
This is a repository copy of Efficient Generation of Graphical Model Views via Lazy Model-
to-Text Transformation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/164209/

Version: Accepted Version

Proceedings Paper:
Kolovos, Dimitris orcid.org/0000-0002-1724-6563, De La Vega, Alfonso and Cooper, Justin
(2020) Efficient Generation of Graphical Model Views via Lazy Model-to-Text
Transformation. In: ACM/IEEE 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS ’20). ACM

https://doi.org/10.1145/3365438.3410943

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3365438.3410943
https://eprints.whiterose.ac.uk/id/eprint/164209/
https://eprints.whiterose.ac.uk/

Efficient Generation of Graphical Model Views
via Lazy Model-to-Text Transformation

Dimitris Kolovos
Department of Computer Science

University of York
York, UK

dimitris.kolovos@york.ac.uk

Alfonso de la Vega
Department of Computer Science

University of York
York, UK

alfonso.delavega@york.ac.uk

Justin Cooper
Department of Computer Science

University of York
York, UK

justin.cooper@york.ac.uk

ABSTRACT

Producing graphical views from software and system models is
often desirable for communication and comprehension purposes,
even when graphical model editing capabilities are not required
ś because the preferred editable concrete syntax of the models is
text-based, or for models extracted via reverse engineering. To
support such scenarios, we present a novel approach for efficient
rule-based generation of transient graphical views from models
using lazy model-to-text transformation, and an implementation
of the proposed approach in the form of an open-source Eclipse
plugin named Picto. Picto builds on top of mature visualisation
software such as Graphviz and PlantUML and supports, among
others, composite views, layers, and multi-model visualisation. We
illustrate how Picto can be used to produce various forms of graph-
ical views such as node-edge diagrams, tables and sequence-like
diagrams, and we demonstrate the efficiency benefits of lazy view
generation approach against batch model-to-text transformation
for generating views from large models.

CCS CONCEPTS

· Software and its engineering→Domain specific languages;
· Information systems→ Process control systems.

KEYWORDS

Model Visualisation, Graphical Modeling

1 INTRODUCTION

Being able to produce graphical views of software and system mod-
els is often desirable in model-driven engineering settings. Such
views are useful, for example, to explore reverse-engineered mod-
els [3, 12] from different viewpoints of interest, to visualise relation-
ships between heterogeneous models, and to facilitate presentation
of text-based models to a wider audience of stakeholders [13]. Com-
mon approaches for producing graphical representations of models
include (a) implementing a graphical editor using a framework such
as Sirius, GMF, or Graphiti; (b) implementing a bespoke graphical
viewer using frameworks such as Zest, GEF or JavaFX; and (c) using
batch model-to-text transformation to generate textual artefacts
(e.g. Graphviz graphs, HTML pages), which can be subsequently
rendered in a web browser.

In this paper, we discuss scenarios in which the model visualisa-
tion methods above are applicable, as well as their main strengths
and weaknesses. We then present a novel Eclipse-based framework,
called Picto, for producing transient views from models conform-
ing to different metamodels and modelling technologies, by lazily

transforming them into textual formats such as Graphviz, Plan-
tUML, SVG and HTML, which are subsequently rendered in an
embedded browser. We demonstrate the building blocks and ca-
pabilities of Picto through a running example and we showcase
how it can be used to produce non-trivial views (e.g. class-diagram-
like, tabular, sequence-diagram-like) from heterogeneous models.
We also evaluate the performance and scalability benefits of the
lazy transformation approach employed by Picto, compared to
visualisation via batch model-to-text transformation.

The contributions of this paper are:

• A critical review of commonly used techniques for producing
graphical views from models (Section 2);

• A novel approach for generating transient graphical views
from models via lazy model-to-text transformation and an
implementation of the proposed approach in the context of
the Picto open-source tool (Section 3);

• An experimental evaluation of the benefits of lazy ś com-
pared to batch ś model-to-text transformation, for model
visualisation (Section 4).

Section 5 reviews related work, and Section 6 concludes the
paper and discusses future work.

2 BACKGROUND AND MOTIVATION

In this section we review common approaches for producing graph-
ical views from models and we highlight their main strengths and
weaknesses. For cohesion, we focus on the Eclipse Modelling Frame-
work (EMF), as an example of a comprehensive ecosystem that
offers interoperable facilities for metamodelling, modelling, and
for graphical and textual model editing. However, the discussion
is also valid for other language workbenches such as as JetBrains
MPS [21], Spoofax [20, 22], MetaEdit+ [9, 10] or theWhole Platform
[18] that offer similar facilities too.

Developing a Graphical Editor. The Eclipse modelling ecosys-
tem includes sophisticated frameworks such as Sirius1, GMF2 and
Graphiti3 for developing graphical editors for EMF-based languages.
As such, when there is a need to visualise models, one option is to
use one of these frameworks to develop a graphical (e.g. node-edge,
tabular, tree-based) editor for the language that the models con-
form to and then use the editor to hand-craft views of interest. The
main appeal of this approach is that users have complete control
over the content and the appearance (fonts, colours, positions of
nodes/edges) of the constructed views.

1https://eclipse.org/sirius
2https://eclipse.org/modeling/gmp
3https://eclipse.org/graphiti

https://eclipse.org/sirius
https://eclipse.org/modeling/gmp
https://eclipse.org/graphiti

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

On the other hand, the visualisation options provided out of
the box by graphical modelling frameworks ś both within and be-
yond Eclipse ś are relatively limited compared to the wealth of
visualisations (e.g. 3D graphs, heatmaps, treemaps) available in
the broader web-based data visualisation ecosystem. In addition,
graphical modelling frameworks seek to provide built-in model
editing capabilities. To offer this, the graphical syntaxes of these
frameworks are geared towards one-to-one mappings (or close)
between model elements and syntax symbols, so that edits at the
graphical level can be unambiguously propagated to semantic ele-
ments. This often makes visualisations which involve aggregating
multiple elements into a single graphical symbol challenging to
achieve. Last but not least, the complexity and learning curve of
such frameworks is non-negligible, which is more palatable when
their full range of capabilities (i.e. editing) are required, but can be
a substantial overhead when only viewing facilities are needed.

Developing a Bespoke Graphical Viewer. To avoid the complexity
overhead and restrictions imposed by graphical modelling frame-
works, an alternative is to implement read-only viewers for the
models of interest using lower-overhead and more generic frame-
works such as Eclipse’s Graphical Editing Framework or JavaFX.
The main appeal of this approach is that viewer developers are not
bound by the assumptions and restrictions of graphical modelling
frameworks, and can produce graphical views of arbitrary com-
plexity. Also, in a bespoke viewer, views can be produced lazily (on
demand), which is useful for visualising large models. Where node-
edge graphical representations are required, graph visualisation and
auto-layout capabilities can be reused from open-source libraries
such as Eclipse ELK [19], Zest [4], GraphStream4, or commercial
alternatives such as yFiles5.

The main challenge with this approach is that it requires a sub-
stantial amount of hand-written code to implement ś beyond the
visualisations themselves ś commonly-needed features such as the
ability to navigate back and forward between views, to zoom in and
out, to show/hide elements on demand by applying layers/filters
and to export generated views as image files for embedding into
reports.

Visualisation by M2T Transformation. Another commonly em-
ployed technique for model visualisation in the literature [1, 2, 8]
is the use of model-to-text transformation to generate views in
textual syntaxes such as Graphviz [7] and PlantUML [14] ś which
can be transformed into auto-laid-out SVG graphs using mature off-
the-shelf tools ś or even directly in SVG/HTML if no auto-layout
capabilities are required (e.g. for form-based and tabular views
or when the coordinates of view elements can be computed from
information in the model).

The main appeal of this approach is the delegation of much of
the łheavy liftingž to powerful tools such as Graphviz, PlantUML,
and to JavaScript libraries such as D3.js6, TheeeJS7, and Google
Charts8, which support for a wealth of ready-made graphical no-
tations and widgets. In addition, views produced in this way can

4http://graphstream-project.org
5https://www.yworks.com/products/yfiles
6https://d3js.org
7https://threejs.org
8https://developers.google.com/chart

be explored through standard web-browsers, which provide out-of-
the-box support for commonly-needed features such as navigating
back/forward between views, zooming in/out, and exporting views
as images.

On the flip side, using a model-to-text transformation to generate
all possible views from a model upfront, can be wasteful when only
a small number of views is actually inspected by users between
consecutive executions of the transformation. This can become a
usability issue too as the size of models and the number of views
grow and transformation execution times start exceeding a few
seconds. This is demonstrated experimentally in Section 4. Also,
while features such as zooming in/out, exporting images etc. are
provided for free by web browsers, supporting filters/layers in
generated views need to be implemented from scratch in every
visualisation transformation.

3 PICTO

To combine the efficiency of bespoke graphical viewers with the
strengths of M2T view generation and browser-based view render-
ing discussed in the previous section, in this work we propose an
approach for on-demand generation and browser-based rendering
of graphical model views via lazy model-to-text transformation.
We have implemented the proposed approach in the context of the
Picto open-source tool9, which also provides built-in support for
commonly required features such as layers, navigating between
generated views, zooming in/out of views and exporting views
as images. This section discusses the architecture of Picto and
presents the features listed above in detail, through a running ex-
ample.

3.1 Running Example

In this example, we wish to visualise models conforming to the
contrived social network metamodel of Figure 1. In particular, we
will use a sample model containing 3 persons (Alice, Bob and Char-
lie), which is shown in the form of an object diagram in Figure 2.
For such social network models we wish to produce one node-edge
view for the entire social network, and one view for each member
of the network that omits any persons they neither like nor dis-
like. A preview of the two views in Picto is provided in Figure 3
(complete social network) and Figure 4 (focused on Bob). Picto’s
user interface has two main components. On its left-hand side is
a tree widget that displays the titles and icons of the views (So-
cial Network, Alice, Bob and Charlie in Figures 3 and 4) that users
can select from. Once a view is selected, its content is generated
and rendered in an embedded web browser ś through a series of
transformations ś on the right-hand side of Picto.

3.2 Model-to-Text Transformation

Picto reuses an existing model-to-text transformation language
(Epsilon’s EGL [15]) to transform an input model (or a set of input
models as discussed later) into a tree of views in a rule-based way.
The EGL transformation used to produce the desired diagrams from
a social networkmodel is illustrated in Listing 1. The transformation
consists of two rules, Network2Graphviz (line 1) which applies
to elements of type SocialNetwork (line 2) and Person2Graphviz

9
Picto is part of the Eclipse Epsilon project ś http://eclipse.org/epsilon/doc/picto

http://graphstream-project.org
https://www.yworks.com/products/yfiles
https://d3js.org
https://threejs.org
https://developers.google.com/chart
http://eclipse.org/epsilon/doc/picto

Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation MODELS’20, October 18, 2020, Montreal, Canada

Figure 1: Social network metamodel in Ecore

Figure 2: Sample social network model (abc.xmi) that con-

forms to the metamodel of Figure 1, visualised as a UML ob-

ject diagram

Figure 3: Social network model of Figure 2 visualised in

Picto

(line 13) which applies to elements of type Person (line 14). When
instructed to visualise the sample model of Figure 2, Picto executes
the model-to-text transformation (details on how transformations
are bound to models are discussed in Section 3.4), which results in
4 invocations of the two rules (one for Network2Graphviz and three
for Person2Graphviz). Execution of the transformation happens in
two phases, using a lazy EGL interpreter we have implemented in
the context of this work.

1 rule Network2Graphviz

2 transform n : SocialNetwork {

3
4 template : "people2graphviz.egl"

5
6 parameters : Map {

7 "path" = Sequence{"Social Network"},

Figure 4: Bob’s likes/dislikes relationships visualised in

Picto

8 "format" = "graphviz -circo",

9 "people" = n.people

10 }

11 }

12
13 rule Person2Graphviz

14 transform p : Person {

15
16 template : "people2graphviz.egl"

17
18 parameters : Map {

19 "path" = Sequence{"Social Network", p.name},

20 "format" = "graphviz -dot",

21 "people" = Sequence{p}

22 }

23 }

Listing 1: Model-to-text transformation for visualising

social network models

3.2.1 Phase 1: View Tree Construction. In the first phase, the pa-
rameters part of each rule is executed (lines 6-10 and 18-22 of List-
ing 1), which returns a Map containing (minimally) the following
key-value pairs:

• path: specifies the path of the produced view in the left-hand-
side tree of Picto. Paths for individual views are expected
to be sequences (ordered collections) of strings which Picto

then assembles and displays into a tree.
• format: specifies the format of the generated text. In this ex-
ample, both rules produce text that conforms to the grammar
of the Graphviz visualisation tool. Additionally, line 8 speci-
fies that the circo layout algorithm should be used to render
the produced Graphviz graph for the entire social network,
while line 20 specifies that the dot layout algorithm should
be used for individual person diagrams. Other built-in sup-
ported formats in Picto include plantuml, svg, markdown10

and html. Picto also provides an Eclipse extension point
that can be used to register processors for additional textual
formats (e.g. Mermaid11).

10https://daringfireball.net/projects/markdown/syntax
11https://mermaid-js.github.io/mermaid/

https://daringfireball.net/projects/markdown/syntax
https://mermaid-js.github.io/mermaid/

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

Apart from the mandatory parameters described above, there
is a third parameter, people, which is specific to this particular
transformation. It appears in lines 9 and 21 to provide the people
that will be fed into the people2graphviz.egl template defined in
lines 4 and 16.

In this first phase, Picto does not perform the execution of the
people2graphviz.egl template against the elements of the people

parameter. This is done lazily ś for efficiency purposes ś in the
second phase.

3.2.2 Phase 2: View Content Computation. At the end of the first
phase, Picto has computed all the information needed to populate
its left-hand side tree widget, but none of the actual (Graphviz in
this example) contents of each view. This happens lazily when a
user selects a view on the tree. When this happens, Pictowill parse
and execute the template specified by the rule that produced the
view, and generate the content of the view (Graphviz graphs in this
example). It will then transform the produced content through a
chain of built-in transformations12 (Graphviz → SVG → HTML in
this case) and display the final result in its embedded browser, as
shown in Figures 3 and 4.

The people2graphviz.egl template used in both rules of the run-
ning example is displayed in Listing 2. In the listing, text with
bold font defines executable EGL statements that produce dynamic
content from the model, while text with regular font is static (it
is included unmodified into the content of the produced view). In
particular, lines 1-6 produce Graphviz statements configuring the
appearance of the graph (shape, color and font of nodes, style of
edges); line 8 loops over all people provided to the template via the
respective parameters in lines 9 and 21 of Listing 1; and, for each
person, line 10 produces a node for the person while lines 12-14 and
16-18 produce green and red edges between each person and the
persons they like/dislike. Listing 3 shows the produced Graphviz
code behind the diagram in Figure 4.

1 digraph G {

2 node[shape=rectangle , fontname=Tahoma ,

3 fontsize =10, style=" filled",

4 gradientangle ="270" ,

5 fillcolor =" bisque:floralwhite "]

6 edge[penwidth=3, style=tapered , arrowhead=none]

7
8 [%for (p in people){%]

9
10 [%=p.name%]

11
12 [%for (o in p.likes){%]

13 [%=p.name%] -> [%=o.name%] [color=green]

14 [%}%]

15
16 [%for (o in p.dislikes){%]

17 [%=p.name%] -> [%=o.name%] [color=red]

18 [%}%]

19
20 [%}%]

21 }

Listing 2: people2graphviz.egl: EGL template for

visualising networks of people

12
Picto provides an Eclipse extension point for contributing such reusable

transformations

1 digraph G {

2 node[shape=rectangle , fontname=Tahoma ,

3 fontsize =10, style=" filled",

4 gradientangle ="270" ,

5 fillcolor =" bisque:floralwhite "]

6 edge[penwidth=3, style=tapered , arrowhead=none]

7
8 Bob

9 Bob -> Alice [color=green]

10 Bob -> Charlie [color=red]

11 }

Listing 3: Graphviz code behind the diagram in Figure 4

3.3 Layers

A common way for tools to facilitate managing the complexity of
visual artefacts is to provide support for layers, which can be turned
on/off on demand to show or hide subsets of information of interest.
Picto supports layers through a layers (optional) parameter in the
parameters part of view-generating EGL rules. In the context of our
running example, we wish to add two layers to views generated
through the Person2Graphiz rule of our transformation, to allow the
user to show and hide likes and dislikes relationships. To achieve
this, in Listing 4 we extend the parameters map (originally in lines
18-22 of Listing 2) with lines 4-7, which define two layers, likes
and dislikes. Each layer also specifies a human-readable title to be
presented to end users. Layers can also be marked as active/inactive
by default using an active boolean parameter (true by default).

1 parameters : Map {

2 "path" = Sequence{"Social Network", p.name},

3 "format" = "graphviz -dot",

4 "layers" = Sequence {

5 Map {"id"="likes", "title"="Likes"},

6 Map {"id"="dislikes", "title"="Dislikes"}

7 },

8 "people" = Sequence{p}

9 }

Listing 4: Network2Graphviz rule of Listing 1: extended

parameters including likes and dislikes layers definition

We also need to extend the view-generating template to honour
the user’s layer selection. This is achieved by adding two conditional
statements to the EGL template13 that use the built-in isLayerAc-

tive() function to check whether the likes and dislikes layers are
active (lines 1 and 7 of Listing 5) before emitting respective edges
in the produced graph.

1 [%if (isLayerActive ("likes")){%]

2 [%for (l in p.likes){%]

3 [%=p.name%] -> [%=l.name%] [color=green]

4 [%}%]

5 [%}%]

6
7 [%if (isLayerActive (" dislikes ")){%]

8 [%for (l in p.dislikes){%]

9 [%=p.name%] -> [%=l.name%] [color=red]

10 [%}%]

11 [%}%]

Listing 5: Modified transformation of Listing 2 to only

render the content of active layers

13Originally in lines 12-18 of Listing 2

Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation MODELS’20, October 18, 2020, Montreal, Canada

The result is demonstrated in Figure 5, where the user has turned
off the dislikes layer, effectively hiding edges to people that Bob
dislikes.

Figure 5: View of Listing 4 with the dislikes layer turned off

3.4 Binding Visualisations To Models

To enable binding visualisation transformations to specific models,
Picto provides a small EMF-based domain-specific language, the
abstract syntax of which is illustrated in Figure 6 and uses the
Flexmi [11] fuzzy XML-based syntax for its instantiation. When
a Flexmi model conforming to the Picto metamodel is opened,
activated or saved in Eclipse, Picto is triggered and it executes
the transformation specified in the transformation property of its
root picto element against the models it contains. For example, in
line 2, the Picto model in Listing 6 binds the socialnetwork.egx

visualisation transformation illustrated in Listing 1 to the abc.xmi

model that contains Alice, Bob and Charlie.
As shown in Figure 6, a Picto visualisation can refer to multiple

models. As they are written in EGL, Picto visualisation transfor-
mations can access multiple models of different technologies (e.g.
EMF, Simulink [16]).

1 <?nsuri picto?>

2 <picto transformation =" socialnetwork.egx">

3 <model type="EMF">

4 <parameter name=" metamodelUri"

5 value=" socialnetwork "/>

6 <parameter name=" modelFile"

7 file="abc.xmi"/>

8 </model >

9 </picto >

Listing 6: Binding socialnetwork.egx to abc.xmi in

abc.picto

3.5 Custom Views

The model-to-text transformation visualisation in our example pro-
duces two types of views. One for the social network as a whole,
and one for each member of the network. What it does not facili-
tate is the specification of views that involve a custom selection of
members of the network (e.g. only Alice and Bob). To allow such
user-defined views, Picto provides the concept of łcustom viewž,

Figure 6: The Picto Metamodel

through the respective class in its metamodel. There are two types
of custom views.

3.5.1 Dynamic Views. These are views that have their type at-
tribute set to the name of one of the rules in the view transformation.
Their content is produced by executing the said rule against the pa-
rameters specified in the view through the CustomView→Parameter

reference in Figure 6. To support custom views in our running ex-
ample, we need to extend the view transformation with another
rule, Persons2Graphviz, which is displayed in Listing 7. This rule is
similar to the other two rules, with three notable differences:

• It is annotated as @custom (line 1) so that Picto will only
run it if it is referenced by a custom view

• It does not define a path in its parameters (as rules Net-
work2Graphviz and Person2Graphviz do in lines 7 and 19 of
Listing 1) as the path of custom views on the tree is expected
to be provided through the Picto visualisation model

• It expects an additional names variable (lines 12 and 14) from
which it will compute the people to display

1 @custom

2 rule Persons2Graphviz {

3
4 template : "socialnetwork2graphviz.egl"

5
6 parameters : Map{

7 "format" = "graphviz -dot",

8 "layers" = Sequence {

9 Map {"id"="likes", "title"="Likes"},

10 Map {"id"="dislikes", "title"="Dislikes"}

11 },

12 "people" = names.isDefined () ?

13 Person.all.select(p|

14 names.includes(p.name)):

15 Sequence {}

16 }

17 }

Listing 7: Persons2Graphviz rule for producing views of

user-selected groups of persons

To instantiate this view, in lines 3-6 of Listing 8 we add a new
custom view element to abc.picto. As seen in Figure 7, the path of
the new view in the Picto tree is Custom→Alice and Bob, and it
displays Alice, Bob and their like/dislike relationships (compared to
the full network diagram in Figure 3, it omits Charlie’s likes/dislikes
relationships).

1 <?nsuri picto?>

2 <picto transformation =" socialnetwork.egx">

3 <view path="Custom , Alice and Bob"

4 type=" Persons2Graphviz">

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

5 <parameter name="names" values ="Alice , Bob"/>

6 </view >

7 <view path="Custom , Readme"

8 source =" readme.html"/>

9 ...

10 </picto >

Listing 8: A dynamic and a static custom view

Figure 7: The custom Alice and Bob view

3.5.2 Static Views. In some cases, it is useful to produce one-off
views that also contain information not captured in one of the
models. To accommodate such use-cases Picto also supports static
custom views. In contrast to dynamic views which have a type

attribute that references a transformation rule (discussed above),
static views have a source attribute that points to a static HTML or
Markdown file with the content of the view. A static view is defined
in lines 7-8 of Listing 8. The content of the referenced readme.html

file is shown in Listing 9. Of particular interest is line 6 of the latter,
which demonstrates the picto-view tag which can be used to embed
copies of other (static or dynamically-computed) views in a static
view. The resulting visualisation appears in Figure 8.

1 <html >

2 <body >

3 <h1 >Overview </h1 >

4 <p>Nodes represent people , and green/red

5 edges show who likes/dislikes who.</p>

6 <picto -view path=" Social Network"/>

7 </body >

8 </html >

Listing 9: The readme.html file referenced in line 8 of

Listing 8

3.6 Additional Examples

In this section we briefly discuss additional use-cases of Picto, to
demonstrate its applicability beyond node-edge diagrams. All pre-
sented examples are available in Picto’s source code repository14.

14https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples

Figure 8: Static (HTML) view embedding a copy of the Social

Network view of Figure 3

Figure 9 showcases the resulting view of a M2T transforma-
tion composed of 550 lines of code (LOC) of EGL that can pro-
duce Graphviz class diagrams from Ecore metamodels (a subset of
Ecore.ecore is visualised in this case). The view in the figure is a cus-
tom diagram for a hand-picked set of core Ecore classes. Figure 10
demonstrates a tabular visualisation (88 LOC) of a model capturing
risks to demonstrate that Picto can also produce table/form-based
views trough transformations that produce HTML content. Finally,
Figure 11 shows an application of Picto for contextual visualisa-
tion of sequence diagrams (87 LOC), using PlantUML15. In this use
case, from a single interaction scenario, Picto is used to produce a
number of sequence diagrams, one for each alternative path of the
scenario. Finally, Figure 12 shows an application (42 LOC) that can
generate interactive 3D inheritance graphs from Ecore metamodels
using ThreeJS and WebGL16.

4 EVALUATION

To measure the benefits of the lazy view generation strategy im-
plemented by Picto, we have carried out performance evaluation
experiments where we compared view generation times of Picto
to those of a batch M2T transformation that produces identical
views17. The following sections describe the experiments and dis-
cuss the obtained results.

4.1 Comparison Method

We start by describing the visualisation scenarios, the compared
approaches, and the measuring platforms and methods used during
the comparison.

15https://plantuml.com/sequence-diagram
16https://github.com/vasturiano/3d-force-graph
17Instructions to reproduce this evaluation are provided in the following external
repository: https://github.com/kolovos/models2020-picto-data

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples
https://plantuml.com/sequence-diagram
https://github.com/vasturiano/3d-force-graph
https://github.com/kolovos/models2020-picto-data

Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation MODELS’20, October 18, 2020, Montreal, Canada

Figure 9: Picto used to visualise Ecore metamodels with

Graphviz

Figure 10: Picto used to visualise risks in a tabular form

with HTML

Figure 11: Picto used for contextual visualisation of se-

quence diagrams with PlantUML

Figure 12: Picto used for 3D representation of inheritance

hierarchy in Ecore metamodels using ThreeJS and WebGL

Table 1: Ecore metamodels used in the comparison.

Name Size (MiB) # EClasses

UML.ecore 1.3 243
CIM.ecore 2.6 600
eMoflonTTC17.ecore 3.3 1090
RevEngSirius.ecore 4.7 5208

4.1.1 Visualisation scenarios. Two scenarios were used during this
evaluation. The first one involved Ecore metamodels and generat-
ing views such as the one depicted in Figure 9. More specifically,
one view was generated for each EClass in the input metamodel
(considered themain one of the view). The view contains the EClass
itself, as well as the EClasses it refers to through EReferences, and
its supertypes. We used the BigQuery Github dataset18 to search for
very large publicly available metamodels, from which we included
the following four in the comparison:

• the UML2 metamodel;
• the Common InformationModel (CIM)19, which is a standard
for the definition of electrical networks;

• a metamodel used internally by the eMoflon solution of the
2017 Transformation Tool Contest (TTC17)20;

• a reverse-engineered metamodel of the Sirius codebase21

that has been used by the developers of the EcoreTools dia-
gramming tool to carry out performance tests.

The details of the selected metamodels are shown in Table 1.
For instance, RevEngSirius.ecore is the largest of these metamodels,
with a size of ∼4.7 MiB, and around 5.2K EClasses.

The second scenario involves generating views from synthetic
models conforming to a contrived (Simulink-like) component/con-
nector metamodel. In this metamodel, each component has input
and output ports, and can contain other nested components, which
are interconnected between them and with the available ports to
represent a modular system. For this visualisation, a view, like the

18https://cloud.google.com/blog/products/gcp/github-on-bigquery-analyze-all-the-
open-source-code
19https://www.dmtf.org/standards/cim
20https://www.transformation-tool-contest.eu/2017/solutions_smartGrid.html
21https://www.eclipse.org/sirius/

https://cloud.google.com/blog/products/gcp/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/products/gcp/github-on-bigquery-analyze-all-the-open-source-code
https://www.dmtf.org/standards/cim
https://www.transformation-tool-contest.eu/2017/solutions_smartGrid.html
https://www.eclipse.org/sirius/

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

one in Figure 13, is generated for each component that contains at
least one nested sub-component.

Figure 13: Example component/connector view in Picto

4.1.2 Compared approaches. We measured the time it took to gen-
erate the views for the scenarios described above both using Picto

and with standalone batch M2T transformations. For the batch
transformations, we used the same language as in Picto, this is,
EGL (see Section 3.2). This ensures that what we are measuring is
the impact of the lazy generation strategy we devised for this work,
as opposed to more fundamental differences in the performance
of two M2T transformation languages. Also, using EGL facilitated
creating identical M2T transformations as those in Picto, with only
minimal changes to make them work in batch/standalone mode.

In the two visualisation scenarios, the M2T transformations
generate DOT graphs that are then translated to SVG/HTML for in-
browser rendering through the Graphviz program. While Picto has
facilities to do that transparently for the user (see Section 3.2.2), we
need to provide the same in the batch M2T approaches. Therefore,
after the M2T batch transformation concludes, a post-processing
step is carried out to, starting from DOT, generate the SVG and
HTML files that would be rendered in a browser. The time to per-
form this post-processing step is included in the results of the batch
transformations.

One of the advantages of using a batch transformation instead of
Picto is the possibility of parallelising the generation of views in
different system cores/threads. Therefore, we created two variants
of the batch transformation approach: the first one uses sequential
(single-threaded) execution, while the second one employs multi-
threaded computation via a parallel EGL execution engine22 for
the M2T transformation and the Java 8 Streams API for the post-
processing phase.

Summarising, three approaches were compared: Picto, a single-
threaded and a multi-threaded batch M2T transformation.

4.1.3 Measuring platforms. The experiments were carried out on
a desktop computer running Ubuntu on a 6-core, 12-thread AMD
Ryzen 1600 CPU with 32GiB of ram and a PCIe NVM SSD. As this

22https://www.eclipse.org/epsilon/doc/articles/parallel-execution

powerful hardware might not be typical of a developer workstation
yet, we also ran the transformations in a lower-spec laptop featuring
the same Ubuntu system and a 2-core, 4-thread Intel Core i5 7200U
CPU, 16GiB of RAM, and again a PCIe NVM SSD.

4.1.4 Measuring method. For the batch M2T transformations, we
measured the time it took to run the transformations against the
target models. On the other hand, Picto’s lazy computation strategy
required some instrumentation for performing the measurements.
We included relevant code in a fork of Picto’s implementation that
forces the generation of each individual view just as if a user has
selected it from the user interface, and gathers these measurements
in a results file.

For both types of approaches, generation times were measured
10 times, and then the results were averaged. To ensure that av-
erage figures were not disproportionately affected by outliers, we
also calculated the standard deviation of these times. The coeffi-
cient of variation, this is, the ratio of the standard deviation to
the mean, was not higher than 0.005 for the single-thread batch
transformation, 0.127 for the multi-thread one, and 0.164 for the in-
dividual Picto views, which indicates a low spread in the obtained
results. The higher dispersion of the Picto times can be due to their
measurement inside an Eclipse instance, as opposed to the batch
transformations’ execution that happened through a standard Java
process. Also, to prevent any inconsistencies due to low CPU states
during the initial measurements, we warmed up the measuring
platforms by executing initial generations whose obtained times
were discarded.

4.2 Results

4.2.1 Ecore metamodel visualisation. Figure 14 shows themeasured
generation times of the three approaches for the four selected Ecore
metamodels. Our experiment simulates a scenario in which a user
is accessing the generated views one by one, i.e., selecting the
generated view for each EClass in the input metamodel, until all
produced views have been accessed. The y-axis represents the
accumulated generation time of the accessed views, while the x-
axis indicates the number of views that have been accessed up to
that point.

The number of accessed views is irrelevant for the batch trans-
formation approaches, as all views are generated upfront. Because
of that, batch approaches are represented by horizontal lines indi-
cating the time they took to generate all views of each model, with
the single-thread variant in dotted red, and the multi-thread one
in dashed green. As expected, the multi-threaded variant took less
time to complete, providing savings of 82.7 to 84.7% compared to
the single-threaded execution.

On the other hand, the number of accessed views is very relevant
for Picto, whose execution time is represented with a solid blue
line. As the number of accessed views increases, so does Picto’s
accumulated execution time (since views are generated and ren-
dered lazily). For Picto, the y-axis value at the ł0 accessed viewsž
point depicts the time it took to complete the upfront view tree
computation phase (see Section 3.2.1). This time is almost negligible,
as it only amounts to 22.3, 39.2, 62 and 302 milliseconds for the

https://www.eclipse.org/epsilon/doc/articles/parallel-execution

Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation MODELS’20, October 18, 2020, Montreal, Canada

0 80 160 240
0

2

4

6

8

A
cc
u
m
u
la
te
d
ti
m
e
(s
)

UML.ecore

0 200 400 600
0

5

10

15

20

25
CIM.ecore

0 250 500 750 1000

Accessed views

0

10

20

30

40

A
cc
u
m
u
la
te
d
ti
m
e
(s
)

eMoflonTTC17.ecore

0 1250 2500 3750 5000

Accessed views

0

25

50

75

100

125

150
RevEngSirius.ecore

single-thread multi-thread Picto

Figure 14: Time results for the Ecore metamodel visualisa-

tion scenario on the 6-core/12-thread CPU of the desktop

computer. The x-axis represents the number of views ac-

cessed up to a certain point, while the y-axis indicates the

accumulated time it took to generate those views.

UML, CIM, eMoflonTTC17 and RevEngSirius metamodels, respec-
tively23. Lastly, to improve presentation, the time it took Picto to
generate each individual view has been averaged. Showing the real
time would have made relevant the order in which the views are
accessed, i.e., if those views that took more time to get computed are
accessed earlier, then the Picto accumulated time would increase
quicker at first, and vice versa. In any event, the generation times
were fairly uniform across all EClass views of the metamodels, so
this averaging only has a minor aesthetic impact.

Of particular interest in the graphs of Figure 14 are the crossing
points at which the Picto time meets with the batch transformation
times. When that crossing happens, it means that the accumulated
time it took Picto to generate the accessed views at that point
has reached the time that took the crossed batch transformation
to generate all views of the model. So, the greater the number of
accessed views required to reach those crossing points, the more
substantial benefit the lazy generation of views (i.e. Picto) is pro-
viding. In contrast, if the number of accessed views increases past
the crossing point with certain batch transformation, then the final
generation time of Picto would be greater.

The first crossing point involves Picto and the multi-thread
batch transformation times. This crossing happens at 40, 100, 177,
and 758 accessed views (14 to 16% of the total number of views).
These numbers show that, when considering the generation of all
views, parallelising this generation contributes to a great reduction
of the computation times.

23The same model order is used when enumerating values below.

0 400 800 1200

Accessed views

0

10

20

30

40

50

A
cc
u
m
u
la
te
d
ti
m
e
(s
)

gencomps-12.9K.model

0 2000 4000 6000

Accessed views

0

50

100

150

200

gencomps-29K.model

single-thread multi-thread Picto

Figure 15: Time results for the component model visualisa-

tion scenario on the 6-core/12-thread CPU of the desktop

computer. The x-axis represents the number of views ac-

cessed up to a certain point, while the y-axis indicates the

accumulated time it took to generate those views.

The second crossing takes place when Picto’s accumulated time
reaches the execution time of the single-thread batch transforma-
tion. This crossing happens in all experiments when almost all
the views have been generated. Precisely, it takes place when 235,
588, 1088, and 4972 views have been generated. The extra time
that Picto requires to generate the remaining views (i.e. the ones
that have not been accessed yet) is an overhead of its lazy M2T
functionality, which is avoided when generating all views at once
in the batch transformation. However, the measured overhead is
very small, oscillating between 2 and 4% of the total generation
time for Picto when compared with single-threaded batch figures.

4.2.2 Component model visualisation. With respect to the (syn-
thetic) component model visualisation scenario, Figure 15 includes
the results for the two biggest models we generated. The first model,
gencomps-12.9K, is 9.3 MiB in size, contains around 12.9K compo-
nents (hence the name), and its visualisation included generating a
total of 1221 views. As for the bigger gencomps-29K model, its num-
bers go up to 23.8 MiB in size, 29K component elements, and 6888
views. With respect to crossing points, Picto and the multi-thread
batch execution crossed after accessing 158 and 883 views (∼12% of
the total number of views for both cases) for the gencomps-12.9K
and gencomps-29K models, while the crossing with the single-
thread execution happens at 1081 and 6337 views (88% and 91% of
the views, respectively).

If we compare the results of both visualisation scenarios, we can
see that the obtained times for the component models are consistent
with those shown for Ecore metamodels. There is an increase in the
total generation time in the case of the components scenario that
we attribute to the larger size of these models, which translated
into bigger view computing times. For instance, the eMoflonTTC17
metamodel and the gencomps-12.9K model visualisations contain a
similar number of views, with 1090 and 1221 views, respectively.
Nevertheless, the size of these models is 3.3 and 9.3 MiB which,
summed to the difference of 121 total views between the visualisa-
tions, causes a noticeable difference in the single-thread and Picto

total times (36.9 and 37.0 seconds for eMoflonTTC17 and 43.2 and
48.8 for gencomps-12.9K). For the multi-threaded batch execution,

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

0 80 160 240
0

2

4

6

8

A
cc
u
m
u
la
te
d
ti
m
e
(s
)

UML.ecore

0 200 400 600
0

5

10

15

20

25
CIM.ecore

0 250 500 750 1000

Accessed views

0

10

20

30

40

A
cc
u
m
u
la
te
d
ti
m
e
(s
)

eMoflonTTC17.ecore

0 1250 2500 3750 5000

Accessed views

0

25

50

75

100

125

150

RevEngSirius.ecore

single-thread multi-thread Picto

Figure 16: Time results for the Ecore metamodel visualisa-

tion scenario on the 2-core/4-thread CPU of the laptop. The

x-axis represents the number of views accessed up to a cer-

tain point, while the y-axis indicates the accumulated time

it took to generate those views.

though, the times remained fairly similar for both models (6.0 and
6.3 seconds, respectively). These times suggest that the parallel
execution of Ecore metamodels was not able to deplete all the com-
puting resources offered by the 6-core/12-thread computer CPU, so
there were some resources available to cope with the generation of
121 extra component views (that require more computation time)
in a very close total time. A similar comparison can be carried
out between the RevEngSirius metamodel and the gencomps-29K
component model.

4.2.3 Laptop Platform results. Lastly, Figure 16 shows the obtained
times for the Ecore experiments when the generations were exe-
cuted on a laptop. In that case, the obtained times were very similar
for the Picto and single-thread executions to those of the desktop
machine. On the other hand, the benefits of the multi-threaded
version were not as significant, because the parallel execution in
a 2-core/4-thread CPU could not provide the same performance
as a more capable 6-core/12-thread CPU. In that case, and for the
Ecore experiments depicted in Figure 16, the crossing between the
multi-thread execution and Picto happened at 102, 253, 458 and
2192 accessed views (∼42% of the total views for all models), which
indicates that, for lower-spec platforms, the use of Picto is even
more beneficial.

4.3 Discussion

The obtained results indicate that Picto’s lazyM2T view generation
approach can have a very low upfront cost, it scales up linearly
with the number of views accessed, and it only has a very small
cumulative overhead compared to single-threaded batch execution.

Its low upfront execution time and linear scalabilitymakes Picto’s
lazy view generation approach particularly efficient for visualis-
ing large evolving models, where a modest number of views are
accessed between edits. For scenarios where models and visualisa-
tion transformations are immutable, and a substantial number of
views are expected to be accessed by users, batch (and particularly
multi-threaded) transformation is more efficient.

As the discussion in this section has focused solely on per-
formance, it is worth noting that even in such cases involving
immutable models and transformations, a reason for considering
Picto could be its support for features such as layers, custom and
composite views, that would need to be reimplemented from scratch
in a batch M2T approach.

4.4 Threats to Validity

The main threat to the validity of the obtained results is potential
bias in the selection of the two visualisation transformations we
used for experimental evaluation. As Picto is a new tool, at the
time of writing this paper, there are no externally-developed vi-
sualisation transformations that we could reuse. To mitigate this
threat, we chose to develop and use transformations that produce
views that closely follow established graphical notations (class and
component diagrams).

Regarding the low upfront execution time of Picto demonstrated
in both experiments, it should be stressed that this is not a property
guaranteed by Picto, but a property of the individual transforma-
tions instead. Care has been taken for both transformations to do as
little work as possible during their upfront view tree computation
phase (see Section 3.2.1) and to defer all other computation to the
lazy view content generation phase (see Section 3.2.2). Transfor-
mations that need to do a substantial amount of work during the
former phase, can lead to higher upfront execution times, negating
some of the efficiency benefits of Picto.

5 RELATED WORK

Sprotty [6], is a state-of-the-art visualisation framework that allows
the rendering of graphical views using web-based technologies. A
Sprotty application is formed of an S-Model (Sprotty model) to
represent the current diagram, a client component (responsible
for rendering an S-Model in a browser) and an optional server
component (responsible for mapping the semantic model ś which
can be in any format, such as XMI or database for example ś into an
S-Model). Layouting can be performed either on the client or server
by using frameworks such as ELK24 and ELKJS25 respectively.

As Sprotty runs in a web-browser and server, it can be used
in a variety of scenarios, including being in a standalone web-
browser application, browser-based IDEs such as Eclipse Theia or
embedded into the Eclipse IDE. Sprotty has been shown to have
good compatibility with the Language Sever Protocol (LSP) and can
work well with visualising Xtext DSLs26.

Sprotty has been shown to provide features such as bi-directional
navigation between the textual models and diagrams, and filtering.

24https://www.eclipse.org/elk/
25https://github.com/kieler/elkjs
26https://github.com/TypeFox/theia-xtext-sprotty-example

https://www.eclipse.org/elk/
https://github.com/kieler/elkjs
https://github.com/TypeFox/theia-xtext-sprotty-example

Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation MODELS’20, October 18, 2020, Montreal, Canada

Depending on how the mapping from the semantic model to the S-
Model is defined, model transformations can be implemented using
batch transformations or on-the-fly. Sprotty is very customisable
and extensible as it uses dependency injection allowing additional
components to be added or the default components to be replaced.

Sprotty does not support modification of the semantic model,
however projects such as the Eclipse Graphical Language Server
Protocol (GLSP) [5] built atop of Sprotty and can allow diagrams to
be edited via a web-browser based application.

Also related to Picto is the KIELER Lightweight Diagram frame-
work (KLighD) [17]. This framework allows for on-demand model
visualisation of models by using EMF, Xtend and Piccolo2D (2D
graphics framework). KLighD provides three EMF based models for
describing the diagram: a KGraph, KLayoutData and KRendering
model. KLighD supports layouting provided by KIELER Infrastruc-
ture for Meta Layout (KIML), a predecessor to ELK. KLighD can
provide filtering in the form of łHierarchy Levelsž and limited fine
tuning of diagrams (by allowing a user to adjust whitespace, di-
rection components are facing). To map a semantic model to the
KGraph and KRendering models, KLighD provides an extension
point and Java/Xtend interface which a user must implement al-
lowing a user to define model-to-model transformations written in
Xtend to transform the semantic model into respective KGraph and
KRendering models. An example of a tool created with KLighD is
EcoreViz where Ecore metamodels can be created dynamically27.

Both Sprotty and KLighD only support node-edge diagrams and
do not provide built-in support for generating hierarchies (trees)
of views from a single model, or from multiple models conforming
to different modelling technologies. In contrast, Picto supports
Graphviz and Plantuml diagrams, form/table views using HTML,
as well as views based on arbitrary Javascript libraries such as
Three.js (see Figure 12). It also provides support for hierarchical
visualisation of hybrid models by leveraging the respective facilities
of the Epsilon platform. In principle, Picto and Sprotty can be
used complementarily, with Sprotty acting as one of the rendering
technologies supported by Picto.

6 CONCLUSIONS AND FUTUREWORK

In this paper we have conducted a critical review of common ap-
proaches for producing graphical views from models, and then
introduced a novel approach for producing transient graphical
views using lazy model-to-text transformation. We have also pre-
sented the open-source Picto tool, which implements the proposed
approach, and evaluated the efficiency benefits it delivers compared
to batch model-to-text transformation.

The proposed method has been shown to have a low upfront
cost, to scale up linearly and to deliver substantial efficiency bene-
fits when a modest number of views is accessed by users between
changes in the underlying models ś which is often the case in
practice. In terms of visualisation capabilities, being based on M2T
transformation and browser-based rendering, Picto can reuse any
JavaScript-based visualisation library and can also be extended
through dedicated Eclipse extension points with support for ad-
ditional 3rd party tools beyond Graphviz and PlantUML. Having
said that, it is worth reiterating that Picto is not a replacement

27https://github.com/kieler/ecoreviz

for graphical model editing frameworks such as Sirius but instead
targets use-cases where read-only views are desirable/sufficient.

Future work on Picto includes view-based model differencing,
and developing a bespoke rule-based language for view generation
which will provide first-class support for core Picto concepts (e.g.
view format, layers, path) as opposed to piggy-backing on EGL’s
parameters block (see lines 6-16 of Listing 7).

Acknowledgements The work in this paper has been partially
funded through the HICLASS InnovateUK project (contract no.
113213), an InnovateUK co-funded Knowledge Transfer Partner-
ship between the University of York and Rolls-Royce plc (contract
no. KTP011043), and the TYPHON EC H2020 project (contract no.
780251).

REFERENCES
[1] El Arbi Aboussoror, Ileana Ober, and Iulian Ober. 2012. Seeing Errors: Model

Driven Simulation Trace Visualization. In Model Driven Engineering Languages
and Systems, Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 480ś496.

[2] Bastien Amar, Hervé Leblanc, Bernard Coulette, and Clémentine Nebut. 2010.
Using Aspect-Oriented Programming to Trace Imperative Transformations. In
Proceedings of the 14th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2010, Vitória, Brazil, 25-29 October 2010. IEEE Computer Society,
143ś152. https://doi.org/10.1109/EDOC.2010.12

[3] Hugo Brunelière, Jordi Cabot, Grégoire Dupé, and FrédéricMadiot. 2014. MoDisco:
A model driven reverse engineering framework. Inf. Softw. Technol. 56, 8 (2014),
1012ś1032. https://doi.org/10.1016/j.infsof.2014.04.007

[4] R. Ian Bull, Casey Best, and Margaret-Anne D. Storey. 2004. Advanced widgets
for Eclipse. In Proceedings of the 2004 OOPSLA workshop on Eclipse Technol-
ogy eXchange, ETX 2004, Vancouver, British Columbia, Canada, October 24, 2004,
Michael G. Burke (Ed.). ACM, 6ś11. https://doi.org/10.1145/1066129.1066131

[5] Eclipse Foundation. [n.d.]. Eclipse Graphical Language Server Protocol (GLSP).
https://www.eclipse.org/glsp/

[6] Eclipse Foundation. [n.d.]. Eclipse Sprotty. https://projects.eclipse.org/projects/
ecd.sprotty

[7] E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. 1993. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering 19, 3 (March
1993), 214ś230. https://doi.org/10.1109/32.221135

[8] Carlos A. González, Fabian Büttner, Robert Clarisó, and Jordi Cabot. 2012.
EMFtoCSP: a tool for the lightweight verification of EMF models. In Proceedings
of the First International Workshop on Formal Methods in Software Engineering -
Rigorous and Agile Approaches, FormSERA 2012, Zurich, Switzerland, June 2, 2012,
Stefania Gnesi, Stefan Gruner, Nico Plat, and Bernhard Rumpe (Eds.). IEEE, 44ś50.
https://doi.org/10.1109/FormSERA.2012.6229788

[9] Steven Kelly, Kalle Lyytinen, and Matti Rossi. 2013. MetaEdit+ A Fully Config-
urable Multi-User andMulti-Tool CASE and CAME Environment. In Seminal Con-
tributions to Information Systems Engineering, 25 Years of CAiSE, Janis A. Bubenko
Jr., John Krogstie, Oscar Pastor, Barbara Pernici, Colette Rolland, and Arne
Sùlvberg (Eds.). Springer, 109ś129. https://doi.org/10.1007/978-3-642-36926-1_9

[10] Steven Kelly, Kalle Lyytinen, Matti Rossi, and Juha-Pekka Tolvanen. 2013.
MetaEdit+ at the Age of 20. In Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, Janis A. Bubenko Jr., John Krogstie, Oscar Pastor,
Barbara Pernici, Colette Rolland, and Arne Sùlvberg (Eds.). Springer, 131ś137.
https://doi.org/10.1007/978-3-642-36926-1_10

[11] Dimitrios S. Kolovos, Nicholas Matragkas, and Antonio García-Domínguez. 2016.
Towards Flexible Parsing of Structured Textual Model Representations. In Pro-
ceedings of the 2nd Workshop on Flexible Model Driven Engineering co-located
with ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages & Systems (MoDELS 2016), Saint-Malo, France, October 2, 2016 (CEUR
Workshop Proceedings, Vol. 1694). CEUR-WS.org, 22ś31. http://ceur-ws.org/Vol-
1694/FlexMDE2016_paper_3.pdf

[12] Rainer Koschke. 2002. Software Visualization for Reverse Engineering. In Software
Visualization (International Seminar Dagstuhl Castle, Revised Papers), Stephan
Diehl (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 138ś150.

[13] Daniel Moody. 2009. The łPhysicsž of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans. Softw. Eng.

35, 6 (Nov. 2009), 756âĂŞ779. https://doi.org/10.1109/TSE.2009.67
[14] PlantUML Team. [n.d.]. PlantUML. https://plantuml.com
[15] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. 2008.

The Epsilon Generation Language. In Model Driven Architecture - Foundations
and Applications, 4th European Conference, ECMDA-FA 2008, Berlin, Germany,

https://github.com/kieler/ecoreviz
https://doi.org/10.1109/EDOC.2010.12
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1145/1066129.1066131
https://www.eclipse.org/glsp/
https://projects.eclipse.org/projects/ecd.sprotty
https://projects.eclipse.org/projects/ecd.sprotty
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/FormSERA.2012.6229788
https://doi.org/10.1007/978-3-642-36926-1_9
https://doi.org/10.1007/978-3-642-36926-1_10
http://ceur-ws.org/Vol-1694/FlexMDE2016_paper_3.pdf
http://ceur-ws.org/Vol-1694/FlexMDE2016_paper_3.pdf
https://doi.org/10.1109/TSE.2009.67
https://plantuml.com

MODELS’20, October 18, 2020, Montreal, Canada Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper

June 9-13, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5095), Ina
Schieferdecker and Alan Hartman (Eds.). Springer, 1ś16. https://doi.org/10.1007/
978-3-540-69100-6_1

[16] Beatriz Sánchez, Athanasios Zolotas, Horacio Hoyos Rodriguez, Dimitris S.
Kolovos, and Richard F. Paige. 2019. On-the-Fly Translation and Execution
of OCL-Like Queries on Simulink Models. In 22nd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, MODELS 2019, Mu-
nich, Germany, September 15-20, 2019, Marouane Kessentini, Tao Yue, Alexander
Pretschner, Sebastian Voss, and Loli Burgueño (Eds.). IEEE, 205ś215. https:
//doi.org/10.1109/MODELS.2019.000-1

[17] C. Schneider, M. Spönemann, and R. von Hanxleden. 2013. Just model! ś Putting
automatic synthesis of node-link-diagrams into practice. In 2013 IEEE Symposium
on Visual Languages and Human Centric Computing. 75ś82.

[18] Ricardo Solmi. [n.d.]. The Whole Platform. https://whole.sourceforge.io/
[19] Miro Spönemann, Christoph Daniel Schulze, Christian Motika, Christian Schnei-

der, and Reinhard von Hanxleden. 2013. KIELER: Building on automatic layout
for pragmatics-aware modeling. In 2013 IEEE Symposium on Visual Languages
and Human Centric Computing, San Jose, CA, USA, September 15-19, 2013, Caitlin

Kelleher, Margaret M. Burnett, and Stefan Sauer (Eds.). IEEE Computer Society,
195ś196. https://doi.org/10.1109/VLHCC.2013.6645265

[20] Oskar van Rest, GuidoWachsmuth, Jim R. H. Steel, Jörn Guy Süß, and Eelco Visser.
2013. Robust Real-Time Synchronization between Textual and Graphical Editors.
In Theory and Practice of Model Transformations - 6th International Conference,
ICMT 2013, Budapest, Hungary, June 18-19, 2013. Proceedings (Lecture Notes in
Computer Science, Vol. 7909), Keith Duddy and Gerti Kappel (Eds.). Springer,
92ś107. https://doi.org/10.1007/978-3-642-38883-5_11

[21] Markus Voelter and Sascha Lisson. 2014. Supporting Diverse Notations in MPS’
Projectional Editor. In Proceedings of the 2nd International Workshop on The
Globalization of Modeling Languages co-located with ACM/IEEE 17th International
Conference on Model Driven Engineering Languages and Systems, GEMOC@Models
2014, Valencia, - Spain, September 28, 2014 (CEUR Workshop Proceedings, Vol. 1236),
Benoît Combemale, Julien DeAntoni, and Robert B. France (Eds.). CEUR-WS.org,
7ś16. http://ceur-ws.org/Vol-1236/paper-03.pdf

[22] Guido Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Language Design
with the Spoofax Language Workbench. IEEE Software 31, 5 (2014), 35ś43. https:
//doi.org/10.1109/MS.2014.100

https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1109/MODELS.2019.000-1
https://doi.org/10.1109/MODELS.2019.000-1
https://whole.sourceforge.io/
https://doi.org/10.1109/VLHCC.2013.6645265
https://doi.org/10.1007/978-3-642-38883-5_11
http://ceur-ws.org/Vol-1236/paper-03.pdf
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1109/MS.2014.100

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Picto
	3.1 Running Example
	3.2 Model-to-Text Transformation
	3.3 Layers
	3.4 Binding Visualisations To Models
	3.5 Custom Views
	3.6 Additional Examples

	4 Evaluation
	4.1 Comparison Method
	4.2 Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

