practice, how to decide the strategy requires analytical re-
search. Second, the communications are not taken into con-
sideration, which may increase the gap between theoretical
analysis and practical applications. Finally, the experimental
platform is also worth upgrading, it does not represent the
actual working system.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation
of China Grant No. 61902118, and China Postdoctoral Sci-
ence Foundation No. 2019M662771.

REFERENCES

[1] Y. Jiang, “A survey of task allocation and load balancing in
distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 2, pp. 585–599, 2016.

[2] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation
and load distribution for multiple heterogeneous multicore server
processors across clouds and data centers,” IEEE Transactions on
Computers, vol. 63, no. 1, pp. 45–58, 2014.

[3] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game-theoretic
approach for load balancing in computational grids,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 19, no. 1, pp. 66–76,
2007.

13

[4] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static load
balancing for distributed systems,” Journal of Parallel and Dis-
tributed Computing, vol. 71, no. 4, pp. 537–555, 2011.

[5] K. Li, “Optimal load distribution for multiple classes of applica-
tions on heterogeneous servers with variable speeds,” Software:
Practice and Experience, vol. 48, no. 10, pp. 1805–1819, 2018.

[6] F. Bonomi and A. Kumar, “Adaptive optimal load balancing in
a nonhomogeneous multiserver system with a central job sched-
uler,” IEEE Transactions on Computers, vol. 39, no. 10, pp. 1232–
1250, 1990.

[7] K. W. Ross and D. D. Yao, “Optimal load balancing and scheduling
in a distributed computer system,” Journal of the Acm, vol. 38, no. 3,
pp. 676–689, 1991.

[8] S. Zeltyn, Z. Feldman, and S. Wasserkrug, “Waiting and sojourn
times in a multi-server queue with mixed priorities,” Queueing
Systems, vol. 61, no. 4, pp. 305–328, 2009.

[9] K. Li, “Improving multicore server performance and reducing
energy consumption by workload dependent dynamic power
management,” IEEE Transactions on Cloud Computing, vol. 4, no. 2,
pp. 122–137, 2016.

[10] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, “Per-
formance evaluation of cloud computing centers with general
arrivals and service,” IEEE Transactions on parallel and distributed
systems, vol. 27, no. 8, pp. 2341–2348, 2015.

[11] K. Li, “Optimal load distribution in nondedicated heterogeneous
cluster and grid computing environments,” Journal of Systems
Architecture, vol. 54, no. 12, pp. 111–123, 2008.

[12] J. Huang, Y. Liu, R. Li, K. Li, J. An, Y. Bai, F. Yang, and G. Xie,
“Optimal power allocation and load balancing for non-dedicated
heterogeneous distributed embedded computing systems,” Journal
of Parallel and Distributed Computing, vol. 130, pp. 24–36, 2019.

[13] K. Li, “Computation offloading strategy optimization with
multiple heterogeneous servers in mobile edge comput-
ing,” IEEE Transactions on Sustainable Computing, 2019, DOI:
10.1109/TSUSC.2019.2904680.

[14] A. Munir, S. Ranka, and A. Gordon-Ross, “High-performance
energy-efficient multicore embedded computing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 23, no. 4, pp. 684–700,
2012.

[15] L. A. Barroso and U. Hlzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[16] M. Al-daloo, A. Yakovlev, and B. Halak, “Energy efficient boot-
strapped cmos inverter for ultra-low power applications,” in 2016
IEEE International Conference on Electronics, Circuits and Systems
(ICECS), Dec 2016, pp. 516–519.

[17] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev,
“Energy-efficient approximate multiplier design using bit
significance-driven logic compression,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2017, March 2017, pp. 7–12.

[18] V. Kontorinis, A. Shayan, D. M. Tullsen, and R. Kumar, “Reducing
peak power with a table-driven adaptive processor core,” in
Ieee/acm International Symposium on Microarchitecture, 2009, pp. 189–
200.

[19] G. Kornaros, Multi-Core Embedded Systems. CRC Press, Inc., 2010.
[20] G. Xie, G. Zeng, R. Li, and K. Li, “Energy-aware processor merg-

ing algorithms for deadline constrained parallel applications in
heterogeneous cloud computing,” IEEE Transactions on Sustainable
Computing, vol. 2, no. 2, pp. 62–75, 2017.

[21] B. Yang, Z. Li, S. Chen, T. Wang, and K. Li, “Stackelberg game
approach for energy-aware resource allocation in data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 12,
pp. 3646–3658, 2016.

[22] X. Zhan and S. Reda, “Power budgeting techniques for data
centers,” IEEE Transactions on Computers, vol. 64, no. 8, pp. 2267–
2278, 2015.

[23] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient
adaptive resource management for real-time vehicular cloud ser-
vices,” IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp.
196–209, 2016.

[24] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, “Energy-efficient
fault-tolerant scheduling of reliable parallel applications on het-
erogeneous distributed embedded systems,” IEEE Transactions on
Sustainable Computing, vol. PP, no. 99, pp. 167–181, 2017.

[25] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-
aware mapping and scheduling of multimedia applications on
multiprocessor systems,” IEEE Transactions on Parallel Distributed
Systems, vol. 27, no. 3, pp. 869–884, 2016.

[26] Y. Xiang and S. Pasricha, “Soft and hard reliability-aware schedul-
ing for multicore embedded systems with energy harvesting,”
IEEE Transactions on Multi-Scale Computing Systems, vol. 1, no. 4,
pp. 220–235, 2015.

[27] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time markov decision processes,” in Design Automation
Conference, 1999. Proceedings., 1999, pp. 555–561.

[28] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Mobile Computing. Springer, 1994, pp.
449–471.

[29] S. Yang, R. A. Shafik, G. V. Merrett, and E. Stott, “Adaptive
energy minimization of embedded heterogeneous systems using
regression-based learning,” in International Workshop on Power and
Timing Modeling, Optimization and Simulation, 2015, pp. 103–110.

[30] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,
“Power-aware performance adaptation of concurrent applications
in heterogeneous many-core systems,” in International Symposium
on Low Power Electronics and Design, 2016, pp. 368–373.

[31] J. Huang, R. Li, J. An, D. Ntalasha, F. Yang, and K. Li, “Energy-
efficient resource utilization for heterogeneous embedded com-
puting systems,” IEEE Transactions on Computers, vol. 66, no. 9, pp.
1518–1531, 2017.

[32] Y. Tian, C. Lin, and K. Li, “Managing performance and power
consumption tradeoff for multiple heterogeneous servers in cloud
computing,” Cluster Computing, vol. 17, no. 3, pp. 943–955, 2014.

[33] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Communications of the ACM, vol. 53, no. 3, pp. 50–58, 2010.

[34] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal
multiserver configuration for profit maximization in cloud com-
puting,” IEEE Transactions on Sustainable Computing, vol. 2, no. 1,
pp. 17–29, 2017.

[35] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in Proceedings. 41st
Design Automation Conference, 2004., 2004, pp. 868–873.

[36] M. Bambagini, M. Marinoni, H. Aydin, and G. C. Buttazzo,
“Energy-aware scheduling for real-time systems: A survey,” ACM
Transactions in Embedded Computing Systems, vol. 15, no. 1, pp. 1–34,
2016.

[37] J. Zhou, J. Sun, X. Zhou, T. Wei, M. Chen, S. Hu, and X. S.
Hu, “Resource management for improving soft-error and lifetime
reliability of real-time mpsocs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 12, pp.
2215–2228, 2019.

[38] A. O. Allen, Probability, statistics, and queueing theory. Academic
Press, 1990.

[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2013.

