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Automated Verification of Reactive and

Concurrent Programs by Calculation

Simon Foster, Kangfeng Ye, Ana Cavalcanti, Jim Woodcock

Abstract

Reactive programs combine traditional sequential programming constructs with primitives to allow commu-
nication with other concurrent agents. They are ubiquitous in modern applications, ranging from compo-
nents systems and web services, to cyber-physical systems and autonomous robots. In this paper, we present
an algebraic verification strategy for concurrent reactive programs, with a large or infinite state space. We
define novel operators to characterise interactions and state updates, and an associated equational theory.
With this we can calculate a reactive program’s denotational semantics, and thereby facilitate automated
proof. Of note is our reasoning support for iterative programs with reactive invariants, based on Kleene
algebra, and for parallel composition. We illustrate our strategy by verifying a reactive buffer. Our laws
and strategy are mechanised in Isabelle/UTP, our implementation of Hoare and He’s Unifying Theories of
Programming (UTP) framework, to provide soundness guarantees and practical verification support.

1. Introduction

Reactive programming [23, 3] is a paradigm that enables effective description of software systems that
exhibit both internal sequential behaviour and event-driven interaction with a concurrent party. Reactive
programs are ubiquitous in safety-critical systems, and typically have a very large or infinite state space.
Though model checking is an invaluable verification technique, it exhibits inherent limitations with state
explosion and infinite-state systems that can be overcome by supplementing it with theorem proving.

Previously [14], we have shown how reactive contracts support an automated verification technique for
reactive programs. Reactive contracts follow the design-by-contract paradigm [32], where programs are ac-
companied by pre- and postconditions. Reactive programs are often non-terminating and so we also capture
intermediate behaviours, where the program has not terminated, but is quiescent and offers opportunities
to interact. Our contracts are triples, [P1 −| P2 |P3], where P1 is the precondition, P3 the postcondition, and
P2 the pericondition. P2 characterises the quiescent observations in terms of the interaction history, and
the events enabled at that point. Broadly speaking, our contract theory has its roots in the CSP process
algebra [26], and its failures-divergences semantic model [38, 8].

Reactive contracts describe communication and state updates, so P1, P2, and P3 can refer to both a
trace history of events and internal program variables. They are, therefore, called “reactive relations”: like
relations that model sequential programs, they can refer to variables before (x) and later (x ′) in execution,
but also the interaction trace (tt), in both intermediate and final observations.

Verification using contracts employs refinement (⊑), which requires that an implementation weakens the
precondition, and strengthens both the peri- and postcondition when the precondition holds. We employ the
“programs-as-predicates” approach [25], where the implementation (Q) is itself denoted as a composition
of contracts. Thus, a verification problem, [P1 −| P2 |P3] ⊑ Q, can be solved by calculating a program
[Q1 −| Q2 |Q3] = Q, and then discharging three proof obligations: (1) Q1 ⊑ P1; (2) P2 ⊑ (Q2 ∧ P1); and
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(3) P3 ⊑ (Q3 ∧ P1). These can be further decomposed, using relational calculus, to produce verification
conditions. In [14] we employ this strategy in an Isabelle/HOL tactic.

In summary, in our approach verification of reactive programs reduces to reasoning about reactive rela-
tions. For programs of a significant size, these relations are complex, and so the resulting proof obligations
are difficult to discharge using relational calculus. We need, first, abstract patterns so that the relations can
be simplified. This necessitates bespoke constructs that allow us to concisely formulate the three parts of a
contract: assumptions, quiescent observations, and terminated observations. Second, we need calculational
laws to handle iterative programs, which are only partly handled in our previous work [14].

In this paper we present a novel calculus for description, composition, and simplification of reactive rela-
tions in the stateful failures-divergences model [38, 28, 35]. We characterise conditions, external interactions,
and state updates. An equational theory allows us to reduce pre-, peri-, and postconditions to composi-
tions of the new constructs using operators of Kleene algebra [30] (KA) and utilise KA proof techniques.
Our theory is characterised in the Unifying Theories of Programming [28, 8] (UTP) framework. For that,
we identify a class of UTP theories that induce KAs, and utilise it in the derivation of calculational laws
for iteration. We use our UTP mechanisation, called Isabelle/UTP [13, 20], to implement an automated
verification approach for infinite-state reactive programs with rich data structures based on our calculus.

Our framework can be applied to a wide spectrum of reactive programming languages with trace-based
semantics, including real-time and hybrid dynamical systems [24, 48, 42]. A particular focus is languages
descended from CSP [26, 38]. In this paper, our approach is applied to the Circus modelling language [46,
35] which combines state modelling using Z [43] and reactive primitives from CSP [26, 38]. An example
application is verification of Simulink block diagrams, to which both Circus and hybrid CSP [24] have
been succesfully applied [7, 49]. More recently, Circus and CSP have been used for verification of a formal
state-machine based language for robotic controllers called RoboChart [33, 12].

The paper is structured as follows. §2 outlines preliminary material, including UTP, its mechanisation
in Isabelle/UTP, and reactive programs. §3 identifies a class of UTP theories that induce KAs, and applies
this class for calculation of iterative contracts. §4 specialises reactive relations with new operators to capture
stateful failures-divergences, and derives their equational theory. This allows us to automatically calculate
semantics for sequential reactive programs. §5 extends our equational theory with support for calculating
external choices, for programs where the environment has control over a decision. We also develop healthiness
conditions characterising productivity – a requirement for both algebraic laws of external choice and iteration.
§6 extends the strategy with while loops and reactive invariants. §7 encodes parallel composition as a reactive
design, and further extends the strategy with calculational laws for concurrent behaviours. With this, we can
then calculate semantics for concurrency and communication between reactive processes. §8 demonstrates
the resulting proof strategy in a small verification. §9 outlines related work and concludes.

All our theorems, definitions, and proofs have been mechanically verified in Isabelle/UTP, and are
documented in a series of technical reports1 [20, 11, 16, 17]. Additionally, most theorems and definitions in

the paper are accompanied by a small Isabelle icon ( ). In the electronic version, each icon is hyperlinked
to the corresponding mechanised artefact in our Isabelle/UTP GitHub repository2.

This paper is an extension of [18]. It adds a body of additional theorems in §4 on more specialised
healthiness conditions for stateful-failure reactive relations (Theorem 4.3), calculation of iterative reactive
relations (Theorem 4.8-(7)), preconditions of reactive contracts (Theorem 4.11), and also extended support-
ing commentary. Moreover, a substantial new §7 extends the strategy for parallel composition. A number
of additional supporting theorems and definitions are also included in the other sections.

2. Preliminaries

This section describes background material relevant for the definition of our new calculus.

1For historical reasons, we use the syntax Rs(P ⊢ Q ⋄ R) in our mechanisation for a contract [P −| Q |R]. The former builds
on Hoare and He’s original syntax for the theory of designs [28].

2Isabelle/UTP repository: https://github.com/isabelle-utp/utp-main. An archive containing all the files for this paper,
and instructions on how to load them into Isabelle/HOL, can also be found at http://doi.org/10.5281/zenodo.3541080.
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2.1. Unifying Theories of Programming

UTP [28, 8] uses the “programs-as-predicates” approach to encode denotational semantics and facilitate
reasoning about programs. It uses the alphabetised relational calculus, which combines predicate calculus
operators, such as disjunction (∨), complement (¬), and quantification (∃ x • P(x)), with relation alge-
bra [44], to denote programs as binary relations between initial variables (x) and their subsequent values
(x ′). Here, “alphabetised” means that every such relational predicate is accompanied by a set of variables
to which the predicate can refer. For example, a program fragment, x := 1 ; x := x + y, with two distinct
variables, can be modelled by the relational predicate x ′ = y+1 ∧ y′ = y, with the alphabet α = {x, x ′, y, y′}.

In this presentation of the UTP, we first define the set of alphabetised expressions, [V, α]uexpr, which is
parametric over V and α, types that represents the value type and state space. The latter corresponds to the
alphabet, with a set of typed variable declarations. Expressions are isomorphic to functions α → V, which
return a value in V for a given state space. Alphabetised predicates are represented by Boolean expressions,
[α]upred , [bool, α]uexpr. We denote the set of alphabetised relations by [α, β]urel , [α×β]upred, a predicate
over a product space, where α and β denote the sets of undashed and dashed variables3, called the input
and output alphabets. The set of homogeneous relations [α]hrel , [α, α]urel has identical input and output
alphabets. We often notationally distinguish predicates over a unitary type and relations over a product
type by use of boldface characters; for example, true is a predicate and true is a relation.

For any given α and β, [α, β]urel is partially ordered by refinement ⊑ (refined-by), denoting universally
closed reverse implication, where false refines every relation. In this context, S ⊑ P means that P is more
deterministic that S . For example, we have it that (x ′ > 2) ⊑ (x := 3), since the specification that x should
finally have a value greater than 2 is satisfied by assigning 3 to x.

Every operator of a sequential programming language can be denoted using relations in UTP. Relational
composition (P ; Q) denotes sequential composition, and has the type [α, β]urel → [β, γ]urel → [α, γ]urel,
since the output alphabet of the first relation must match the input alphabet of the second. Sequential
composition has identity II , (v ′ = v), of type [α]hrel, where v denotes the entire state.

We summarise the algebraic properties of a homogeneous UTP theory of relations in terms of Boolean
quantales [34], a useful algebraic structure for characterising homogeneous relations.

Definition 2.1 (Boolean Quantales). A Boolean quantale [34] is a structure (S ,≤, 0, ·, 1), where (S ,≤) is a
complete Boolean lattice with least element 0; (S , ·, 1) is a monoid with 0 as left and right annihilator; and
the function · distributes over the lattice join from the left and right.

Theorem 2.2. For any α, ([α]hrel,⊒, false, ;, II) is a Boolean quantale [34], so that:

1. ([α]hrel,⊑) is a complete lattice, with infimum
∨

, supremum
∧

, greatest element false, least element
true, and weakest (least) fixed-point operator µF;

2. ([α]hrel,∨, false,∧, true,¬) is a Boolean algebra;

3. ([α]hrel, ;, II) is a monoid with false as left and right annihilator;

4. ; distributes over
∨

from the left and right.

We emphasise that our complete lattice is inverted compared to several conventions [31, 34], which is
normal for UTP [28, 8]. In particular, we often use ⊓

i∈I
P(i) to denote an indexed disjunction over I ,

which intuitively refers to a nondeterministic choice, and likewise P ⊓ Q to denotes P ∨ Q. As we have
mentioned, refinement reduces nondeterminism, which is illustrated by the following law.

l

i∈I

P(i) ⊑
l

j∈J

P(j) when J ⊆ I

In other words, refinement reduces the possible choices that a program is permitted to make. We note that
the partial order ≤ of the Boolean quantale is ⊒, and so our lattice operators are inverted: for example,

∨

is the infimum with respect to ⊑, and µF is the least fixed-point.

3Textbook presentations of UTP [28, 8] typically use inαP and outαP to denote the input and output alphabet. Here, we
find it more convenient to invoke parametric sets, which is also consistent with our mechanisation.
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Relations can be used to denote sequential programming constructs like assignment and iteration [28, 1].
From these denotations the algebraic laws of programming can be derived [27], along with operational
and axiomatic presentations of the semantics [28]. Moreover, relations can be enriched to characterise more
advanced computational paradigms — such as object orientation [41], real-time [42], hybrid computation [15],
and concurrency [28] — using UTP theories that encode semantic domains.

UTP theories use distinguished observational variables to record observable quantities of the program or
operating environment. By their very nature, such variables are not under the control of the programmer,
and instead are governed by logical invariants called healthiness conditions. For example, we may introduce
variables time, time′ : R≥0 into α to record the time before and after a real-time program fragment executed.
We can then define a delay construct, wait(n) , time′ = time + n ∧ v′ = v, where v is shorthand for any
variable other than time, that advances time whilst leaving all other variables unchanged.

Normally time can only advance, and so a desirable healthiness condition is time ≤ time′, a predicate
that any relation modelling a healthy real-time program should respect. The delay construct wait(n) is an
example of a healthy relation, and time = 1 ∧ time′ = 0 is an unhealthy one. We can also prove more
general theorems for the other relational operators: for example, if P and Q are both healthy, then also
clearly P ; Q is healthy, by transitivity of ≤. Similar closure laws can be proved for other operators, which
allows us to characterise the signature, or syntax, of our UTP theory: the set of function symbols guaranteed
to construct healthy programs when the arguments are healthy.

UTP thus inverts the typical denotational semantic approach of defining an inductive syntax tree, for
example using an algebraic datatype, and then giving it a semantics by a recursive function. It has the
significant advantages that we can (1) further constrain our semantic domain by adding extra healthiness
conditions, and (2) extend the signature with additional syntax when necessary, whilst at the same time
retaining all theorems proved with respect to the existing healthiness conditions and operators. Moreover,
we avoid the need to perform induction over the syntax tree in our proofs.

A UTP theory can be formally characterised as the set of fixed-points of a function H : [α]hrel → [α]hrel,
that models the healthiness conditions. For example, HT (P) , (P ∧ time ≤ time′) is an idempotent
healthiness function whose fixed-points are those relations that satisfy time ≤ time′. Any predicate on the
observational variables can be encoded as a healthiness function in this way, and therefore we treat the
terms healthiness condition and healthiness function as synonyms. If P is a fixed-point of H, it is said to
be H-healthy, and the set of healthy relations is JHKH , {P | H(P) = P}.

In UTP, it is desirable that H is idempotent (H ◦H = H) and also monotonic (X ⊑ Y ⇒ H(X) ⊑ H(Y )).
Idempotence ensures that, for any P, H(P) is indeed H-healthy, and also means that JHKH is actually the
image of H. Monotonicity additionally ensures, by the Knaster-Tarski theorem, that JHKH forms a complete
lattice under ⊑. Consequently, there exist strongest and weakest fixed-points operators, which allow us to
reason about both nondeterministic and recursive elements of the UTP theory.

Often, we construct a UTP theory by composition of several healthiness functions, H1 ◦ H2 · · · ◦ Hn. In
this case, we can demonstrate idempotence and monotonicity of H using the following important theorem:

Theorem 2.3. We assume that H , H1 ◦ H2 · · · ◦ Hn. Then, H is idempotent provided that (1) each Hi, for
i ∈ 1..n is idempotent, and (2) each pair commutes: for any i, j ∈ 1..n, such that i 6= j, Hi ◦ Hj = Hj ◦ Hi.

Moreover, H is monotonic, provided each Hi is monotonic.

Consequently, we can reason about a composite healthiness condition in terms of its components. In this
paper, we use such a UTP theory to characterise concurrent and reactive programs.

2.2. Isabelle/UTP

Theory engineering and verification using UTP is supported by Isabelle/UTP [13, 20], which provides a
shallow embedding of the relational calculus on top of Isabelle/HOL, and various approaches to automated
proof. The foundation of Isabelle/UTP is its model of observations, which utilises lenses [10, 13, 20] to
model variables as algebraic structures. A lens is a pair of functions get : S → V and put : S → V → S,
which are used to query and update a view (V) of a larger observation space (S). We write X : V =⇒ S
for a lens X viewing V in the source S, and getX and putX for its functions. Typically, S is characterised
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by an alphabet of variables (α), and consequently we can safely conflate the state space and alphabet. We
characterise the behaviour of each lens using three axioms [10], which link together the functions.

Definition 2.4 (Lens Axioms). A lens X : V =⇒ S satisfies, for any s : S and v, v′ : V, the equations

get (put s v) = v put (put s v′) v = put s v put s (get s) = s

In this paper, we require that all lenses satisfy these three axioms. We note in passing that these axioms have
close analogues in Back and von Wright’s variable calculus [2], which predate lenses by several years. There,
get is called val and put is called set, but they are governed by the same axioms. These axioms have several
models including record types, total functions, and products [13, 20]. From them, we can characterise the
laws of assignment and substitution without dependence on a particular state model. Moreover, we describe
semantically when two lenses correspond to different variables, using lens independence [13].

Definition 2.5. We require that X : V1 =⇒ S and Y : V2 =⇒ S, and then define:

X ⊲⊳ Y , (∀ s : S, u : V1, v : V2 • putX(putY s v) u = putY (putX s u) v)

X and Y are independent provided that their put functions commute, meaning that they do not interfere
with one another. Lenses can model, not just individual variables, but also sets thereof. Intuitively, a lens
X : V =⇒ S abstractly characterises a V-shaped subregion of a S. The lens summation operator [13], X ⊕Y ,
allows us to compose two such regions, provided they are independent (X ⊲⊳ Y ). With it, we can model a
set of variables {x, y, z} through the summation, x ⊕ y ⊕ z. We also introduce two special lenses [13]:

• 0 : {∅} =⇒ S, which for any given S, characterises an empty (point) region; and

• 1 : S =⇒ S, which characterises the entirety of S.

We can also use lenses to construct a state space by combining the view of one state s2 : S with the
complement from another state s1 : S. This is useful for merging of parallel threads that act on disjoint
parts of the state. We define a novel lens override operator to perform this state merge.

Definition 2.6. We fix X : S =⇒ V and s1, s2 : S, and define s1 ⊳X s2 , putX s1 (getX s2)

Lens override (s1⊳X s2) extracts the region described by X from s2 and overwrites the corresponding region
in s1, leaving the complement unchanged. This operator obeys a number of useful algebraic laws.

Theorem 2.7 (Override Laws).

s1 ⊳0 s2 = s1 (1)

s1 ⊳1 s2 = s2 (2)

s ⊳X s = s (3)

(s1 ⊳X s2)⊳Y s3 = (s1 ⊳Y s3)⊳X s3 provided X ⊲⊳ Y (4)

Law (1) shows that overriding s1 with s2 using 0, the empty lens, effectively means that we use none of
s2, and (2) is the dual case with the 1 lens. Law (3) shows that overriding a source element is idempotent.
Law (4) is a kind of commutativity law. In the term s1 ⊳X s2 ⊳Y s3 we are constructing a composite source
from the X region of s2, the Y region of s3, and the remainder from s1, with the assumption that X and Y
are independent. The law shows that we can, in this case, commute the order in which we apply s2 and s3.

We can also relate lenses using the sublens preorder [13], X � Y , which requires that the view of x is
contained within the view of y. For example, X � X ⊕ Y – the order is analogous to a subset relation for
variable sets: {x, y} � {x, y, z}. Moreover, 0 � X and X � 1, as these are the smallest and largest lenses.

With lenses, we can also construct substitutions, which are modelled as functions σ : S → S. They are
used in Isabelle/UTP to unify variable substitutions, state updates, assignments, and evaluation contexts,
also following the pattern given by Back and von Wright [2]. We can construct substitutions Lx1 7→ v1, x2 7→
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v2, · · · , xn 7→ vnM, which assign an expression vi : [Vi ,S]uexpr to each lens xi : Vi =⇒ S with a matching
view type. Each expression can refer to the previous values of the variables, and variables not mentioned
retain their current value. A substitution σ : S → S can be applied to an expression e : [V,S]uexpr using the
operator σ † e , e ◦ σ, which precomposes the characteristic function of e with the substitution function.
We can then define e[v/x] , Lx 7→ vM † e to obtain the classical substitution operator. It obeys similar laws
to syntactic substitution, though it is a semantic operator [13].

This substitution constructor is syntactic sugar for a more general update operator σ(x 7→ v), which
updates the value of lens x to expression v. Specifically, Lx1 7→ v1, x2 7→ v2, · · ·M = id(x1 7→ v1)(x2 7→ v2) · · · ,
where id is the identity substitution. Substitution update obeys several useful laws.

Theorem 2.8 (Substitution Laws).

σ(x 7→ x) = σ (1)

σ(x 7→ e, y 7→ f ) = σ(y 7→ f , x 7→ e) if x ⊲⊳ y (2)

σ(x 7→ e, y 7→ f ) = σ(y 7→ f ) if x � y (3)

σ †(f e1 · · · en) = f (σ † e1) · · · (σ † en) (4)

σ(x 7→ e) † x = e (5)

An update of a variable to itself has no effect (1). We can commute two updates provided the variables
are independent (2). An update to y overrides one to x when x is a narrower lens than y, or is equivalent
(3). Substitution application distributes through applied function symbols (4), and replaces variables with
their assigned value (5). These laws provide the foundation for modelling state in a variety of works. In this
paper, lenses are valuable in characterising concurrent state updates, as demonstrated in §7.

2.3. Reactive Programs

Whilst sequential programs determine the relationship between an initial and final state, reactive pro-
grams also pause during execution to interact with the environment. For example, the CSP [26, 8] and
Circus [46, 35] languages can model networks of concurrent processes that communicate using shared chan-
nels. Reactive behaviour is described using primitives such as event prefix a→P, which awaits event a and
then enables P; conditional guard, b & P, which enables P when b is true; external choice P✷Q, where the
environment resolves the choice by communicating an initial event of P or Q; and iteration while b do P.
Channels can carry data, and so events can take the form of an input (c?x) or output (c!v). Circus processes
also have encapsulated state variables that can be assigned (x := v).

We exemplify the Circus notation with the program for an unbounded buffer.

Example 2.9. In the Buffer process below, variable bf : seqN is a sequence of natural numbers4 that
records the elements, and channels inp(n : N) and outp(n : N) represent inputs and outputs.

Buffer , bf := 〈〉 ;





while true do

inp?v → bf := bf a 〈v〉
✷ (#bf > 0) & out!(head(bf )) → bf := tail(bf )





Here, xsays denotes sequence concatenation [43], and 〈x, y, z, · · · 〉 denotes an enumerated sequence. Variable
bf is set to the empty sequence 〈〉, and then a non-terminating loop describes the main behaviour. Its body
repeatedly allows the environment to either provide a value v over inp, followed by which bf is extended, or
else, if the buffer is non-empty, receive the value at the head, and then bf is contracted.

Circus has previously been given both a denotational [35] and an operational semantics [47], which
are linked in the UTP framework. Here, we build on these previous results and capture the axiomatic
semantics for reactive programs using reactive contracts [14]. Reactive contracts can be used both to specify

4In Isabelle/UTP, we model sequences using the HOL parametric type [A]list, which represents inductive lists.

6



requirements for reactive programs, under certain assumptions, and also to assign denotational semantics
to each operator of a reactive programming language. The denotational semantics symbolically encodes the
possible transitions a reactive program can exhibit. We can therefore use a theorem prover to reason about
a reactive program with a very large or infinite state space. As an example application, we have used them
for verifying state-machine diagrams in the RoboChart language [12].

Reactive contracts are built with the following constructor, which is part of our UTP theory’s signature:

[P1(tt, st, r) −| P2(tt, st, r , r
′) | P3(tt, st, st

′, r , r ′) ]

P1 is called the precondition, P2 is the pericondition, and P3 is the postcondition. The notation Pi(x, y, z)
indicates that relation Pi may refer only to x, y, and z explicitly; any number of variables may be indicated.
The variables are modelled as lenses, but for brevity we omit this technicality. Variable tt refers to the
trace, which is modelled using a trace algebra [15], and st, st ′ : Σ to the state, for state space Σ. Traces
are equipped with operators for the empty trace 〈〉, concatenation tt1 a tt2, prefix tt1 ≤ tt2, and difference
tt1 − tt2, which removes a prefix tt2 from tt1.

P1−3 are reactive relations [14]: a specialised form of UTP relation with information about the trace
history and state. They respectively encode, (1) the precondition in terms of the initial state and per-
missible traces; (2) possible intermediate interactions with respect to an initial state; and (3) final states
following execution. Pericondition P2 and postcondition P3 are both within the “guarantee” part of the
underlying design contract, and so can be strengthened by refinement; see [14] for details. P2 does not
refer to intermediate state variables since they are concealed when a program is quiescent. We sometimes
abbreviate [ truer −| P2 | P3 ], a contract with a true precondition, with the notation [ −| P2 | P3 ]. Our pre-
condition corresponds to the “assume” part of a contract. Reactive contracts lie with the greater field of
assume-guarantee conditions [4, 5, 40]; a detailed comparison can be found in [14].

In this paper, traces are modelled as finite sequences, tt : seq Event, for some set of events given by Event,
though other models are also admitted [15]. Events can be parametric, written a.x, where a is a channel and
x is the data. Moreover, the relations can encode additional semantic data, such as refusals, using variables
r , r ′. Our theory, therefore, provides an extensible denotational semantic model for reactive and concurrent
languages. To exemplify, we consider the semantics of the skip, event, and assignment actions from Circus,
which require that we add variable ref ′ : P(Event) to record refusals.

Definition 2.10 (Skip Action, Terminated Event Prefix, and Assignment).

Skip , [ truer −| false | tt = 〈〉 ∧ st ′ = st ]

Do(a) ,
[

truer −
∣

∣ tt = 〈〉 ∧ a /∈ ref ′
∣

∣ tt = 〈a〉 ∧ st ′ = st
]

x := v , [ truer −| false | st ′ = st(x 7→ v) ∧ tt = 〈〉 ]

Each of these contracts specifies the possible behaviours that can be observed in the reactive program. Skip

is an action that cannot diverge, and immediately terminates leaving the state unchanged. Its precondition
is truer , the universal reactive relation (defined below), since it is always satisfied. The pericondition is false

because there are no quiescent behaviours. In the postcondition, we define that no events occur (tt = 〈〉),
and the state is left unchanged (st ′ = st). The event action (Do(a)) also has a true precondition. In the
pericondition, we specify that in an intermediate state no events have occurred, but a is not being refused –
intuitively this means that the program is waiting to engage in the a event. In the postcondition, we specify
that the trace is extended by a, since it has now happened, and the state is unchanged. With this we can
define the Circus event prefix: a → P , Do(a) ; P. Assignment also has a true precondition, and a false
pericondition since it terminates without interaction. The postcondition specifies the updates to the state,
and leaves the trace unchanged.

As mentioned, reactive contracts can also be used as a specification mechanism. For example, we can
define the following contract for deadlock-freedom.

Example 2.11 (Deadlock-freedom Contract). CDF ,
[

truer −
∣

∣ ∃ e • e /∈ ref ′
∣

∣ truer

]
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CDF requires that every intermediate observation must exhibit at least one enabled event e, that is, one event
e is not being refused – that is what deadlock-freedom means. The pre- and postcondition do not specify any
particular behaviours, since we are only concerned with quiescent observations. Any reactive program that
refines CDF must always have an enabled transition. For example, it is the case that CDF ⊑ Do(a). This
can be formally demonstrated using the contract refinement theorem below (Theorem 2.14). First though,
we give an overview of the encoding of reactive contracts in UTP.

Following the UTP approach, the constructor [P1 −| P2 | P3 ] is really syntactic sugar for a complex
relation [14] that is defined using constructs from the UTP theories of reactive processes and designs5.
Consequently, contracts can be composed using the UTP relational operators. Reactive relations and con-
tracts are characterised by healthiness conditions RR and NSRD, respectively, which we have previously
described [14], and reproduce in Table 1. They are all both idempotent and continuous [14]. The observa-
tional variables include ok and wait, which are used to distinguish normal from divergent behaviour, and
quiescent from terminating behaviour, respectively. NSRD specialises the theory of reactive designs [8, 35]
to normal stateful reactive designs [14]. This version of reactive designs imposes the requirement that st ′

cannot be referenced in the pericondition, as we assume that quiescent observations do not reveal the state.
Reactive relations characterise the inner elements of a reactive contract, namely the pre-, peri-, and

postconditions. Using healthiness conditions called R1 and R2 , RR ensures that every observation describes
a well-formed trace (tt), and furthermore does not depend on ok or wait, as these are only required by the
reactive contract infrastructure. Technically, tt is not a relational variable, but a special variable tt , tr ′−tr
where tr , tr ′, as usual in UTP, encode the trace relationally [28], under the assumption that RR is satisfied.
Nevertheless, due to our previous results [20, 15], tt can be treated as a variable, and it is more intuitive to
do so. We treat tr and tr ′ as semantic machinery that is concealed in tt, which represents the actual trace.

Preconditions of a reactive contract are elements JRCKH, which specialises RR by requiring that only the
initial state (st) is referenced, and that the trace is prefix closed. The intuition here is that when a trace
violates the precondition of a contract, then any extension of this trace must also violate it, similar to how
the set of divergences in CSP is extension closed [6]. By duality, if a trace satisfies the precondition, then
any prefix of the trace must also satisfy the precondition, and hence the precondition is prefix closed with
respect to the trace. The basic reactive relational operators are defined below.

Definition 2.12 (Reactive Relational Operations).

truer , R1(true) (¬r P) , R1(¬P) P ⇒r Q , (¬r P ∨ Q)

IIr , (tr ′ = tr ∧ st ′ = st ∧ v ′ = v) IIR , ((∃ st • II)2wait 3 II)2 ok 3(tr ≤ tr ′)

The theory of reactive relations forms a Boolean algebra, but we have to redefine true, ¬, and ⇒ as these
are not reactive relations. The relational true is not RR healthy, since it permits any combination of tr and
tr ′, and so we define truer to be the least reactive relation. We also need a bespoke complement, (¬r P),
because JRRKH is similarly not closed under ¬. So, after taking the negation, we need to apply R1 to obtain
a healthy relation. We also redefine implication for the same reasons (P ⇒r Q). We do not need to redefine
false because, unlike true, it is already RR-healthy, and the same follows for the other logical connectives.
We then have proved the following theorem [14].

Theorem 2.13. (JRRKH,∨, false,∧, truer ,¬r ) forms a Boolean algebra

Both JRRKH and JNSRDKH are closed under sequential composition, and have units IIr and IIR , respec-
tively. We note that IIR and Skip are different operators, as the latter does not restrict ref in the peri-
condition [14]. Both UTP theories also form complete lattices under ⊑, with top elements false and
Miracle = [truer −| false | false], respectively. Chaos = [false −| false | false], the least determinisitic contract,
is the bottom of the reactive contract lattice. Any action refines Chaos, and it therefore allows us to denote
unspecified or unpredictable behaviour. We define the conditional operator P2b3Q , ((b∧P)∨(¬b∧Q)),
where b is a condition on state variables, which can be used for both reactive relations and contracts.

5The definition of contracts is here omitted, for reasons of brevity, but it can be found in [14]
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Healthiness Condition Description

R1(P) , P ∧ tr ≤ tr ′ The trace monotonically increases

R2(P) , P[〈〉, tr ′ − tr/tr , tr ′]2 tr ≤ tr ′ 3P The trace extension is independent of the history

R3h(P) , IIR 2wait 3P When a predecessor is quiescent behave as IIR

RR(P) , (∃(ok, ok ′,wait,wait′) • R1(R2(P))) Reactive Relations; no references to ok and wait

RC(P) , R1(RR(P) ; tr ′ ≤ tr) Reactive Conditions: trace is also prefix closed

SRD1 (P) , (ok ⇒r P) Observations are only possible without divergence

SRD3 (P) , (P ; IIR) Reactive skip is a right unit for ;

NSRD , SRD3 ◦ SRD1 ◦ R3h ◦ R2 ◦ R1 Normal Stateful Reactive Designs

Table 1: Overview of Reactive Design Healthiness Conditions

Verification can be facilitated through refinement [P1 −| P2 |P3] ⊑ Q, where the required property is
specified as an explicit contract triple, and the program Q is an NSRD relation. Contract refinement allows
the precondition to be weakened, and the peri- and postcondition both to be strengthened [14].

Theorem 2.14 (Reactive Design Refinement).

[P1 −| P2 | P3 ] ⊑ [Q1 −| Q2 | Q3 ] if, and only if, P1 ⇒ Q1, P2 ⊑ (Q2 ∧ P1), and P3 ⊑ (Q3 ∧ P1).

Thus, if the contract of the reactive program Q can be calculated to be [Q1 −| Q2 |Q3], then refinement follows
by three proof obligations: (1) P1 ⇒ Q1; (2) P2 ⊑ (Q2 ∧ P1); and (3) P3 ⊑ (Q3 ∧ P1). In words, the
precondition must be weakened, and both the peri- and postcondition must be strengthened, assuming the
precondition P1 holds. As usual, refinement can remove choices, making a contract more deterministic. A
consequence is that a non-terminating contract, with postcondition false, can refine a terminating contract.
Indeed we have that for any P, P ⊑ Miracle. We can avoid refinement by miraculous behaviour by adding
feasibility healthiness conditions [28, 8], though this is not a concern for this paper.

Contracts can be composed using relational calculus. The following identities [14, 16] show how this
entails composition of the underlying pre-, peri-, and postconditions for

d
and ;, and also demonstrate

closure of reactive contracts under these operators.

Theorem 2.15 (Reactive Contract Composition).

d
i∈I [P1(i) −| P2(i) |P3(i)] =

[
∧

i∈I P1(i) −
∣

∣

∨

i∈I P2(i)
∣

∣

∨

i∈I P3(i)
]

(1)

[P1 −| P2 | P3 ]2 b 3 [Q1 −| Q2 | Q3 ] = [P1 2 b 3Q1 −| P2 2 b 3Q2 | P3 2 b 3Q3 ] (2)

[P1 −| P2 |P3] ; [Q1 −| Q2 |Q3] = [P1∧(P3 wlpr Q1) −| P2∨(P3 ;Q2) |P3 ;Q3 ] (3)

[ −| P2 | P3 ] ; [ −| Q2 | Q3 ] = [ −| P2∨(P3 ;Q2) |P3 ;Q3 ] (4)

Nondeterministic choice requires all preconditions, and asserts that one of the peri- and postcondition pairs
hold. Conditional (P 2 b 3Q) distributes through a reactive contract. For sequential composition, the
precondition assumes that P1 holds, and that P3 does not violate Q1. The latter is formulated using a
reactive weakest liberal precondition (wlpr). Intuitively, P wlpr b is the weakest reactive condition such
that when P terminates, it satisfies b. It obeys standard predicate transformer laws [9, 14] such as:

(
∨

i∈I P(i))wlpr R =
∧

i∈I P(i)wlpr R (P ;Q)wlpr R = P wlpr(Q wlpr R) P wlpr truer = truer

In the pericondition of Theorem 2.15-(3), it is specified that an intermediate observation if either of the
first contract (P2), or else it terminated (P3) and then following we have an intermediate observation of
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the second contract (Q2). In the postcondition, the observation specified is for when the contracts have
both terminated (P3 ; Q3). The final law, Theorem 2.15-(4), is a simpler case of the previous law. If both
preconditions are true, then since P2 wlpr truer reduces to truer , the overall precondition is also truer .

With these and related theorems [14], we can calculate contracts of reactive programs. Verification, then,
can be performed by proving refinement between two reactive contracts, a strategy we have mechanised in
the Isabelle/UTP tactics rdes-refine and rdes-eq [14]. The question remains, though, of how to reason
about the underlying compositions of reactive relations for the pre-, peri-, and postconditions. As an
example, we consider the action (a → Skip) ; x := v. To reason about its postcondition, we must simplify
(tt = 〈a〉 ∧ st ′ = st) ; (st ′ = st(x 7→ v) ∧ tt = 〈〉). To simplify its precondition, we also need to consider
reactive weakest preconditions. Without such simplifications, reactive relations can grow very quickly and
hamper proof. Of particular importance is the handling of iterative and parallel reactive relations. We
address these issues in this paper.

3. Linking UTP and Kleene Algebra

In this section, we characterise properties of a UTP theory sufficient to identify a Kleene Algebra [30],
and use this to obtain theorems for iterative contracts. The results in this section apply, not only to stateful-
failure reactive designs, but the larger class of reactive designs (NSRD) as well. Consequently, the theorems
can be applied in the context of other trace models [15].

Kleene Algebras (KA) characterise sequential and iterative behaviour in nondeterministic programs using
a signature (K ,+, 0, ·, 1, ∗), where + is a choice operator with unit 0, and · a composition operator, with
unit 1. Kleene closure P∗ denotes iteration of P using · zero or more times.

We consider the class of weak Kleene algebras [22], which build on weak dioids, as these are the most
useful class of Kleene algebra to characterise reactive programs.

Definition 3.1. A weak dioid is an algebraic structure (K ,+, 0, ·, 1) such that (K ,+, 0) is an idempotent
and commutative monoid; (K , ·, 1) is a monoid; the composition operator · left- and right-distributes over
+; and 0 is a left annihilator for ·.

The 0 operator represents miraculous behaviour. It is a left annihilator of composition, but not a right
annihilator as this often does not hold for programs. K is partially ordered by x ≤ y , (x + y = y), which
is defined in terms of +, and has least element 0. A weak KA extends this with the behaviour of the star.

Definition 3.2. A weak Kleene algebra is a structure (K,+, 0, ·, 1,∗ ) such that

1. (K ,+, 0, ·, 1) is a weak dioid

2. 1 + x · x∗ ≤ x∗

3. z + x · y ≤ y ⇒ x∗ · z ≤ y

4. z + y · x ≤ y ⇒ z · x∗ ≤ y

Various enrichments and specialisations of these axioms exist; for a complete survey see [30]. For our
purposes, these axioms alone suffice. From this base, a number of useful identities can be derived:

Theorem 3.3. 1∗ = 0∗ = 1 x∗∗ = x∗ x∗ = 1 + x · x∗ (x + y)∗ = (x∗ · y∗)∗ x · x∗ = x∗ · x

Kleene Algebra with Tests [31] (KAT) extends the algebra with conditions, and has been successfully applied
in program verification [1, 21]. A test is a kind of assumption that entails miraculous behaviour if a condition
is violated, and is otherwise ineffectual. The set of tests T are those elements a, b ∈ K below the identity:
a ≤ 1, over which a Boolean algebra is defined. Tests enjoy a number of additional properties.

Theorem 3.4. a · 0 = 0 a · b = b · a a∗ = 1

UTP relations form a KA (Rel,⊓, ;, II,∗ ), where P∗ , (νX • II ⊓ P ; X). This definition is equivalent to
P∗ = (⊓

i∈N
P i) [19] where Pn iterates sequential composition n times. The proof proceeds by application

of antisymmetry, the star induction law of Definition 3.2, and the complete lattice theorems.
Typically, UTP theories, like JNSRDKH, share the operators for choice (⊓) and composition (;), only

redefining them when absolutely necessary. Formally, given a UTP theory defined by a healthiness condition
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H, the set of healthy relations JHKH is closed under ⊓ and ;. This has the major advantage that a large body of
laws is directly applicable from the relational calculus. The ubiquity of ⊓, in particular, can be characterised
through the subset of continuous UTP theories, where H distributes through arbitrary non-empty infima.
We formally define this class of healthiness condition below.

Definition 3.5 (Continuous Healthiness Condition).

H
(

⊓
i∈I

P(i)
)

= ⊓
i∈I

H(P(i)) provided I 6= ∅

An infinite nondeterministic choice is necessary to support Kleene star iteration. Monotonicity of H follows
from continuity, and so such theories induce a complete lattice. Moreover, if H is defined by composition
H1 ◦ H2 · · · ◦ Hn, as in Theorem 2.3, then we can show it is continuous by showing each Hi is continuous.
Continuous UTP theories include designs [28, 22], CSP, and Circus [35]. A consequence of continuity is that
the relational weakest fixed-point operator µX • F(X) constructs healthy relations when F : Rel → JHKH.

Though these theories share infima and weakest fixed points, they do not, in general, share ⊤ and ⊥
elements, which is why the infima are non-empty Definition 3.5. Rather, we have a top element ⊤H , H(false)
and a bottom element ⊥H , H(true) [14]. The theories also do not share the relational identity II, but
typically define a bespoke identity IIH , which means that JHKH is not closed under the relational Kleene
star. However, JHKH is closed under Kleene plus, P+ , P ; P∗, since it is equivalent to (⊓

i∈N
P i+1), which

iterates P one or more times. Thus, we can obtain a theory Kleene star with P∗ , IIH ⊓ P+, under which
H is indeed closed. We, therefore, define the following criteria for a UTP theory.

Definition 3.6. A Kleene UTP theory (H, IIH) satisfies the following conditions: (1) H is idempotent and
continuous; (2) H is closed under sequential composition; (3) identity IIH is H-healthy; (4) it is a left- and
right-unit, IIH ; P = P ; IIH = P, when P is H-healthy; and (5) ⊤H ; P = ⊤H , when P is H-healthy.

From these properties, we can prove the following theorem.

Theorem 3.7. If (H, IIH) is a Kleene UTP theory, then (JHKH,⊓,⊤H, ;, IIH,
∗ ) forms a weak Kleene algebra.

Proof. We prove this in Isabelle/UTP by lifting of laws from the Isabelle/HOL KA hierarchy [1, 21]. For
details see [11].

The identities of Theorem 3.3 hold in a Kleene UTP theory, which allow us to reason about iterative
programs. In particular, we can show that (JNSRDKH,⊓,Miracle, ;, IIR ,

∗ ) and (JRRKH,⊓, false, ;, IIr ,
∗ ) both

form weak KAs. Moreover, we can now also show how to calculate iterative contracts [16].

Theorem 3.8 (Reactive Contract Iteration).

[P1 −| P2 | P3 ]
∗

= [P∗

3 wlpr P1 −| P∗

3 ; P2 | P∗

3 ]

[P1 −| P2 | P3 ]
+
=
[

P∗

3 wlpr P1 −
∣

∣ P∗

3 ; P2

∣

∣ P+
3

]

We note that the outer and inner star are different operators. The outer star is formed from the identity
IIR , and the inner star from IIr . The precondition states that P3 must not violate P1 after any number
of iterations. The pericondition has P3 iterated followed by P2 holding, since the final observation is
intermediate. The postcondition simply iterates P3. We also provide a similar law for the Kleene plus
operator. It distributes in the same way, except that both the precondition and the pericondition use the
star because they must hold before the first iteration; only the postcondition uses the plus.

In this section we have established the basis for calculating and reasoning about iterative reactive con-
tracts. In the next section we specialise our UTP theory to stateful-failure reactive designs, and developed
the underlying equational theory. We return to the subject of iteration in Section 6.
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4. Reactive Relations of Stateful Failures-Divergences

In this section, we specialise our contract theory to incorporate failure traces, which are used in CSP,
Circus, and related languages [48]. We define atomic operators to describe the underlying reactive relations,
and the associated equational theory to expand and simplify compositions arising from Theorems 2.15 and
3.8, and thus support automated reasoning. We consider external choice separately (§5).

The failures-divergences model [38] was defined to give a denotational semantics to CSP. It models a
process with a pair of sets: F ⊆ P(seq Event × P Event) and D ⊆ P(seq Event), which are, respectively, the
set of failures and divergences. A failure is a trace of events plus a set of events can be refused at the end of
the interaction. A divergence is a trace of events that leads to divergent behaviour, that is, unpredictable
behaviour like that of Chaos. A distinguished event X ∈ Event is used as the final element of a trace to
indicate that this is a terminating observation. The UTP gives a relational account of the failures-divergences
model [28], which was expanded upon by Woodcock and Cavalcanti [8], and by Oliveira [36] to account for
state variables in Circus [35]. It is this latter model that we here call the stateful failures-divergences model.

Healthiness condition NCSP , NSRD ◦ CSP3 ◦ CSP4 characterises the stateful failures-divergences
model [8, 35]. Healthiness conditions CSP3 and CSP4 are defined below.

Definition 4.1 (Stateful-Failure Healthiness Conditions).

CSP3(P) , (Skip ; P) There are no references to ref .

CSP4(P) , (P ; Skip) The postcondition may not refer to ref ′.

CSP3 and CSP4 ensure the refusal sets are well-formed [8, 28]: ref ′ can be mentioned only in the pericon-
dition, since refusals are only observed in quiescent observations. NCSP, like NSRD, is continuous and has
Skip, defined below, as a left and right unit. Thus, (JNCSPKH,⊓,Miracle, ;,Skip,∗ ) forms a Kleene algebra.
An NCSP contract has the following specialised form [17].

[

P1(tt, st) −
∣

∣ P2(tt, st, ref ′)
∣

∣ P3(tt, st, st
′)
]

The underlying reactive relations capture a portion of the stateful failures-divergences. P1 is the precondi-
tion, which captures the initial states and traces that do not induce divergence. It corresponds to the the
complement of D, the set of divergences [38, 8]. P2 is the pericondition, which captures the stateful failures
of a program: the set of events not being refused (ref ′) having performed trace tt, starting in state st. It
corresponds to the the failure traces in F that are not terminating. P3 captures the terminated behaviours,
where a final state is observed but no refusals. It, of course, corresponds to the traces in F that have X as
the final element. We now characterise these reactive relations using healthiness conditions.

Definition 4.2. Stateful-failure Reactive Relations, Finalisers, and Conditions are characterised as fixed-
points of the healthiness conditions CRR, CRF , and CRC defined below.

CRR(P) , ∃ ref • RR(P) CRF (P) , ∃(ref , ref ′) • RR(P) CRC(P) , ∃ ref • RC(P)

These are straightforward extensions of the healthiness conditions for reactive relations (RR) and conditions
(RC) that we previously defined [14] and are presented in Table 1. In addition to requiring that the relations
describe a well-formed trace, CRR, CRF , and CRC require that there is no reference to ref , because there
is never a dependence on the refusal set of a predecessor. Reactive finalisers (CRF ) additionally forbid
reference to ref ′: they are used to characterise postconditions in a stateful-failure reactive contracts. Every
CRF -healthy relation is also CRR-healthy; further containments are shown in Figure 1. We can formally
characterise NCSP contracts with the following theorem.

Theorem 4.3. [P1 −| P2 | P3 ] is NCSP-healthy if the following conditions are satisfied:

1. P1 is CRC-healthy;

2. P2 is CRR-healthy;
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Figure 1: Reactive Relational Healthiness Conditions Venn diagram

3. P2 does not refer to st′; and

4. P3 is CRF-healthy.

Due to the restrictions on ref, IIr is not CRR-healthy, and so we define the identity relation below.

Definition 4.4. IIc , (st ′ = st ∧ tr ′ = tr)

This identity specifies only that the trace and state remain unchanged, whilst ref is unspecified, and so
it is CRF -healthy. IIc is a left unit for CRR, CRF , and CRC-healthy relations, but it is a right unit only
for CRF . This is because in P ; IIc, if P refers to ref ′ then this information is lost, whilst CRF relations do
not refer to ref ′. We can construct a Kleene algebra for CRF -healthy relations.

Theorem 4.5. (JCRFKH,⊓, false, ;, IIc,
∗ ) forms a weak Kleene algebra.

Using the Kleene star operators for NCSP and CRF , we can also revalidate Theorem 3.8 in this context.
This is necessary because the star in Theorem 3.8 is defined in terms of IIr and not IIc. Nevertheless the
two star operators are strongly related, and so we need only to slightly adapt the proof.

Having defined our theories of stateful-failure reactive relations, we now proceed to define operators for
constructing pre-, peri-, and postconditions. These operators allow us to describe a distinct pattern for the
form of reactive programs. We describe this pattern using the following constructs.

Definition 4.6 (Reactive Relational Operators).

Assumption: I[s(st), t(st)] , CRC(s(st)⇒r ¬r (t(st) ≤ tt))

Quiescence: E [s(st), t(st),E(st)] , CRR(s(st) ∧ tt = t(st) ∧ (∀ e∈E(st) • e /∈ ref ′))

Finalisation: Φ[s(st), σ, t(st)] , CRR(s(st) ∧ st ′ = σ(st) ∧ tt = t(st))

We utilise expressions s, t, and E that refer only to the variables indicated. Namely, s : B is a condition
on st, t : seq Event is a trace expression that describes an event sequence in terms of st, and E : PEvent
describes a set of events. The use of trace expressions allows us to handle symbolic traces that contain free
state variables, and characterise a potentially infinite number of traces with a finite presentation. With this,
we can calculate semantics for reactive programs with an infinite number of states.

I[s(st), t(st)] is a CRC-healthy reactive condition that is used to specify assumptions on the state and
trace in preconditions. It states that, if the state initially satisfies condition s, then t is not a prefix of
the overall trace. For example, the assumption I[x > 2, 〈a, b〉] means that if the state variable x is initially
greater than 2, then we disallow the trace 〈a, b〉, and any extension thereof. The intuition here is that t is a
trace that introduces divergence, and so any extension of t violates the precondition. Put another way, any
trace that is a either strict prefix or orthogonal to t satisfies the precondition when s holds. Effectively, t
sets a strict upper bound on the traces permitted by the precondition.

E [s(st), t(st),E(st)] is used in periconditions to specify quiescent observations, and corresponds to a set
of symbolic failure traces. It specifies that the state variables initially satisfy s, the interaction described
by t has occurred, and finally we reach a quiescent phase where none of the events in E are being refused.
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It has the form of an acceptance trace [38], as this provides a more comprehensible presentation, but the
semantics is encoded as a collection of failure traces. Specifically, (∀ e∈E(st) • e /∈ ref ′) defines all possible
refusals that satisfy symbolic acceptance set E . We sometimes write E [t(st),E(st)] when s is true.

Φ[s(st), σ, t(st)] is used in postconditions to specify final terminated observations. It specifies that the
initial state satisfies s, the state update σ is applied to update st, and the symbolic interaction t has occurred.
Since Φ[s, σ, t] does not refer to ref ′, it is CRF -healthy. We sometimes write Φ[σ, t(st)] in the case that s is
true. Moreover, we also introduce the abbreviation [s]c , Φ[s, id, 〈〉] that denotes a reactive relational test
(or assumption) on the state of the property s.

These operators are all deterministic, in the sense that they describe a single interaction and state-update
history. There is no need for explicit nondeterminism here, as this is achieved using

∨

. These operators
allow us to concisely specify the basic operators of our theory as given below.

Definition 4.7 (Basic Reactive Operators).

〈σ〉C , [ truer −| false | Φ[true, σ, 〈〉] ] (1)

Skip = 〈id〉C (2)

Do(a) = [ truer −| E [true, 〈〉, {a}] | Φ[true, id, 〈a〉] ] (3)

Stop , [ truer −| E [true, 〈〉, ∅] | false ] (4)

The definitions of Skip and Do(a) are expressed as theorems that we have proved using Definition 2.10.
However, for the remainder of this paper we treat these identities as definitions. Generalised assignment
〈σ〉C is again inspired by [2]. It has a truer precondition and a false pericondition: it has no intermediate
observations. The postcondition states that for any initial state (true), the state is updated using σ, and no
events are produced (〈〉). A singleton assignment x := v can be expressed using 〈x 7→ v〉C . We can use it to
show that Skip = 〈id〉C , where id : Σ → Σ is the identity function that leaves all variables unchanged.

Do(a) encodes an event action. Its pericondition states that no event has occurred, and a is accepted.
Its postcondition extends the trace by a, leaving the state unchanged. We can denote Circus event prefix
a → P as Do(a) ; P. Finally, Stop represents a deadlock: its pericondition states the trace is unchanged
and no events are being accepted. The postcondition is false as there is no way to terminate. A Circus guard
g & P can be denoted as (P 2 g 3Stop), which behaves as P when g is true, and otherwise deadlocks.

To calculate contractual semantics, we need laws to reduce pre-, peri-, and postconditions. These need to
cater for compositions of quiescent and final observations using operators like internal choice (

d
), sequential

composition (;), and external choice (✷, see §5). So, we prove [17] the following laws for E and Φ.

Theorem 4.8 (Reactive Relational Compositions).

Φ[true, id, 〈〉] = IIc (1)

Φ[s1, σ1, t1] ; Φ[s2, σ2, t2] = Φ[s1 ∧ σ1 † s2, σ2 ◦ σ1, t1 a σ1 † t2] (2)

Φ[s1, σ1, t1] ; E [s2, t2,E ] = E [s1 ∧ σ1 † s2, t1 a σ1 † t2, σ1 †E ] (3)

Φ[s1, σ1, t1]2 c 3Φ[s2, σ2, t2] = Φ[s1 2 c 3 s2, σ1 2 c 3σ2, t1 2 c 3 t2] (4)

E [s1, t1,E1]2 c 3 E [s2, t2,E2] = E [s1 2 c 3 s2, t1 2 c 3 t2,E1 2 c 3E2] (5)
(

∧

i∈I

E [s(i), t,E(i)]

)

= E

[

∧

i∈I

s(i), t,
⋃

i∈I

E(i)

]

(6)

(

∨

i∈I

E [s(i), t,E(i)]

)

= E

[

∨

i∈I

s(i), t,
⋂

i∈I

E(i)

]

(7)

Φ[s, σ, t]
∗

=
l

n∈N

Φ





∧

i≤n

(σi † s), σn,
∏

j<n

(σj † t)



 (8)
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Law (1) gives the meaning of Φ with a trivial precondition, state update, and empty trace: it is simply
the reactive identity. Law (2) states that the composition of two terminated observations results in the
conjunction of the state conditions, composition of the state updates, and concatenation of the traces. It is
necessary to apply the initial state update σ1 as a substitution to both the second state condition (s2) and
the trace expression (t2). Law (3) is similar, but accounts for the enabled events rather than state updates.
Laws (2) and (3) are required because of Theorem 2.15-(3), which sequentially composes a pericondition
with a postcondition, and a postcondition with a postcondition.

Laws (4) and (5) show how conditional distributes through the operators. Law (6) shows that a conjunc-
tion of intermediate observations with a common trace corresponds to the conjunction of the state conditions,
and the union of the enabled events. It is needed for external choice, which conjoins the periconditions (see
§5). Law (7) shows the dual case of (6): when taking a choice of periconditions, we have the disjunction of
all the state conditions, and intersection of all enabled events.

Finally, (8) gives the meaning of an iterated final observation. The nondeterministic choice over n ∈ N

denotes the number of iterations. Inside, the Φ operator distributes iteration though the condition, state
updates, and trace. Here, f n is iterated function composition (f ◦ f ◦ f · · · ), and

∏

is iterated concatenation:

∏

i<n

xs(i) , xs(0)a xs(1)a · · ·a xs(n − 1)

The condition of an iterated final observation requires that s holds whenever σ is applied as a substitution
i times, where i ≤ n. The state update applies σ a total of n times in sequence. The trace expression
concatenates t a total of n times, and each instance has the state update applied j < n times.

We can now use these laws, along with Theorem 2.15, to calculate the semantics of processes, and to
prove equality and refinement conjectures, as we illustrate below.

Example 4.9. We show that (x :=1 ; Do(a.x) ; x := x+2) = (Do(a.1) ; x :=3). By applying Definition 4.7
and Theorems 2.15-(3), 4.8, 4.11, both sides reduce to [ −| E [true, 〈〉, {a.1}] | Φ[true, {x 7→ 3}, 〈a.1〉] ], which
has a single quiescent state, waiting for event a.1, and a single final state, where a.1 has occurred and state
variable x has been updated to 3. We calculate the left-hand side below.

(x :=1 ; Do(a.x) ; x := x + 2)

=





[ −| false | Φ[true, Lx 7→ 1M, 〈〉] ] ;

[ −| E [true, 〈〉, {a.x}] | Φ[true, id, 〈a.x〉] ] ;

[ −| false | Φ[true, Lx 7→ x + 1M, 〈〉] ]



 [Def. 4.7]

=







[

−

∣

∣

∣

∣

false ∨
Φ[true, Lx 7→ 1M, 〈〉] ; E [true, 〈〉, {a.x}]

∣

∣

∣

∣

Φ[true, Lx 7→ 1M, 〈〉] ;
Φ[true, id, 〈a.x〉]

]

;

[ −| false | Φ[true, Lx 7→ x + 1M, 〈〉] ]






[Thm. 2.15]

=

(

[ −| E [true[1/x], 〈〉[1/x], {a.x}[1/x]] | Φ[true[1/x], Lx 7→ 1M, 〈a.x〉[1/x]] ] ;

[ −| false | Φ[true, Lx 7→ x + 1M, 〈〉] ]

)

[Thm. 4.8]

=

(

[ −| E [true, 〈〉, {a.1}] | Φ[true, Lx 7→ 1M, 〈a.1〉] ] ;

[ −| false | Φ[true, Lx 7→ x + 1M, 〈〉] ]

)

=

[

−

∣

∣

∣

∣

E [true, 〈〉, {a.1}] ∨
Φ[true, Lx 7→ 1M, 〈a.1〉] ; false

∣

∣

∣

∣

Φ[true, Lx 7→ 1M, 〈a.1〉] ;
Φ[true, Lx 7→ x + 1M, 〈〉]

]

[Thm. 2.15]

= [ −| E [true, 〈〉, {a.1}] | Φ[true[1/x], Lx 7→ x + 1M ◦ Lx 7→ 1M, 〈a.1〉] ] [Thm. 4.8]

= [ −| E [true, 〈〉, {a.1}] | Φ[true, {x 7→ 3}, 〈a.1〉] ]

In the first step, we expand out the definitions of the three sequential actions using Definition 4.7. In the
second step, we employ Theorem 2.15 to calculate the sequential composition of the first two contracts. In
the third step, we use Theorem 4.8 to calculate the resulting composite peri- and postconditions, which in
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particular pushes the initial substitution into both the quiescent and terminated observations of the second
contract. In the fourth step, we apply the resulting substitutions to complete composition of the first two
contracts. In the remaining steps, we apply the same theorems again to compose with the third contract.

This proof can be automated using a single invocation of the rdes-eq tactic [14] in Isabelle/UTP, which
implements our calcuational proof strategy6. We can also use our calculation theorems, with the help of
rdes-eq, to prove a number of general laws, which would otherwise require a complex manual proof [17].

Theorem 4.10 (Stateful Failures-Divergences Laws).

〈σ〉C ; [P1 −| P2 | P3 ] = [σ †P1 −| σ †P2 | σ †P3 ] (1)

〈σ〉C ; Do(e) = Do(σ † e) ; 〈σ〉C (2)

x := v ; e → P = e[v/x] → x :=v ; P (3)

a → (P ⊓ Q) = (a → P) ⊓ (a → Q) (4)

〈σ〉C ; 〈ρ〉C = 〈ρ ◦ σ〉C (5)

Stop ; P = Stop (6)

Law (1) shows how a leading assignment distributes substitutions through a contract. Laws (2) and (5) are
consequences of Law (1). Law (2) shows that an assignment can be pushed through an event by applying
the substitution to the event expression. Law (3) is a further consequence of Law 1 that shows the case for
a singleton assignment and a prefixed action. Law (4) shows that a prefix event distributes from the left
through nondeterministic choice. Law (5) shows that composing two assignments yields a single assignment
where the two substitution functions are composed. Effectively, this law shows the correspondence between
functional and relational composition for deterministic relations represented by assignments. Finally, Law (6)
shows that the deadlock action, Stop, is a left annihilator.

So far, the reactive contracts we have considered have all contained trivial preconditions. However,
divergence is a useful modelling technique that allows us to model unspecified or unpredictable behaviour,
when certain assumptions are violated. We consider, for example, the simple action a → Skip ✷ b → Chaos.
If event a occurs, then it terminates, and if b occurs it diverges. The behaviour following the occurrence of
a is predictable (termination), but the behaviour following the occurrence of b is unpredictable.

In order to calculate contracts for actions of this form, we need to consider the weakest precondition
operator wlpr . So far, we have only considered simple formulae of the form P wlpr truer = truer ; we
now supply theorems for more sophisticated preconditions. Theorem 2.15-(3) requires that, in a sequential
composition P ; Q, we need to show that the postcondition of contract P satisfies the precondition of
contract Q. We, consider for example the following partial calculation of b → Chaos.

b → Chaos =Do(b) ; Chaos

= [ −| E [true, 〈〉, {b}] | Φ[true, id, 〈b〉] ] ; [ false −| false | false ]

= [Φ[true, id, 〈b〉] wlpr false −| E [true, 〈〉, {b}] ∨ false | false ]

= [Φ[true, id, 〈b〉] wlpr false −| E [true, 〈〉, {b}] | false ]

The postcondition is false, so this action has no final state. It can be quiescent, waiting for b to occur. We
cannot, however, calculate the precondition yet; it states that the trace 〈b〉 should never occur.

In general, the precondition of a reactive contract uses the weakest precondition of a previously applied
postcondition. Theorem 4.8 explains how to eliminate most composition operators in a contract’s postcon-
dition, but not disjunction (∨). Postconditions are, therefore, typically expressed as disjunctions of the Φ
operator. So, our weakest precondition calculus needs to handle disjunctions of Φ terms.

6Several examples of this can be found in our respository, using the link to the right.
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Theorem 4.11 (Reactive Preconditions).

Φ[s, σ, t] wlpr false = I[s, t] (1)

Φ[s1, σ, t1] wlpr I[s2, t2] = I[s1 ∧ σ † s2, t1 a (σ † t2)] (2)

I[false, t] = truer (3)

I[true, 〈〉] = false (4)

I[s1, t] ∧ I[s2, t] = I[s1 ∨ s2, t] (5)

I[s1, t] ∨ I[s2, t] = I[s1 ∧ s2, t] (6)

We recall that I[s, t] means that, if s is satisfied in the current state, then the action can only perform
traces that do not have t as a prefix, or else divergence will result. Law (1) calculates the weakest precondition
under which Φ[s, σ, t] achieves false, which is impossible. Consequently, we must require that the trace t
never occurs, when the state initially satisfies s. With this law, we can complete the contract calculation of
b → Chaos to obtain

[ I[true, 〈b〉] −| E [true, 〈〉, {b}] | false ]

whose precondition assumes that event b does not occur initially. Law (2) considers the final observation
specified I[s2, t2]. If we start in a state that satisifes s1 and s2 with state update σ applied, then an upper
bound on the trace is t1 a (σ † t2), which also inserts the state update.

The remaining laws are for different compositions for I. Law (3) shows that if an assumption’s condition
is false, then it reduces to the reactive precondition truer . Conversely, law (4) shows that if the condition
is true, but the trace is 〈〉, then this is false, since all traces are disallowed. The remaining two laws show
the effect of conjunction and disjunction on assumptions sharing a trace expression.

This completes the calculational approach for the core sequential programming operators. In the next
section, we extend our proof approach to support external choice [26, 38].

5. External Choice and Productivity

In this section we consider reasoning about external choice [26, 38], and characterise the class of produc-
tive contracts [14], which are also essential in verifying recursive and iterative reactive programs.

An external choice P ✷ Q resolves whenever either P or Q engages in an event or terminates. Thus, its
semantics requires that we filter observations with a non-empty trace. We introduce healthiness condition
R4(P) , (P ∧ tt > 〈〉), whose fixed points strictly increase the trace, and its dual R5(P) , (P ∧ tt = 〈〉)
where the trace is unchanged. We use these to define indexed external choice.

Definition 5.1 (Indexed External Choice).

✷ i ∈ I • [P1(i) −| P2(i) | P3(i) ] ,
[
∧

i∈I P1(i) −
∣

∣

(
∧

i∈I R5(P2(i))
)

∨
(
∨

i∈I R4(P2(i))
) ∣

∣

∨

i∈I P3(i)
]

This generalises the binary definition [28, 35], and recasts our definition in [14] for calculation. Like non-
deterministic choice, the precondition requires that all constituent preconditions are satisfied. In the peri-
condition, R4 and R5 filter all observations. We take the conjunction of all R5 behaviours: no event has
occurred, and all branches are offering an event. We take the disjunction of all R4 behaviours: an event
occurred, and the choice is resolved. In the postcondition the choice is resolved, either by synchronisation
or termination, and so we take the disjunction of all constituent postconditions. Since unbounded choice is
supported, we can denote indexed input prefix for any size of input domain A.

a?x :A → P(x) , ✷ x ∈ A • a.x → P(x)

We next show how R4 and R5 filter the various reactive relational operators.

17



Theorem 5.2 (Trace Filtering).

R4
(
∨

i∈I P(i)
)

=
∨

i∈I R4(P(i))

R4(Φ[s, σ, 〈〉]) = false

R4(Φ[s, σ, 〈a, ...〉]) = Φ[s, σ, 〈a, ...〉]

R5
(
∨

i∈I P(i)
)

=
∨

i∈I R5(P(i))

R5(E [s, 〈〉,E ]) = E [s, 〈〉,E ]

R5(E [s, 〈a, ...〉,E ]) = false

Both operators distribute through
∨

. Relations that produce an empty trace yield false under R4 and are
unchanged under R5 . Relations that produce a non-empty trace yield false for R5 , and are unchanged
under R4 . We can now filter the behaviours that do and do not resolve the choice, as exemplified below.

Example 5.3. We consider the calculation of the action a → b → Skip ✷ c → Skip. The left branch
has two quiescent observations, one waiting for a, and one for b having performed a: its pericondition is
E [true, 〈〉, {a}] ∨ E [true, 〈a〉, {b}]. Application of R5 to this yields the first disjunct, since the trace has not
increased, and application of R4 yields the second disjunct. For the right branch there is one quiescent
observation, E [true, 〈〉, {c}], which contributes an empty trace and is R5 only. The overall pericondition is

(E [true, 〈〉, {a}] ∧ E [true, 〈〉, {c}]) ∨ E [true, 〈a〉, {b}]

which is simply E [true, 〈〉, {a, c}] ∨ E [true, 〈a〉, {b}].

By calculation, we can now prove that (JNCSPKH,✷,Stop) forms a commutative and idempotent monoid,
and Chaos, the divergent program, is its annihilator. Sequential composition also distributes from the left
and right through external choice, but only when the choice branches are productive [14].

Definition 5.4. A contract [P1 −| P2 | P3 ] is productive when P3 is R4 -healthy.

A productive contract is one that, whenever it terminates, strictly increases the trace. For example a → Skip

is productive, but Skip is not. Constructs that do not terminate, like Chaos, are also productive. The
imposition of R4 ensures that only final observations that increase the trace, or are false, are admitted.

We define healthiness condition PCSP, which extends NCSP with productivity. We also define ICSP,
which formalises instantaneous contracts where the postcondition is R5 -healthy and the pericondition is
false. Both healthiness conditions are defined below.

Definition 5.5 (Productive and Instantaneous Healthiness Conditions).

Productive(P) , P ⊗ [ truer −| true | tr < tr ′ ]

ISRD1(P) , P ⊗ [ truer −| false | tr ′ = tr ]

PCSP , Productive ◦ NCSP

ICSP , ISRD1 ◦ NCSP

Here, the ⊗ operator combines two contracts by conjoining the pre-, peri-, and postconditions, that is:

[P1 −| P2 | P3 ]⊗ [Q1 −| Q2 | Q3 ] = [P1 ∧ Q1 −| P2 ∧ Q2 | P3 ∧ Q3 ]

Healthiness condition Productive leaves the pre- and periconditions unchanged, but conjoins the postcon-
dition with tr < tr ′ – the trace must strictly increase. ISRD1 similarly leaves the precondition unchanged,
but coerces the pericondition to false to remove quiescent observations. The postcondition is conjoined with
tr ′ = tr to disallow events from occuring. We then define PCSP and ICSP by composing the former two
functions with NCSP. These healthiness conditions obey the following equations for reactive contracts.

Theorem 5.6 (PCSP and ICSP contracts).

PCSP([P1 −| P2 | P3 ]) = [P1 −| P2 | R4(P3) ]

ICSP([P1 −| P2 | P3 ]) = [P1 −| false | R5(P3) ])
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Application of PCSP to a reactive contract is equivalent to applying R4 to its postcondition. Application
of ICSP to a reactive contract makes the pericondition false, and applies R5 to its postcondition, meaning
it can contribute no events. Both Skip and x := v are ICSP-healthy as they do not contribute to the trace
and have no intermediate observations. This allows us to prove the following laws.

Theorem 5.7 (External Choice Distributivity).

(✷ i∈I • P(i)) ; Q = ✷ i∈I • (P(i) ; Q) [if, ∀ i∈I ,P(i) is PCSP healthy]

P ; (✷ i∈I • Q(i)) = ✷ i∈I • (P ; Q(i)) [if P is ICSP healthy]

The first law follows because every P(i), being productive, must resolve the choice before terminating, and
thus it is not possible to reach Q before this occurs. It generalises the standard guarded choice distribution
law for CSP [28, page 211]. The second law follows for the converse reason: since P cannot resolve the
choice with any of its behaviour, it is safe to execute it first. Productivity also forms an important criterion
for guarded recursion that we use in §6 to calculate fixed points.

PCSP is closed under several operators.

Theorem 5.8 (Productive Constructions).

• Miracle, Chaos, Stop, and Do(a) are all PCSP healthy;

• b & P is PCSP if P is PCSP;

• P ; Q is PCSP if either P or Q is PCSP;

• ⊓ i ∈ I • P(i) is PCSP if, for all i ∈ I , P(i) is PCSP;

• ✷ i ∈ I • P(i) is PCSP if, for all i ∈ I , P(i) is PCSP.

With these results, calculation of external choice is now supported, and a notion of productivity, with
relevant laws, is defined. In the next section we use the latter for calculation of while-loops.

6. While Loops and Reactive Invariants

Iterative programs can be constructed using the reactive while loop.

b ⊛ P , (µX • P ; X 2 b 3Skip).

We use the weakest fixed-point so that an infinite loop with no observable activity corresponds to the
divergent action Chaos, rather than Miracle. For example, (true ⊛ x :=x+1 ) = Chaos. The true condition
is not a problem because, unlike its imperative counterpart, the reactive while loop pauses for interaction
with its environment, and therefore infinite executions are observable and potentially useful.

In order to reason about iteration, we need additional calculational laws. A fixed-point (µX • F(X)) is
guarded provided at least one event is contributed to the trace by F prior to it reaching X . For instance,
µX • a → X is guarded, but µX • y := 1 ; X is not. Hoare and He’s theorem [28, theorem 8.1.13, page
206] states that if F is guarded, then there is a unique fixed-point and hence (µX • F(X)) = (νX • F(X)).
So, provided F is continuous, we can invoke Kleene’s fixed-point theorem to calculate νF . Our previous
result [14] shows that if P is productive, then λX • P ; X is guarded, and so we can calculate its fixed-point.
We now generalise this for the function above.

Theorem 6.1. If P is productive, then (µX • P ; X 2 b 3Skip) is guarded.

Proof. In addition to our previous theorem [14], we use the following properties:

• If X is not mentioned in P then λX • P is guarded;

• If F and G are both guarded, then λX • F(X)2 b 3G(X) is guarded.
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This allows us to convert the fixed-point into an iterative form. In particular, we can prove the following
theorem that expresses it in terms of the Kleene star.

Theorem 6.2. If P is PCSP healthy then b ⊛ P = ([b]C ; P)∗ ; [¬b]C.

Here, [b]C , Skip 2 b 3Miracle denotes a reactive program state test (cf. [b]c, which is for reactive
relations). This theorem is similar to the usual imperative definition in Kleene Algebra with Tests [31, 1, 21].
It relies on productivity of P, though the condition b can be used to guard P and therefore prune away
any unproductive behaviours that violate b. In Theorem 6.2, P is executed multiple times when b is true
initially, but each run concludes when b is false. However, due to the embedding of reactive behaviour, there
is more going on than meets the eye; the next theorem shows how to calculate an iterative contract.

Theorem 6.3. If R is R4 healthy then

b ⊛ [P1 −| P2 |P3] = [ ([b]c ;P3)
∗ wlpr (b⇒P1) −| ([b]c ; P3)

∗ ; [b]c ;P2 | ([b]c ;P3)
∗ ; [¬b]c ]

The precondition requires that any number of P3 iterations, where b is initially true, satisfies P1. This ensures
that the contract does not violate its own precondition from one iteration to the next. The pericondition
states that intermediate observations have P3 executing several times, with b true, and following this b
remains true and the contract is quiescent (P2). The postcondition is similar, but after several iterations, b
becomes false and the loop terminates, which is the standard relational form of a while loop.

Theorem 6.3 can be used to prove a refinement introduction law for the reactive while loop. This employs
“reactive invariant” relations, which describe how both the trace and state variables are permitted to evolve.

Theorem 6.4. [I1 −| I2 | I3] ⊑ b ⊛ [Q1 −| Q2 |Q3] provided that:

1. Q3 is R4-healthy, so that the reactive contract is productive;

2. the assumption is weakened (([b]c ; Q3)
∗ wlpr (b ⇒ Q1) ⊑ I1);

3. when b holds, Q2 establishes the I2 pericondition invariant (I2 ⊑ ([b]c ; Q2)) and, Q3 maintains it
(I2 ⊑ [b]c ; Q3 ; I2);

4. postcondition invariant I3 is established when b is false (I3 ⊑ [¬b]c) and Q3 establishes it when b is
true (I3 ⊑ [b]c ; Q3 ; I3).

Proof. By application of refinement introduction, with Theorems 3.2-(3) and 6.3.

Theorem 6.4 shows the conditions under which an iterated contract satisfies an invariant contract [I1 −| I2 | I3].
Relations I2 and I3 are reactive invariants that must hold in quiescent and final observations. Both can
refer to st and tt, I2 can additionally refer to ref ′, and I3 to st ′. There is no need to supply a variant since
productivity guarantees the existence of a descending approximation chain for the iteration [14]. Combined
with the results from §4 and §5, this result forms the basis for a proof strategy for iterative reactive programs.

7. Parallel Composition

In this section we extend our calculational approach to one of the most challenging operators: parallel
composition. We build on the parallel-by-merge scheme [28], P ‖M Q, where the semantics is expressed in
terms of a merge predicate M that describes how the observations of each parallel program, P and Q, should
be merged [20]. We create a specialised law for parallel composition of stateful-failure reactive designs, that
merges the pre-, peri-, and postconditions, and show how the I, Φ, and E operators are merged. We use the
strategy on a number of examples, and prove characteristic algebraic theorems for parallel composition.

The contents of the first two subsections, §7.1 and §7.2, contain some restatements of theorems we have
previously proved [14], which are included for the purpose of self-containment and explanation. §7.3 onwards,
which specialises to stateful-failure reactive designs, is entirely novel.
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Figure 2: Parallel-by-merge dataflow

7.1. Parallel-by-Merge

We recall the parallel-by-merge operator [14]. It employs the ⌈P⌉n construct, which renames all dashed
variables of P by adding an index n, so that they can be distinguished from other indexed variables7.

Definition 7.1 (Parallel-by-Merge). P ‖M Q , (⌈P⌉0 ∧ ⌈Q⌉1 ∧ v ′ = v) ; M

This operator effectively splits the observation space into three identical segments: one for P, one for Q,
and a third that is identical to the original input. Relation M then takes the outputs from P, Q, and the
original input v , and merges them into a single output. Here, v is a special variable that denotes the entirety
of the state space. The dataflow of this operator is depicted in Figure 2, which illustrates the definition for
an example with three variables, x, y, and z.

The outputs of P and Q are distinguished by a numeral prefix. If P and Q act on an observation space
S, then M is a heterogeneous relation of type [S ×S ×S,S]urel, which relates three input copies of S with a
single output S. The merge predicate therefore refers to variables from P, using the 0.x notation, variables
from Q, using 1.x, initial variables, as usual written as x, and final variables, as x ′.

A substantial advantage of using parallel-by-merge is that several theorems can be proven for the generic
operator. Below, we highlight some of the most important theorems.

Theorem 7.2 (Parallel-by-Merge Laws).

(

l

i∈I

P(i)

)

‖M Q =
l

i∈I

(P(i) ‖M Q)

false ‖M P = false

P ‖M

(

l

i∈I

Q(i)

)

=
l

i∈I

(P ‖M Q(i))

P ‖M false = false

P1 ⊑ P2 ∧ Q1 ⊑ Q2 ⇒ (P1 ‖M Q1) ⊑ (P1 ‖M Q1)

Parallel-by-merge distributes through nondeterministic choice (
d

) from both the left and right, regardless
of the merge predicate M . Since

d
corresponds to ∃ and also ∨, we can similarly distribute through an

existential quantification and a disjunction. The miraculous relation false is both a left and right annihilator
for parallel composition, which is also monotonic with respect to refinement in both arguments.

Parallel-by-merge may or may not be commutative, depending on the merge predicate. A helpful scheme
can be used for proving that parallel composition is commutative, which reduces this to a property of the
merge predicate. We adopt a similar approach to [28], but give an account that is more algebraic in nature.
We first define the following auxiliary operator.

Definition 7.3 (Merge Swap). sw , v ′ = v ∧ 0.v ′ = 1.v ∧ 1.v ′ = 0.v

The relation sw swaps the outputs from the left- and right-hand sides, whilst keeping the initial values (v)
the same. Using sw , we can prove the following property of parallel-by-merge.

7These are called “separating simulations” in [28, page 172], and are denoted using special relations called U0 and U1.
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Theorem 7.4 (Parallel-by-Merge Swap). P ‖sw ;M Q = Q ‖M P

This theorem shows that precomposing a merge predicate with sw effectively commutes the arguments
P and Q. A corollary of this [20], given below, shows how this can be used to demonstrate commutativity.

Theorem 7.5. P ‖M Q = Q ‖M P provided that sw ; M = M

This theorem shows how proof of commutativity can be reduced to a property of the merge predicate.
Specifically, if swapping the order of the inputs to the merge predicate has no effect then it is a symmetric
merge, and consequently parallel composition is commutative.

7.2. Parallel Reactive Designs

In previous work [14], we have used parallel-by-merge to prove a general theorem for composing reactive
designs. As for the sequential operators, this develops operators that respectively merge the pre-, peri-, and
postconditions of the corresponding reactive contract. The theorem below, reproduced from [14], shows how
we may calculate a parallel reactive contract using these operators.

Theorem 7.6 (Reactive Design Parallel Composition).

[P1 −| P2 | P3 ] ‖
M

R
[Q1 −| Q2 | Q3 ] =









(P1 ⇒r P2) wrM Q1 ∧
(P1 ⇒r P3) wrM Q1 ∧
(Q1 ⇒r Q2) wrM P1 ∧
(Q1 ⇒r Q3) wrM P1

−

∣

∣

∣

∣

∣

∣

∣

∣

P2 ‖M

E
Q2 ∨

P3 ‖M

E
Q2 ∨

P2 ‖M

E
Q3

∣

∣

∣

∣

∣

∣

∣

∣

P3 ‖
M

Q3









This complex law describes how the pre-, peri-, and postconditions are merged by the parametric reactive
design parallel composition operator ‖M

R
. Here, M is an “inner merge predicate” [14], which needs to deal

only with observational variables like tt, st, and ref ; the variables ok and wait having already been merged
by ‖

R
, which constructs the “outer merge predicate”, to which parallel-by-merge is applied.

The precondition of the composite contract in Theorem 7.6 captures the possible divergent behaviours
that both P and Q permit. There are four conjuncts in the precondition, as we require that neither the
peri- nor the postcondition can permit divergent behaviour disallowed by its opposing precondition.

The predicate A wr M B, standing for “weakest rely”, is a reactive condition that describes the weakest
context in which reactive relation A does not violate the reactive condition B. It is analogous to the reactive
weakest precondition operator, wlpr (outlined in §2.3), but is defined with respect to parallel composition
rather than sequential composition. Specifically, whereas wlpr gives the weakest condition in a sequential
context, wr M gives the weakest condition in a parallel context. It obeys several related laws shown below.

Theorem 7.7 (Weakest Rely Laws).

false wrM P = truer P wrM truer = truer

(

∨

i∈I

P(i)

)

wrM Q =

(

∧

i∈I

(P(i) wrM Q)

)

The laws show that (1) a miraculous relation satisfies any precondition, (2) any reactive relation satisfies a
true precondition, and (3) the weakest rely condition of a disjunction of relations is the conjunction of their
weakest rely conditions. These results are similar to those for wlpr

The pericondition in Theorem 7.6 is a disjunction of three terms that calculate possible quiescent merged
behaviours. Parallel composition is quiescent when at least one of P and Q is quiescent, and so the three
conjuncts characterise quiescence in both, in Q only, and in P only, respectively. The ‖M

E
operator is an inter-

mediate merge operator, which restricts access to state (see [14, §6.6]). Finally, the overall contract can only
terminate when both P and Q do, and so the postcondition simply merges their respective postconditions.

Using these laws, we can show that Miracle is always a annihilator for parallel composition, regardless
of the inner merge predicate [14]. The proof exemplifies the calculational approach for parallel composition
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Theorem 7.8. Miracle ‖M

R
P = Miracle

Proof.

Miracle ‖M

R
P = [ truer −| false | false ] ‖M

R
[P1 −| P2 | P3 ]

=









(truer ⇒r false) wr M P1 ∧
(truer ⇒r false) wr M P1 ∧
(P1 ⇒r P2) wr M truer ∧
(P1 ⇒r P3) wr M truer

−

∣

∣

∣

∣

∣

∣

∣

∣

false ‖M

E
P2 ∨

false ‖M

E
P2 ∨

false ‖M

E
P3

∣

∣

∣

∣

∣

∣

∣

∣

false ‖
M

P3









[7.6]

=

[

false wr M P1 ∧ false wr M P1 ∧
truer ∧ truer

−

∣

∣

∣

∣

false ∨ false ∨ false

∣

∣

∣

∣

false

]

[7.2, 7.7]

=
[

truer ∧ truer −
∣

∣ false
∣

∣ false
]

[7.7]

= [ truer −| false | false ]

= Miracle

In this case, the pericondition and the postcondition both reduce to false, since by Theorem 7.2 the merge
of any relation with false reduces to false. The four clauses in the precondition all reduce to truer by the
weakest rely laws of Theorem 7.7. Thus the entire relation reduces to the Miracle contract. We will next
specialise this calculational approach to stateful-failure reactive designs.

7.3. Parallel Stateful-Failure Reactive Designs
Our parallel composition operator is adopted from Circus [35] and has the general form

P |[ns1|cs|ns2]|Q

for actions P and Q, event set cs ⊆ Event, and name-sets ns1 and ns2. P and Q both act on the same
state space S, and have the same event alphabet (Event). Like for parallel composition in CSP, P and Q
must synchronise on events contained in cs, but independently engage in events outside cs. Since P and
Q also have states, we must describe how to merge their final states. We do not permit sharing, and so
require partitioning of the state into two independent regions, characterised by two disjoint variable name
sets ns1 and ns2. The final state is then the composition of the two regions. We model these name sets
using independent lenses [20] from Isabelle/UTP, that is, ns1 : V1 =⇒ S, and ns2 : V2 =⇒ S, for some V1

and V2 (see §2.2).
As usual [35], we define a few abbreviations for the operator.

Definition 7.9 (Parallel Composition Abbreviations).

P |[cs]|Q , P |[0|cs|0]|Q

P ||| Q , P |[∅]|Q

The operator P |[cs]|Q synchronises on cs, but ignores the final state of both P and Q. It is therefore
broadly equivalent to CSP parallel composition when applied to stateless actions. It uses the special 0 lens
for the name sets, which characterises an empty region of the state space. The interleaving operator P ||| Q
synchronises on none of the events, and requires independent activity for P and Q. We denote the general
operator using the reactive design parallel-by-merge operator, as shown below.

Definition 7.10 (Parallel Composition). Let ns1 : V1 =⇒ S and ns2 : V2 =⇒ S be lenses that characterise
disjoint regions, V1 and V2, of the state space S (that is, ns1 ⊲⊳ ns2), and let cs be a set of events. Parallel

composition is then defined as follows:

P |[ns1|cs|ns2]|Q , P ‖NC

R
Q

where NC

[

ns1
cs

ns2

]

,









tt ∈ 0.tt ‖cs 1.tt
∧ 0.tt ↾ cs = 1.tt ↾ cs
∧ ref ′ ⊆ ((0.ref ∪ 1.ref ) ∩ cs) ∪ ((0.ref ∩ 1.ref ) \ cs)
∧ st ′ = st ⊳ns1 0.st ⊳ns2 1.st









23



Here, NC is an inner merge predicate [14] with arguments ns1, cs, and ns2, which we omit when they can be
determined from the context. It defines how the traces, states, and refusal sets from P and Q are merged.
It is adapted from the original Circus merge predicate [36, 35], which also defines the function t1 ‖cs t2
that specifies the set of traces obtained by merging traces t1 and t2, synchronising on the events in cs. For
completeness, we define this recursive function below, adapting slightly the original definition8 [36].

Definition 7.11 (Trace Merge Function). We define ‖cs: seq E → seq E → P(seq E) to be the least function

that satisfies the following equations:

〈〉 ‖cs 〈〉 = {〈〉}

(e # t) ‖cs 〈〉 = ({〈〉}2 e ∈ cs 3 ({〈e〉} ⌢ (t ‖cs 〈〉)))

〈〉 ‖cs (e # t) = ({〈〉}2 e ∈ cs 3 ({〈e〉} ⌢ (〈〉 ‖cs t)))

(e # t1) ‖cs (e # t2) = (〈e〉 ⌢ (t1 ‖cs t2))2 e ∈ cs 3 ({〈e〉} ⌢ (t1 ‖cs (e # t2) ∪ (e # t1) ‖cs t2))

(e1 # t1) ‖cs (e2 # t2) =













({〈〉}2 e2 ∈ cs 3 ({〈e2〉} ⌢ ((e1 # t1) ‖cs t2)))
2 e1 ∈ cs 3





({〈e1〉} ⌢ (t1 ‖cs (e2 # t2)))
2 e2 ∈ cs 3

(({〈e1〉} ⌢ (t1 ‖cs (e2 # t2))) ∪ ({〈e2〉} ⌢ ((e1 # t1) ‖cs t2)))

















e1 6= e2

where ts1 ⌢ ts2 , {t1 a t2 | t1 ∈ ts1 ∧ t2 ∈ ts2}

The trace merge function t1 ‖cs t2 produces the set of maximal possible merges from every pair of traces;
that is the traces that include the maximum possible number of events from both t1 and t2, ordered to
reflect synchronisation on th events in cs [36]. If an event is encountered in cs, then both traces must agree
to allow this event simultaneously for behaviour to progress. For any other events, all possible interleavings
are recorded.

The merge predicate in Definition 7.10 has four conjuncts. The first conjunct states that any permissible
trace tt arises from merging the constituent traces 0.tt and 1.tt. The second ensures that the same syn-
chronisations on events from cs occur in both 0.tt and 1.tt in the same order. Filter function t ↾ cs returns
the elements of sequence t that are contained in cs, whilst retaining the order and number of occurrences.
A consequence of the second conjunct is that the resulting trace contains, in a suitable order, all the events
from both constituents. The third conjunct requires that the overall refusal is either a subset of the set of
synchronised events independently refused ((0.ref ∪ 1.ref ) ∩ cs), or the non-synchronised events refused by
both ((0.ref ∩ 1.ref ) \ cs). The fourth conjunct constructs the final state by merging the ns1 region of P’s
state, the ns2 region of Q’s state, and the remaining region from the initial state. It uses the lens override
operator s1 ⊳ns s2 from Definition 2.6.

The parallel operator of Definition 7.10 is not, in general, commutative due to its asymmetric partitioning
of the state space. However, we can prove a useful theorem of the inner merge predicate.

Theorem 7.12 (Swap Inner Merge). If ns1 ⊲⊳ ns2 then sw ; NC

[

ns1
cs

ns2

]

= NC

[

ns2
cs

ns1

]

If we precompose NC with the swap relation (sw), then this amounts to switching the name sets. The proof
of this depends on the commutativity of ‖cs, a property that is proved in [35], and on Theorem 2.7 to
switch the name set lenses. A corollary of Theorem 7.12 is a quasi-commutativity theorem for our parallel
composition operator.

Theorem 7.13. If ns1 ⊲⊳ ns2 then P |[ns1|cs|ns2]|Q = Q |[ns2|cs|ns1]|P

Thus, we can commute a parallel composition by also commuting the respective name sets.

8Specifically, the definition of ‖cs may be found in Oliveira’s thesis [36], Appendix B on page 183. It is based on the trace
merge operator defined by Roscoe in Section 2.4, page 70, of [38].
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7.4. Composing Reactive Relations

In order to calculate a stateful-failure reactive design for parallel composition, we specialise Theorem 7.6.
This requires that we have specialised versions of the merge operators for peri- and postconditions, and also
a specialised weakest rely condition operator. These are defined below.

Definition 7.14 (Intermediate Merge, Final Merge, and Weakest Rely Condition).

P |[cs]|
I
Q , P ‖(∃ st′•NI)

Q

P |[ns1|cs|ns2]|F Q , P ‖(∃ ref ′•NC)
Q

P wr [cs] Q , P wr NI
Q

where NI , NC

[

0

cs

0

]

The intermediate merge, |[cs]|
I

defines how two quiescent observations are merged. It is parametrised only
in cs and not ns1 or ns2, as state is concealed in quiescent observations. Its definition applies the merge
predicate (∃ st ′ • NI), which abstracts from the final state and is defined in terms of NI. The latter applies
NC, but uses the 0 lens for ns1 and ns2, and therefore ignores the final state of P and Q.

The final state merge |[ns1|cs|ns2]|F defines how terminated observations are merged. It is defined simi-
larly, but abstracts from ref ′, since there is no refusal information in a final observation, and uses NC directly
to merge the states. Finally, the weakest rely condition wr [cs] is simply the general reactive design version,
using NI as the merge predicate as final states are also not relevant in preconditions.

We now demonstrate the healthiness of these new operators.

Theorem 7.15 (Merge Closure Properties).

1. If P and Q are CRR-healthy then P |[cs]|
I
Q is CRR-healthy.

2. P |[cs]|
I
Q does not refer to st′.

3. If P and Q are CRF-healthy then P |[ns1|cs|ns2]|F Q is CRF-healthy.

4. If P is CRR-healthy and Q is CRC-healthy, then P wr[cs] Q is CRC-healthy.

The intermediate merge constructs a reactive relation that does not refer to the final state. The final merge
constructs a reactive finaliser, since it does not refer to ref ′. Weakest rely constructs a reactive condition.
Following a similar approach to Theorem 7.13, we can also demonstrate commutativity properties.

Theorem 7.16 (Inner Merge Commutativity).

P |[cs]|
I
Q = Q |[cs]|

I
P

P |[ns1|cs|ns2]|F Q = Q |[ns2|cs|ns1]|F P ns1 ⊲⊳ ns2

Using these new operators, we can finally prove the specialised calculation law for parallel composition.

Theorem 7.17 (Parallel Calculation).

[P1 −| P2 | P3 ] |[ns1|cs|ns2]| [Q1 −| Q2 | Q3 ] =








(P1 ⇒r P2) wr[cs] Q1 ∧
(P1 ⇒r P3) wr[cs] Q1 ∧
(Q1 ⇒r Q2) wr[cs] P1 ∧
(Q1 ⇒r Q3) wr[cs] P1

−

∣

∣

∣

∣

∣

∣

∣

∣

P2 |[cs]|
I
Q2 ∨

P3 |[cs]|
I
Q2 ∨

P2 |[cs]|
I
Q3

∣

∣

∣

∣

∣

∣

∣

∣

P3 |[ns1|cs|ns2]|F Q3









This is similar to Theorem 7.6, but uses the specialised merge and weakest rely operators. This theorem
shows that calculation of reactive contracts can be reduced to merging the peri- and postconditions. A
corollary, for the simpler case when the preconditions are both truer , is given below.

Theorem 7.18 (Simplified Parallel Calculation).

[ −| P2 | P3 ] |[ns1|cs|ns2]| [ −| Q2 | Q3 ] = [ −| P2 |[cs]|
I
Q2 ∨ P3 |[cs]|

I
Q2 ∨ P2 |[cs]|

I
Q3 | P3 |[ns1|cs|ns2]|F Q3 ]
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This follows by application of Theorem 7.7 because P wr [cs] truer = truer . We can also show, with the
help of Theorems 4.3 and 7.15, that NCSP is closed under parallel composition.

Theorem 7.19. If P and Q are NCSP-healthy, and ns1 ⊲⊳ ns2, then P |[ns1|cs|ns2]|Q is NCSP-healthy.

For sequential processes, we have already shown that the peri- and postconditions of reactive programs can
be specified using disjunctions of the E and Φ operators. Consequently, to extend our calculational method
to parallel composition, we need to prove how these operators should be merged. The following theorems
show how reactive relations describing final and intermediate observations are merged.

Theorem 7.20 (Merging Finalisers).

Φ[s1, σ1, t1] |[ns1|cs|ns2]|F Φ[s2, σ2, t2] = (∃ t • Φ[s1 ∧ s2 ∧ t ∈ t1 ‖cs t2 ∧ t1 ↾ cs = t2 ↾ cs, σ1 [ns1|ns2] σ2, t])

Φ[s1, σ1, 〈〉] |[ns1|cs|ns2]|F Φ[s2, σ2, 〈〉] = Φ[s1 ∧ s2, σ1 [ns1|ns2] σ2, 〈〉]

The first equation shows how to merge two finalisers. We require the existence of the trace t, which is one
of the possible merges of t1 and t2, and require that both preconditions s1 and s2 hold initially. The overall
trace of the finaliser is then t. The second equation is a corollary for when both traces are empty, and
the event merge is trivial. In either case, the final state update is constructed using the operator [ns1|ns2] ,
which uses lens override to merge the two disjoint state updates. It obeys the following laws.

Theorem 7.21. Given independent lenses, ns1 ⊲⊳ ns2, the following identities hold:

id [ns1|ns2] id = id (1)

σ [ns1|ns2] ρ = ρ [ns2|ns1] σ (2)

(σ(x 7→ v)) [ns1|ns2] ρ = (σ [ns1|ns2] ρ)(x 7→ v) x � ns1 (3)

(σ(x 7→ v)) [ns1|ns2] ρ = σ [ns1|ns2] ρ x ⊲⊳ ns1 (4)

Merging two identity (vacuous) assignments yields an identity assignment (1). The operator is quasi-
commutative, when the name sets are also swapped (2). When one of the assignments is constructed with
a state update, if the variable being assigned is part of the corresponding name set (x � ns1), then the
update is applied to the top-level assignment (3). Effectively, this means that the assignment is retained
when the parallel composition terminates. Conversely, if the assignment is to a variable outside of the name
set (x ⊲⊳ ns1), then its effect is lost (4). Using these laws we calculate the contracts for some examples.

Example 7.22. We assume the existence of lenses x and y, with x � ns1, y � ns2, and ns1 ⊲⊳ ns2, and
calculate the meaning of parallel assignment to these variables.

(x := u) |[ns1|cs|ns2]|(y := v)

= [ −| false | Φ[Lx 7→ uM, 〈〉] ] |[ns1|cs|ns2]| [ −| false | Φ[Ly 7→ vM, 〈〉] ] [4.7]

=



 −

∣

∣

∣

∣

∣

∣

false |[cs]|
I

false

∨ Φ[Lx 7→ uM, 〈〉] |[cs]|
I

false

∨ false |[cs]|
I
Φ[Ly 7→ vM, 〈〉]

∣

∣

∣

∣

∣

∣

Φ[Lx 7→ uM, 〈〉] |[ns1|cs|ns2]|F Φ[Ly 7→ vM, 〈〉]



 [7.18]

= [ −| false | Φ[Lx 7→ uM [ns1|ns2] Ly 7→ vM, 〈〉] ] [7.2, 7.20]

= [ −| false | Φ[Lx 7→ u, y 7→ vM, 〈〉] ] [7.21]

= 〈x 7→ u, y 7→ v〉C [4.7]

This does not rule out having u , y and v , x, since both processes have access to the entirety of the
initial state. We first calculate the contract for the two assignments. Since the preconditions are trivial,
we apply Theorem 7.18 to compute the composition contract. Since both periconditions are false, by
application of Theorem 7.2 and relational calculus, the overall pericondition is also false. Thus, we can
simply apply Theorem 7.20 to compute the merge of the two finalisers, and then Theorem 7.21 to merge the
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two assignments. The final form is, by Definition 4.7, equivalent to a single assignment. In Isabelle/UTP,
this proof of this equality is fully automated by the rdes-eq tactic [14].

Using a similar calculation, and using Definition 7.9, we can also show that

(x := u) ||| (y := v) = Skip

The name sets are both 0 and consequently, since x ⊲⊳ 0 and y ⊲⊳ 0, both assignments are lost.

The independence constraints on the process state spaces and loss of assignments may, at first sight,
seem unsatisfactory as this prevents shared variables. However, variables here are only for the sequential
case. Shared variables in languages like CSP and Circus should be modelled using channel communication,
for separation of concerns. This approach has been demonstrated in several previous works [39], including
JCSP [45] and the RoboChart state-machine language [33].

We next show how quiescent observations are merged using the |[cs]|
I
.

Theorem 7.23 (Merging Quiescent Observations).

E [s1, t1,E1] |[cs]|
I
E [s2, t2,E2] =

(

∃ t • E

[(

s1 ∧ s2 ∧ t ∈ t1 ‖cs t2 ∧
t1 ↾ cs = t2 ↾ cs

)

, t,

(

(E1 ∩ E2 ∩ cs)∪
((E1 ∪ E2) \ cs)

)])

E [s1, t1,E1] |[cs]|
I
Φ[s2, σ2, t2] =

(

∃ t • E

[(

s1 ∧ s2 ∧ t ∈ t1 ‖cs t2 ∧
t1 ↾ cs = t2 ↾ cs

)

, t,E1 \ cs

])

The equations in Theorem 7.23 are similar to those in Theorem 7.20, but involve at least one quiescent
observation. We omit the symmetric case, since we know that |[cs]|

I
is commutative. As for the finaliser, we

need to merge the traces t1 and t2. There is no state update merge, as this is a quiescent observation. We
also need to consider merging the refusal sets together, which here are given by a set of accepted events. If
merging two quiescent observations, we accept (1) the events in the synchronisation set cs enabled by both
P and Q (E1 ∩E2 ∩ cs); and (2) the events not in cs that enabled available in either P or Q ((E1 ∪E2) \ cs).
If a quiescent observation is merged with a final observation, then the accepted events are simply those not
in cs – E1 \ cs.

In order to illustrate the use of these theorems, we provide the following example.

Example 7.24. We calculate the meaning of a → b → Skip |[{b}]| b → c → Skip.

=

[

−

∣

∣

∣

∣

E [〈〉, {a}] ∨
E [〈a〉, {b}]

∣

∣

∣

∣

Φ[id, 〈a, b〉]

] ∣

∣

∣

∣

[

{b}

]∣

∣

∣

∣

[

−

∣

∣

∣

∣

E [〈〉, {b}] ∨
E [〈b〉, {c}]

∣

∣

∣

∣

Φ[id, 〈b, c〉]

]

(1)

=

















−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E [〈〉, {a}] |[{b}]|
I
E [〈〉, {b}] ∨

E [〈〉, {a}] |[{b}]|
I
E [〈b〉, {c}] ∨

E [〈〉, {a}] |[{b}]|
I
Φ[id, 〈b, c〉] ∨

E [〈a〉, {b}] |[{b}]|
I
E [〈〉, {b}] ∨

E [〈a〉, {b}] |[{b}]|
I
E [〈b〉, {c}] ∨

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ[id, 〈a, b〉] |[0|{b}|0]|
F
Φ[id, 〈b, c〉]

















(2)

=



 −

∣

∣

∣

∣

∣

∣

(

∃ t • E

[(

t ∈ 〈〉‖{b} 〈〉 ∧

〈〉↾cs = 〈〉↾cs

)

, t,
{a}∩{b}∩{b}∪
({a}∪{b}) \ {b}

])

∨ · · ·

∣

∣

∣

∣

∣

∣

∃ t • Φ

[

t ∈ 〈a, b〉 ‖{b} 〈b, c〉 ∧

〈a, b〉 ↾ {b} = 〈b, c〉 ↾ {b}
, id, t

]





(3)

= [ −| E [〈〉, {a}] ∨ E [〈a〉, {b}] ∨ E [〈a, b〉, {c}] | Φ[id, 〈a, b, c〉] ] (4)

= a → b → c → Skip (5)

Step (1) calculates the sequential contracts for the left- and right-hand sides of the parallel composition using
the rules already outlined in §4. Step (2) expands out all the possible merges for the peri- and postcondition,
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by application of Theorem 7.17, and also Theorem 7.2 to distribute through the various disjunctions. There
are a total of nine observations (of which we show five) in the pericondition, because we need to merge every
disjunct of the pericondition, plus the postcondition, with every corresponding disjunct. The majority of
these are inadmissible and thus reduce to false; for example

E [〈〉, {a}] |[{b}]|
I
E [〈b〉, {c}] = false

since the b event cannot occur independently. Step (3) uses Theorem 7.20 to demonstrate explicitly how to
merge the first of the nine periconditions, and also the postcondition. For both the peri- and postcondition,
we need to find a t that merges to two traces (〈〉), and respects the synchronisation order. For the pericon-
dition, there is only one such trace, 〈〉, and so this is the one selected. Moreover, it is necessary to calculate
the events being accepted by appropriately selecting synchronised and non-synchronised events. For the
postcondition, there is again only one trace, 〈a, b, c〉. Step (4) calculates all the admissible periconditions, of
which there are three, and the postcondition. The three possible quiescent observations are (1) nothing has
happened, and a is accepted; (2) a has occurred, and b is accepted; and (3) a and b have occurred, and c
is accepted. The postcondition performs no state updates (id), and have the total sequence of events. This
reactive contract is equivalent to the action a → b → c → Skip, as shown in step (5).

Though this calculation seems very complicated, the benefit of our theorems and mechanisation is that
it can be performed automatically in Isabelle/UTP. The rdes-eq tactic can also discover the contract form
given in step (4) of the proof, though not the final form given in step (5).

In the example given above, the preconditions are always trivial. For non-trivial preconditions, we need
laws analogous to those for the sequential case in Theorem 4.11, but for the weakest rely calculus.

Theorem 7.25 (Parallel Preconditions).

Φ[s1, σ1, t1] wr[cs] I[s2, t2] = (∀ tt0, tt1 • I[s1 ∧ s2 ∧ tt1 ∈ (t2 a tt0) ‖cs t1 ∧ (t2 a tt0) ↾ cs = t1 ↾ cs, tt1])

E [s1, t1,E ] wr[cs] I[s2, t2] = (∀ tt0, tt1 • I[s1 ∧ s2 ∧ tt1 ∈ (t2 a tt0) ‖cs t1 ∧ (t2 a tt0) ↾ cs = t1 ↾ cs, tt1])

As usual, we need to conjoin both conditions s1 and s2. However, determining permissible traces is rather
more involved. We recall that in I[s2, t2], t2 is a strict upper bound on the permissible traces. These two
laws give the conditions under which a concurrent quiescent or final observation does not allow divergence;
both have the same form. Divergence occurs when t1, a trace contributed by one action, permits t2, a
divergent trace, to be exhausted when the two are merged. This situation occurs for any trace tt1 such that
there is an arbitrary extension tt0, where (1) tt1 is one of the traces obtained by merging t2 extended with
tt0, with t1, and (2) the order of synchronisation of t2 with its extension is the same as that of t1. The trace
tt1 must therefore be a trace that exhausts all the events in t2, whilst respecting both the synchronisation
set and t1. Consequently, it is a strict upper bound on the permissible behaviours.

We exemplify these laws with the calculation below.
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Example 7.26.

a → Chaos |[{a}]| a → Skip

= [ I[true, 〈a〉] −| E [true, 〈〉, {a}] | false ] |[{a}]| [ −| E [〈〉, {a}] | Φ[id, 〈a〉] ] [4.7]

=

[

E [〈〉, {a}] wr [{a}] I[true, 〈a〉]
∧ Φ[id, 〈a〉] wr [{a}] I[true, 〈a〉]

−

∣

∣

∣

∣

E [〈〉, {a}] |[{a}]|
I
E [〈〉, {a}]

∨ E [true, 〈〉, {a}] |[{a}]|
I
Φ[id, 〈a〉]

∣

∣

∣

∣

false

]

[7.18]

=

[

E [〈〉, {a}] wr [{a}] I[true, 〈a〉]
∧ Φ[id, 〈a〉] wr [{a}] I[true, 〈a〉]

−

∣

∣

∣

∣

E [〈〉, {a}]
∨ false

∣

∣

∣

∣

false

]

[7.23]

=





(

∀(tt0, tt1) • I
[

tt1 ∈ (〈a〉a tt0) ‖{a} 〈〉 ∧ (〈a〉a tt0) ↾ {a} = 〈〉 ↾ cs, tt1

])

∧
(

∀(tt0, tt1) • I
[

tt1 ∈ (〈a〉a tt0) ‖{a} 〈a〉 ∧ (〈a〉a tt0) ↾ {a} = 〈a〉 ↾ {a}, tt1
]) −

∣

∣

∣

∣

∣

∣

E [〈〉, {a}]

∣

∣

∣

∣

∣

∣

false



 [7.25]

=

[

truer ∧

(∀ tt1 • I
[

tt1 ∈ (〈a〉a 〈〉) ‖{a} 〈a〉 ∧ (〈a〉a 〈〉) ↾ {a} = 〈a〉 ↾ {a}, tt1
]

)
−

∣

∣

∣

∣

∣

E [〈〉, {a}]

∣

∣

∣

∣

∣

false

]

=
[

(∀ tt1 • I
[

tt1 ∈ 〈a〉 ‖{a} 〈a〉, tt1
]

) −
∣

∣

∣ E [〈〉, {a}]
∣

∣

∣ false
]

=
[

(∀ tt1 • I[tt1 = 〈a〉, tt1]) −
∣

∣ E [〈〉, {a}]
∣

∣ false
]

=
[

I[true, 〈a〉] −
∣

∣ E [〈〉, {a}]
∣

∣ false
]

= a → Chaos [4.7]

We calculate the contract for the parallel composition as usual, but in this case it is necessary to calculate
two weakest rely formulae: (1) E [〈〉, {a}] wr [{a}] I[true, 〈a〉], and (2) Φ[id, 〈a〉] wr [{a}] I[true, 〈a〉]. We
expand them both out using Theorem 7.25. For (1), we observe that the resulting formula has the equation
(〈a〉 a tt0) ↾ {a} = 〈〉 ↾ {a}. This is impossible to satisfy, since the left-hand trace contains a, but the
right-hand side does not. Consequently, this term, and therefore the whole condition, reduces to false, and
so the resulting formula is (∀(tt0, tt1) • I[false, tt1]), which, by Theorem 4.11, is simply truer . The intuition
here is that the empty trace does not permit violation of the corresponding precondition. For (2), we notice
that there is exactly one possible valuation of tt0 that satisfies the resulting formula, which is 〈〉. In this case,
the precondition can be violated, and tt1 also has one possible value, which is 〈a〉. The resulting formula is
simply I[true, 〈a〉], and the overall behaviour is equivalent to a → Chaos.

7.5. Algebraic Properties

We now explore the algebraic properties of parallel composition. We show that, under certain conditions
characterised by healthiness conditions, Skip is a unit for parallel composition, and Chaos is an annihilator.

In previous work [36], support for this law is provided by an additional healthiness condition, which
imposes downward closure of the refusals. This property is imposed in the standard CSP model [38] by
healthiness condition F2 . However, not all expressible healthy reactive relations satisfy this property. For
example the relation ref ′ = {a, b}, which is CRC-healthy, identifies a single refusal and thus forbids the
refusal sets {a}, {b}, and ∅, which we would normally expect to be admissible due to subset closure. We
therefore define the following additional healthiness condition for quiescent observations.

Definition 7.27 (Refusal Downward Closure). A reactive relation is downward closed with respect to

refusals if it is a fixed-point of healthiness condition CDC , defined below.

CDC(P) , (∃ ref0 • P[ref0/ref ′] ∧ ref ′ ⊆ ref0)

A reactive relation P has downward closed refusals if, when we replace ref ′ with an arbitrary subset, we
obtain an observation that is still within P. It is easy to prove that CDC is idempotent, which follows due
to transitivity of ⊆, and also monotonic. We can also show that CDC is closed under existing operators.

Theorem 7.28 (CDC Closure Properties).
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• CDC is closed under the following operators: truer , false, ∨, and ∧;

• If Q is CDC-healthy, then (P ; Q) is CDC-healthy;

• If ∀ i ∈ I • P(i) is CDC then
∧

i∈I P(i) is CDC and
∨

i∈I P(i) is CDC;

• For any s, t, and E, E [s, t,E ] is CDC-healthy.

E [s, t,E ] is CDC-healthy because, as seen in Definition 4.6, we construct the set of refusals which do not
include any event in E , a formulation that is downward closed. Consequently, we know that all the forms of
pericondition considered so far, which are disjunctions of E [s, t,E ] terms, are CDC-healthy. Next, we recast
Oliveira’s healthiness condition for downward closure, called C2 [35], to our setting.

Definition 7.29. C2(P) , P |[1|∅|0]|Skip

C2 states that Skip, defined in Definition 4.7, is a right unit for the composition operator |[1|∅|0]|, which
takes the entirety of its final state from the left action, and employs an empty synchronisation set. We now
link C2 to CDC . The proof depends on two properties of final state merge and weakest rely predicates.

Theorem 7.30 (Merge and Weakest Rely of Identity).

P |[1|∅|0]|
F
Φ[id, 〈〉] = P if P is CRF-healthy

Φ[id, 〈〉] wr[∅] P = P if P is CRC-healthy

The first property states that merging an arbitrary finaliser P with an identity finaliser, with P contributing
all the final state, and an empty synchronisation set, is simply P. The second property, similarly, states
that the weakest rely condition that an identity finaliser reaches reactive condition P, with an empty
synchronisation set, is simply P. We can now prove the following important theorem for C2 , employing our
calculational strategy, which reveals its intuitive meaning.

Theorem 7.31. If [P1 −| P2 | P3 ] is NCSP then C2([P1 −| P2 | P3 ]) = [P1 −| CDC(P2) | P3 ]

Proof.

C2([P1 −| P2 | P3 ]) = [P1 −| P2 | P3 ] |[1|cs|0]| [ −| false | Φ[id, 〈〉] ] [7.29, 4.7]

= [Φ[id, 〈〉] wr [∅] P1 −| P2 |[cs]|
I
Φ[id, 〈〉] | P3 |[1|∅|0]|F Φ[id, 〈〉] ] [7.17]

= [P1 −| P2 |[cs]|
I
Φ[id, 〈〉] | P3 ] [7.30]

=
[

P1 −
∣

∣ (∃ ref0 • P2[ref0/ref ′] ∧ ref ′ ⊆ ref0)
∣

∣ P3

]

= [P1 −| CDC(P2) | P3 ]

This theorem tells us that an NCSP-healthy reactive contract (see Theorem 4.3) is C2 when its pericondition
is CDC . The proof calculates contract for the parallel composition with Skip, and then shows that both the
precondition and postcondition are unaltered, using Theorem 7.30. Finally, we show that the pericondition
formula P2 |[cs]|

I
Φ[id, 〈〉] is equivalent to CDC(P), by application of relational calculus. From this theorem,

and previous definitions, we can now prove the following closure theorems for C2 .

Theorem 7.32 (C2 closure properties).

• Miracle, Chaos, Skip, Stop, Do(a), and 〈σ〉C are all C2;

• If P and Q are both NCSP and C2, then P ; Q, P 2 b 3Q, and P ✷ Q are all C2;

• If ∀ i ∈ I • P(i) is C2 then
d

i∈I P(i) is C2;

• If P is PCSP and C2 then b ⊛ P is C2;

• If ns1 ⊲⊳ ns2, and P and Q are both NCSP and C2, then P |[ns1|cs|ns2]|Q is C2.
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We can now prove two algebraic theorems for C2 reactive programs.

Theorem 7.33. If P is NCSP and C2 then P |[1|cs|0]|Skip = P

Theorem 7.34. If P is NCSP and C2, and Σ = {∅}, then P ||| Skip = P

Theorem 7.33 is essentially a restatement of C2 , that is, Skip is a right-unit when P controls the entire
state-space. However, we can now use Theorem 7.32 to satisfy its provisos, and thus apply it to programs
whose pericondition is CDC . Theorem 7.34 is similar, but has the additional proviso that the state space Σ
is unitary, and the state therefore contains no information. This being the case, P is a process [35], to use
Circus terminology, rather than an action, since it has no visible state updates.

Next, we consider annihilators for parallel composition. We calculate the meaning of Chaos |[ns1|cs|ns2]|P,
for NCSP healthy reactive contract P, using our proof strategy:

Example 7.35. Chaos parallel composition

Chaos |[ns1|cs|ns2]|P = [ false −| false | false ] |[ns1|cs|ns2]| [P1 −| P2 | P3 ]

= [P2 wr [cs] false ∧ P3 wr [cs] false ∧ truer wr [cs] P1 −| false | false ]

Due to the definition of Chaos, by Theorem 7.17 the peri- and postcondition reduce to false. Consequently,
to show that Chaos is an annihilator, it is necessary simply to show that the precondition reduces to false

in order to complete the reduction to Chaos. We already know by Theorem 7.8 that at least Miracle

does not satisfy this requirement, since it is itself an annihilator for any reactive design, including Chaos.
Consequently, we need to consider constraints under which one of the precondition conjuncts reduce to false.

The third conjunct, truer wr [cs] P1, in general reduces to false only when P1 is itself false, and therefore
P = Chaos, which is a trivial and therefore uninteresting case. The first two cases are more interesting, and
correspond to the presence of feasible behaviour by either the peri- or the postcondition. Here, we investigate
the circumstances under which P2 wr [cs] false = false. For this, we need an additional healthiness condition
that ensures that there is at least one observation in the pericondition.

Definition 7.36 (Accepting Actions).

Accept , [ truer −| E [〈〉,Event] | false ]

CACC(P) , (P ∨ Accept)

Accept is the action that does not terminate, but has a single quiescent observation where nothing has
occurred (〈〉), and every event in Event is accepted. It has a similar form to Stop, except that the latter
accepts no events. Accept accepts every event, and yet no event can ever be added to the trace. Like
Miracle, it is excluded by several of the standard CSP healthiness conditions [38]; in particular it violates
the requirement that every enabled event must also appear in the trace. However, like Miracle, it also
possesses interesting theoretical properties. We emphasise that E [〈〉,Event] is both CRR and CDC healthy.

The healthiness condition CACC takes the disjunction of P with Accept, which effectively states that P
is refined by Accept, and thus sets an upper bound on P [28]. Using Theorem 2.15, we prove the following
calculation for application of CACC to a reactive contract:

Theorem 7.37. CACC([P1 −| P2 | P3 ]) = [P1 −| E [〈〉,Event] ∨ P2 | P3 ]

CACC thus requires that the pericondition refines E [〈〉,Event]. This means that the pericondition must admit
an observation where nothing has occurred (〈〉), and also that any subset of Event is accepted (including ∅).
This intuition is demonstrated by the following useful theorem.

Theorem 7.38. E [s1, t,E1] ⊑ E [s2, t,E2] ⇔ (s1 ⇒ s2 ∧ E1 ⊆ E2)

Refinement of one quiescent observation by another, sharing the same trace, requires that the state condition
is strengthened, and that set of enabled events becomes larger. This may seem counter-intuitive, but it is
because we encode refusals in ref ′, and therefore the most constrained refusal observation is ref ′ = ∅, which
corresponds to every event being enabled. The majority of productive operators presented so far satisfy this
constraint, and therefore we can prove the following closure properties for CACC .
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Theorem 7.39 (CACC Closure). Let P and Q be NCSP-healthy relations, then:

• Chaos, Stop, and Do(e) are CACC-healthy;

• If P is CACC then P ; Q is CACC;

• If P and Q are both CACC then P ✷ Q is CACC;

• If P and Q are both CACC then P ⊓ Q is CACC.

Miracle is not CACC because its pericondition is false, and therefore does not have an empty interaction.
More importantly, however, 〈σ〉C and Skip are also not CACC , because they too have a false pericondition.
However, for most processes that0 include at least one interaction, and do not invoke infeasible actions like
Miracle, CACC is satisfied. In particular, we note that closure of CACC under sequential composition
only requires that the first argument is CACC . Therefore, since by Theorems 4.10 and 5.7 we can usually
push leading assignments forward, most actions are CACC-healthy. Alternatively, we could define a pseudo
unit, NoOp , [ truer −| E [〈〉,Event] | Φ[id, 〈〉] ], but this has the undesirable characteristic of not refusing any
event whilst also not engaging in any event, which violates the standard CSP healthiness conditions [38].

With this healthiness condition, we can finally prove the following theorem:

Theorem 7.40. If ns1 ⊲⊳ ns2, and P is NCSP and CACC, then Chaos |[ns1|cs|ns2]|P = Chaos.

Proof. Given that P = [P1 −| P2 | P3 ], and noting the calculation in Example 7.35, it suffices to show that
P2 wr [cs] false reduces to false.

P2 wr [cs] false = (E [〈〉,Event] ∨ P2) wr [cs] false [7.37]

= (E [〈〉,Event] wr [cs] false) ∧ (P2 wr [cs] false)

= (E [〈〉,Event] wr [cs] I[true, 〈〉]) ∧ (P2 wr [cs] false)

=

(

∀(tt0, tt1) • I

[(

tt1 ∈ (〈〉a tt0) ‖cs 〈〉 ∧
(〈〉a tt0) ↾ cs = 〈〉 ↾ cs

)

, tt1

])

∧ (P2 wr [cs] false)

=

(

∀(tt0, tt1) • I

[(

tt1 ∈ tt0 ‖cs 〈〉
∧ tt0 ↾ cs = 〈〉

)

, tt1

])

∧ (P2 wr [cs] false)

=
I[〈〉 ∈ 〈〉 ‖cs 〈〉 ∧ 〈〉 ↾ cs = 〈〉, 〈〉]

∧
(

∀(tt0, tt1) • I
[(

tt1 ∈ tt0 ‖cs 〈〉 ∧ tt0 ↾ cs = 〈〉
)

, tt1
])

∧ (P2 wr [cs] false)

= I[true, 〈〉] ∧ (∀(tt0, tt1) • I[· · · , tt1]) ∧ (P2 wr [cs] false)

= false

The crucial part of the proof is that the complex I formula must hold for any given tt0 and tt1, and so we
can pick 〈〉 for both of them, and add this as an extra conjunct. Since 〈〉 merged with 〈〉 yields {〈〉}, the
resulting formula reduces to E [true, 〈〉], which is simply false. This calculation would not be possible if we
could not exhibit 〈〉 as a possible trace in the pericondition, which is the purpose of CACC .

In this section, we have shown how the calculational strategy can be extended to handle parallel com-
position, and proved proved some important theorems that follow. In the next section we demonstrate the
proof strategy on a small example.

8. Verification Strategy for Reactive Programs

Our results give rise to an automated verification strategy for reactive programs, whereby we (1) calculate
the contract of a reactive program, (2) use our equational theory to simplify the underlying reactive relations,
(3) identify invariants for reactive while loops, and (4) finally prove refinements using relational calculus.
Although the relations can be complex, our equational theory from §4 and §5, aided by the Isabelle/HOL
simplifier, can be used to rapidly reduce them to more compact forms amenable to automated proof. In this
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section we illustrate this strategy using the buffer in Example 2.9. We prove two properties: (1) deadlock
freedom, and (2) the order of values produced is the same as those consumed.

Deadlock freedom can be demonstrated with the help of the following specification contract [14].

Definition 8.1 (Deadlock-freedom Contract). CDF , [ −| ∃ s, t,E , e • E [s, t, {e} ∪ E ] | truer ]

Since only quiescent observations can deadlock, CDF constrains only the pericondition, which characterises
observations where at least one event e is being accepted: there is no deadlock. For example, we can show
that a → b → Skip |[{b}]| b → c → Skip is deadlock-free with the help of Example 7.24.

Example 8.2 (Deadlock-Freedom Calculation).

CDF ⊑ a → b → Skip |[{b}]| b → c → Skip

⇔ [ −| ∃ s, t,E , e • E [s, t, {e} ∪ E ] | truer ] ⊑ [ −| E [〈〉, {a}] ∨ E [〈a〉, {b}] ∨ E [〈a, b〉, {c}] | Φ[id, 〈a, b, c〉] ]

⇔ (∃ s, t,E , e • E [s, t, {e} ∪ E ]) ⊑ (E [〈〉, {a}] ∨ E [〈a〉, {b}] ∨ E [〈a, b〉, {c}]) ∧ truer ⊑ Φ[id, 〈a, b, c〉]

⇔ (∃ s, t,E , e • E [s, t, {e} ∪ E ]) ⊑ E [〈〉, {a}] ∧ (∃ s, t,E , e • E [s, t, {e} ∪ E ]) ⊑ E [〈a〉, {b}] ∧ · · ·

⇔ true

The intuition is that every E [·, ·, ·] term in the process’s pericondition corresponds to a possible transition.
Consequently, we need to show that no transition exists without an enabled event. This is the case for all
three disjuncts — they enable {a}, {b} and {c}, respectively — and so the process is deadlock-free.

To prove that the buffer is deadlock-free, we first calculate the contract of the main loop in the Buffer
process in Example 2.9, and then use this to calculate the overall contract for the iterative behaviour.

Theorem 8.3 (Loop Body). The body of the loop is [ truer −| B2 | B3 ] where

B2 = E
[

true, 〈〉,
⋃

v∈N
{inp.v} ∪ ({out.head(bf )}2 0 < #bf 3 ∅)

]

B3 =

(
(
∨

v∈N
Φ[true, {bf 7→ bf a 〈v〉}, 〈inp.v〉]

)

∨

Φ[0 < #bf , {bf 7→ tail(bf )}, 〈out.head(bf )〉]

)

The truer precondition implies no divergence. The pericondition states that every input event is enabled,
and the output event is enabled if the buffer is non-empty. The postcondition contains two possible final
observations: (1) an input event occurred and the buffer variable was extended; or (2) provided the buffer
was non-empty initially, then the buffer’s head is output and bf is contracted.

Proof. To exemplify, we calculate the left-hand side of the choice, employing Theorems 2.15, 4.7, 4.8, and
5.2. The entire calculation is automated in Isabelle/UTP.

inp?v → bf := bf a 〈v〉

= ✷ v∈N • Do(inp.v) ; bf := bf a 〈v〉 [Defs]

= ✷ v∈N •

(

[ truer −| E [true, 〈〉, {inp.v}] | Φ[true, id, 〈inp.v〉] ] ;
[ truer −| false | Φ[true, Lbf 7→ bf a 〈v〉M, 〈〉] ]

)

[4.7]

= ✷ v∈N •

[

truer −

∣

∣

∣

∣

E [true, 〈〉, {inp.v}]
∨ false

∣

∣

∣

∣

Φ[true, id, 〈inp.v〉] ;
Φ[true, Lbf 7→bf a〈v〉M, 〈〉]

]

[2.15, 4.11]

= ✷v∈N • [truer −| E [true, 〈〉, {inp.v}] |Φ[true, Lbf 7→bf a〈v〉M, 〈inp.v〉]] [4.8]

=

[

truer −

∣

∣

∣

∣

∣

E

[

true, 〈〉,
⋃

v∈N

{inp.v}

]∣

∣

∣

∣

∣

∨

v∈N

Φ[true, Lbf 7→bf a〈v〉M, 〈inp.v〉]

]

[5.1, 5.2]

Though this calculation seems complicated, in practice it is fully automated and a user need not be concerned
with these minute calculational details, but can rather focus on finding suitable reactive invariants.

33



Then, by Theorem 6.3 we can calculate the overall behaviour of the buffer.

Buffer = [ truer −| Φ[true, {bf 7→ 〈〉}, 〈〉] ; B∗

3 ; B2 | false ]

This is a non-terminating contract where every quiescent behaviour begins with an empty buffer, performs
some sequence of buffer inputs and outputs accompanied by state updates (B∗

3 ), and is finally offering the
relevant input and output events (B2). We can now employ Theorem 6.4 to verify the buffer. First, we
tackle deadlock freedom, which can be proved using the following refinement.

Theorem 8.4 (Deadlock Freedom). CDF ⊑ Buffer

This theorem can be discharged automatically in 1.8s on an Intel i7-4790 desktop machine. This proof
approach has also been applied in demonstrating that formalised state machine models, in the RoboChart
language [33], are deadlock-free [12] with a similar level of automation. We next tackle the second property.

Theorem 8.5 (Buffer Order Property). The sequence of items output is a prefix of those that were previously

input. This can be formally expressed as

[ truer −| outps(tt) ≤ inps(tt) | truer ] ⊑ Buffer

where inps(t), outps(t) : seq N extract the sequence of input and output elements from the trace t, respectively.
The postcondition is left unconstrained as Buffer does not terminate.

Proof. First, we identify the reactive invariant I , outps(tt) ≤ bfainps(tt), and show that [truer −| I | truer ] ⊑
truer ⊛ [truer −| B2 |B3]. By Theorem 6.4 it suffices to show case (2), that is I ⊑ B2 and I ⊑ B3 ; I , as the
other two cases are vacuous. These two properties can be discharged by relational calculus. Second, we prove
that [truer −| outps(tt) ≤ inps(tt) | truer ] ⊑ bf := 〈〉 ; [truer −| I | truer ]. This holds, by Theorem 4.10-(1),
since I [〈〉/bf ] = outps(tt) ≤ inps(tt). Thus, the overall theorem holds by monotonicity of ; and transitivity
of ⊑. The proof is semi-automatic — since we have to manually apply induction with Theorem 6.4 — with
the individual proof steps taking 2.2s in total.

9. Conclusion

We have demonstrated an effective verification strategy for concurrent and reactive programs employing
reactive relations and Kleene algebra. We have provided three novel operators for expressing pre-, peri-,
and postconditions in stateful-failure reactive contacts, and shown how they can be used to support auto-
mated verification through calculation. We have defined a number of novel UTP healthiness conditions for
both reactive relations and reactive contracts, that capture important properties needed by the verification
strategy and algebraic laws. Our theory supports most of the operators of the Circus language, including all
the sequential operators from [35], and also parallel composition. Our theorems and verification tool can be
found in our theory repository9, together with companion proofs for the theorems presented here.

Related work includes the works of Struth et al. on verification of imperative programs [1, 21] using
Kleene algebra for verification-condition generation, which our work heavily draws upon to deal with itera-
tion. Automated proof support for the failures-divergences model was previously provided by the CSP-Prover
tool [29], which can be used to verify infinite-state systems in CSP with Isabelle. Our work is different both
in its contractual semantics, and also in our explicit handling of state, which allows us to express variable
assignments. However, we believe that several of the proof tactics defined for CSP-Prover [29] could be
applicable in our work for a restricted subset of reactive programs that model CSP processes.

Our work lies within the “design-by-contract” field [32], and is related to the assume-guarantee reasoning
frameworks [4, 5, 40]; a detailed comparison can be found in [14]. The refinement calculus of reactive

9Isabelle/UTP: https://github.com/isabelle-utp/utp-main
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systems [37] is a language based on property transformers containing trace information. Like our work,
they support verification of reactive systems that are nondeterministic, non-input-receptive, and infinite
state. The main differences are our handling of state variables, the basis in relational calculus, and our
failures-divergences semantics. Nevertheless, our contract framework [14] can be linked to those results, and
we plan to derive an assume-guarantee calculus to support verification of multi-party concurrent systems.

In future work, we will further optimise proof support for parallel composition through mechanisation
of Oliveira’s refinement and step laws [36], which allow efficient proof for concurrency patterns like bulk
synchronous parallelism. We will also tackle the remaining operators of the Circus language [46], including
hiding and renaming. Moreover, we hope to identify a normal form for stateful-failure reactive designs using
our specialised operators, which we speculate may have the following approximate form:

[

∧

i∈I

I[b1(i), t1(i)] −

∣

∣

∣

∣

∣

∨

i∈J

E [b2(i), t2(i),E(i)]

∣

∣

∣

∣

∣

∨

i∈K

Φ[b3(i), σ(i), t3(i)]

]

This contains a conjunction of trace assumptions, a disjunction of quiescent observation, and a disjunction
of finalisers. It may well be the case that additional healthiness conditions will be required for this. We
therefore will also explore additional properties that the healthiness conditions C2 and CACC support.
We will endeavour to establish formal links, using Galois connections, to existing semantic models like the
original failure-divergences model of CSP and its healthiness conditions [38, 8]. This could provide a way of
harnessing CSP-Prover proof tactics [29], and therefore expand our verification capabilities.

We also aim to apply our strategy to more substantial examples, and are currently using it to build a pro-
totype tactic for verifying robotic controllers using a statechart-style notion with a mechanised denotational
semantics [33, 12]. To support this, we will develop a Circus-based intermediate verification language with
annotations, such as loop invariants, to provide greater automation. Further in this direction, our seman-
tics and techniques will be also be extended to cater for real-time, probabilistic, and hybrid computational
behaviours [15], which is possible due to the parametric nature of our reactive contract theory.
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